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High-fidelity biexciton generation in quantum dots by chirped laser pulses
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We present a detailed theoretical analysis of biexciton state generation in InAs-GaAs quantum dots by
strong, chirped laser pulses. Specifically, we derive an accurate analytical expression, which not only provides
a clear physical picture of the process, but also allows identifications of laser parameter regimes where efficient
biexciton generation should be possible, even at temperatures up to 80 K. The results are confirmed by numerical
simulations, in very good agreement with the model proposed. A clear choice of parameters is proposed, which
might pave the way towards the optimal design of high-fidelity sources of entangled photon pairs based on
individual quantum dots.
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The efficient generation of biexcitons in semiconductor
quantum dots has attracted a lot of interest due to the
possibility of developing sources of correlated photons,1–5 with
a wide range of interesting perspectives on various fields such
as quantum state teleportation6,7 in quantum cryptography.7

However, in order to make practicable polarization entangled
sources of photon pairs, the biexciton state needs to be created
with a very high quantum yield. The main challenge is that
the excitonic states of any quantum dot are not isolated,
but coupled to the phonons of the substrate, hampering the
coherent one- or two-photon excitation process.

Different protocols have been proposed to overcome
these difficulties,8–14 all of them at temperatures in the
range of 4–20 K. Resonant excitation leads to Rabi-type
transitions,15–18 which, however, require perfect control
of the interaction strength. More robust schemes are based
on adiabatic passage,8,11–14,19–21 which have also been suc-
cessfully employed in recent experiments.22,23 One of the
most recent studies10 concludes that biexciton generation
is particularly difficult at high temperatures. Based on a
well-established microscopic Hamiltonian10,13,24 in this Rapid
Communication we present an analytical approach, which
not only provides a simple physical picture of the process,
but, more importantly, allows the identification of parameter
regimes where efficient generation of biexcitons should be
possible, at temperatures as high as 80 K. The key to this result
is that with suitably chosen laser pulses, the phonon interaction
can be effectively suppressed, making rapid adiabatic passage
successful. The analytical findings are confirmed by numerical
simulations, and the pulses are shown to be realistic within the
context of optical excitation of quantum dots.

The quantum dynamics of the system under linearly
polarized excitation is well described by an effective three-
level system taking the ground state (with energy E0 taken
to be zero), the excitonic state (with energy EX), and the
biexciton state (with energy EB) into account. The chirped
Gaussian laser pulse is given by E = 1

2Epe−t2/τ 2
p e−i(ωl t+αt2).

Experimentally, these pulses are obtained by passing a Fourier-
transform (FT)-limited pulse of duration τ0 with a peak field
strength E0 through a pulse-shaping device, which introduces a
quadratic phase φ′′. The pulse parameters of the chirped pulse
are then given by25 τp = τ0(1 + (2φ′′)2

τ 4
0

), Ep = E0
√

τ0/τp, and

α = (2φ′′)/[τ 4
0 + (2φ′′)2]. Hence a chirped pulse is stretched,

and its peak field strength is reduced. However, the pulse
energy P = ∫ |E |2dt is independent of the chirp parameter.

Using the rotating wave approximation (RWA), the total
Hamiltonian (in atomic units) can be written in the basis
|0〉,|X〉,|B〉 as H = Hs + ∑

q ωqb
†
qbq + SB, with the defi-

nitions
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and B = ∑
q(gqb

†
q + g∗

qbq), where gq is the exciton-phonon
coupling amplitude. This model has been successfully used
in previous studies on this system.10,13,24 Here, 2δ = (EX −
E0) − (EB − EX) and � = ωl + 2αt − 1

2 (EB − E0). For a
two-photon resonance, we have 2ωl = EB − E0 and the time-
dependent detuning simply becomes � = 2αt . The coupling
due to the laser interaction is given by � = �pe−t2/τ 2

p with
�p = μX0Ep, where we assumed identical dipole strengths
μX0 = μBX. In terms of �, the total interaction strength can
be expressed as the pulse area θ = ∫

�(t)dt .
Within a second order perturbative approach with respect to

the quantum dot-phonon interaction, and assuming a thermal
equilibrium of the phonon bath at a temperature T , the quantum
dynamics of the system, described by the density matrix ρ, is
given by the master equation26–28

ρ̇(t) = Lsρ +
∫ t

0
dt ′K(t,t ′)ρ(t ′), (2)

with Ls = −i[Hs,·] and the memory kernel defined by

K(t,t ′)ρ(t ′) = i[S,{ic(t,t ′)U (t,t ′)Sρ(t ′)} + {H.c.}], (3)

using the time-ordered propagator U (t,t ′) = T e
∫ t

t ′ Lsdt ′′ . At
this level of description, the phonon dynamics enters via the
correlation function c(t,t ′) = ∫ ∞

−∞ nβJ (ω)eiω(t−t ′)dω, where
nβ = (eβω − 1)−1 with β = 1/kBT and the spectral density
defined by J (ω) = ∑

q |gq |2δ(ω − ωq). For the system under
study, the relevant energy range for Rabi splittings is of the
order of a few meV, so the interaction of excitons with acoustic
phonons is dominant.17 Thus the spectral density is well ap-
proximated by J (ω) = Aω3e−ω2/ω2

c with the coupling constant
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FIG. 1. (Color online) Left: Energy levels of the quantum dot
model with ground state |0〉, exciton state |X〉, and biexciton state
|B〉. The energy 2δ = 2EX − EB represents the biexciton shift. Right:
Schematic field dressed eigenstates. The arrows indicate the branches
along which adiabatic passage can occur for the different signs of a
linear chirp.

A and a high frequency cutoff induced by the electron-phonon
coupling form factor.17,18 In our previous work, we estimated
the coupling constant A from the GaAs bulk parameters,18,29

and obtained A = 0.022 ps−2, which is very close to the
measured value reported in Refs. 17 and 18 for similar quantum
dots. For the cutoff we used ωc = 0.72 meV, based on an
estimation of the size of our quantum dot. Furthermore, we
chose for the biexciton shift 2δ = −1.5 meV, as measured
in Ref. 22. With these values, very good agreement with
experimental results was obtained.22,24

The numerical results to be presented are obtained by
solving Eq. (2) using the auxiliary density matrix method,26–28

which is perturbative in the system bath coupling, but takes
memory and strong external driving into account. To analyze
the field induced dissipative dynamics, in Fig. 1 we plot
the time-dependent, instantaneous eigenstates ε1(t),ε2(t), and
ε3(t) of the system Hamiltonian Hs(t), numbered according
to increasing energy. It is important to notice that depending
on the sign of the chirp parameter, the initial state at t →
−∞ is either the upper (for α < 0) or the lower adiabatic
state (for α > 0). In the absence of dissipation, adiabatic
passage involves the evolution following the lower or upper
instantaneous eigenstates across the coupling, leading to a
final biexciton state population PB ≈ 1, independent of the
sign of α.

To describe nonadiabatic effects and the coupling to the
phonons, the pertinent quantities are the time-dependent
energy gaps between the adiabatic states, �1(t) = ε2(t) − ε1(t)
and �2(t) = ε3(t) − ε2(t). For large enough δ, these gaps bear
the fingerprints of three avoided crossings, one at t = 0 and
two at t = ±δ/(2α), either for �1 or �2, depending on the
sign of δ.

In the case of a negative δ, corresponding to the quantum dot
used in the experiments reported in Ref. 22, �1(t) is minimal
at t = ±δ/(2α) with a value �∗

1 ≈ �p exp( δ2

4α2τ 2 ) and �2(t) is

minimal at t = 0 with a value of �∗
2 =

√
�2/2 + δ2/4 − |δ|/2

(see Fig. 1).
Assuming pairwise (two-state) transitions, the threshold

value �±
ad , such that for �p > �±

ad we have adiabatic evolution
(and thus 100% transfer efficiency in the isolated case),
can be estimated by a simple Landau-Zener analysis,30
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FIG. 2. (Color online) Population of the biexciton state, as a
function of peak interaction strength �p , for a laser pulse with τ0 =
1 ps, φ′′ = 20 ps2 (upper panel), and φ′′ = −20 ps2 (lower panel),
resulting in τp ≈ 40 ps. Solid circles: Numerical solution of Eq. (2).
Open circles: Without phonon interaction. Dashed lines: Analytical
expression [Eq. (7)]. The biexciton shift is 2δ = −1.5 meV and
the lattice temperature T = 4 K. The highest value shown, �p =
1.7 meV, corresponds to a FT-limited pulse of area θ = 9π .

and yields

�+
ad =

√
8α exp

(
δ2

4α2τ 2
p

)
for α > 0, (4)

�−
ad = 2(8α + 2

√
α|δ|)1/2 for α < 0. (5)

Since for different signs of the chirp parameter α the passage
occurs either on the upper or lower surface, the adiabaticity
plateau is reached for different values.

In Fig. 2, we show the final biexciton population PB after
interaction with a strong, chirped laser pulse with τ0 = 1 ps,
φ′′ = ±20 ps2, as a function of �p. In each of the panels, we
show a full numerical simulation based on Eq. (2) with and
without the GaAs matrix phonons, together with the analytical
result to be developed below [Eq. (7), dashed line], which is
valid in the adiabatic regime, i.e., for �p > �±

ad . First, without
the phonon interaction, we see the adiabatic regime for �p >

�±
ad , where the plateau PB = 1 is reached, confirming the

Landau-Zener picture developed above.
The situation is completely different when the phonons

are included. The most striking effect is a drastic loss in
the transfer efficiency for α < 0 (Fig. 2, bottom panel).
However, for α > 0, the plateau above �+

ad is approximately
maintained. This asymmetry, also found in previous numerical
simulations,10,14 will be explained based on the analytical
expression to be detailed below. It is obtained as follows:
First, Eq. (2) is transformed into the adiabatic basis, where
in the transformation of the memory kernel K(t,t ′) we have
set δ = 0 for simplicity. Neglecting nonadiabatic couplings
leads to a set of coupled equations for the density matrix in
the adiabatic representation ρa . When we further neglect the
influence of the coherences ρa

13 onto the populations, the latter
are found to obey a closed set of equations. This effective
master equation reads⎛
⎜⎝

ρ̇a
11

ρ̇a
22

ρ̇a
33

⎞
⎟⎠ = −f (t)

⎛
⎜⎝

γ −
1 −γ +

1 0

−γ −
1 γ +

1 + γ −
2 −γ +

2

0 −γ −
2 γ +

2

⎞
⎟⎠

⎛
⎜⎝

ρa
11

ρa
22

ρa
33

⎞
⎟⎠, (6)
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with γ ±
1(2) = πJ (�1(2))[coth(β�1(2)/2) ± 1] and f (t) =

�2/(�2 + 8α2t2). This set of equations is to be solved
subject to the initial conditions ρa

11 = (1 + α/|α|)/2 and
ρa

33 = (1 − α/|α|)/2, which yields the biexciton population
after the pulse excitation according to PB = ρa

11(tf ) for α > 0
and PB = ρa

33(tf ) for α < 0. Using a Gaussian laser pulse
�2 = �2

p exp(−2 t2

τ 2
p

), we see that in the case we are interested

in, i.e., α 	= 0, f (t) represents a finite pulse envelope, which
shall be approximated by a simple Gaussian exp(−2 t2

τ 2
r

) with
an effective pulse length τr chosen in such a way that the full
width at half maximum (FWHM) of f (t) is matched.

An analytical solution of this system of equations is still not
possible due to the complex time dependence of �1 and �2

entering into γ ±
1(2). To proceed, we neglect this time dependence

and choose their values at the avoided crossings, i.e., set
�1 ≈ �∗

1 and �2 ≈ �∗
2 in γ ±

1(2). Then, Eq. (6) can be solved
analytically and we find

PB =
⎧⎨
⎩

γ +
1 γ +

2

4γ1γ2−γ +
1 γ −

2
+ γ −

1
2γ̄

(C+
12e

−κ+ − C−
12e

−κ−
) for α > 0,

γ −
1 γ −

2

4γ1γ2−γ +
1 γ −

2
+ γ +

2
2γ̄

(C+
21e

−κ+ − C−
21e

−κ−
) for α < 0,

(7)

where we have defined C±
ij = (γi − γj ± γ̄ )/(γi + γj ± γ̄ )

with γ1(2) = πJ (�∗
1(2)) coth(β�∗

1(2)/2) and γ̄ =√
γ +

1 γ −
2 + (γ2 − γ1)2. The exponents are given by

κ± = π
8 (γ1 + γ2 ± γ̄ )τr . These analytical expressions

are depicted as dashed lines in Fig. 2, valid in the adiabatic
regime �p > �±

ad . The above-mentioned asymmetry with
respect to α can be rationalized in terms of our analytical
expression. Using the low temperature approximations
γ −

1(2) ≈ 0,γ +
1(2) ≈ 2γ1(2) we deduce

PB =
{

1 for α > 0,

e−
√

π
2 τr γ2 for α < 0,

(8)

from Eq. (7). Hence the physical picture that arises is the
following: For α < 0 the transfer occurs on the upper surface,
and the coupling to the phonons leads to relaxation to the
other surfaces, thus diminishing the transfer efficiency. This is
reflected in Eq. (8), where for α < 0 we find a Landau-Zener-
type expression which involves �∗

2, i.e., the energy gap for
the upper avoided crossing (see Fig. 1). For α > 0, however,
the transition proceeds on the lower adiabatic surface, and
a phonon induced transfer to the other states would require
phonon absorption, which is strongly suppressed in the limit
of low temperatures.

Even though for lower temperatures PB ≈ 1 is possible by
choosing the correct sign of the chirp parameter, a significant
drop in PB is found for higher temperatures: Figure 3 shows
the biexciton population for different temperatures, up to 80
K, using the same laser parameters as in Fig. 2. Again, we see
a very good agreement between the full numerical solution
based on Eq. (2) and the analytical expression Eq. (7) (dashed
line), which is valid for �p > �±

ad . The drastic drop in PB at
T = 80 K constitutes a major drawback from a technological
point of view, since cryogenic technical issues are much harder
to solve below liquid nitrogen temperature.
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FIG. 3. (Color online) Biexciton population as a function of peak
interaction strength �p for different temperatures, as indicated, for
a pulse with τ0 = 1 ps and φ′′ = ±20 ps2. A drastic loss of transfer
efficiency is found for higher temperatures, predicted by the analytical
model, which is valid in the adiabatic regime.

Based on our analytical approach, Eq. (7), we can establish
parameter regimes where PB ≈ 1 is possible even at this
high temperature. In the limit of high temperatures, we can
approximate γ +

1(2) ≈ γ −
1(2) ≈ γ1(2), leading to

PB =
{

1
3 + (

1
3 + R12

)
e−κ+ + (

1
3 − R12

)
e−κ−

for α > 0,

1
3 + (

1
3 + R21

)
e−κ+ + (

1
3 − R21

)
e−κ−

for α < 0,

(9)

with Rij = (γi − 2γj )/(6γ̄ ). Hence, for PB ≈ 1 we require
κ+ ≈ κ−, which implies κ± ≈ 0 that can be achieved by
J (�∗

1(2)) ≈ 0. This condition simply states that the gaps at
the avoided crossings depicted in Fig. 2 should be much
larger than the cutoff frequency of the spectral density. In this
case, the electronic motion becomes so fast that the phonon
dynamics is effectively decoupled. This phenomena has also
been predicted with unchirped, resonant pulses, leading to
Rabi-type transitions. Here, when for strong coupling the Rabi
frequency exceeds the cutoff ωc, an undamping of the Rabi
oscillation has been obtained, indicating a decreased coupling
to the phonons.19,31–33 In our case, this can be achieved when
�∗

1(2) 
 ωc. For the spectral density considered in this work,
we have chosen �∗

1(2) > 4ωc, leading to threshold values
defined as dynamical decoupling,

�+
dc = 4ωc exp

(
δ2

4α2τ 2
p

)
for α > 0, (10)

�−
dc = 4

√
2 ωc for α < 0. (11)

Since the separation of the avoided crossing increases with
peak intensity, intense pulses are required. Furthermore, for
a laser with a given intensity, a shorter and only weakly
chirped pulse favors the high temperature biexciton generation.
Figure 4 shows the biexciton population for a τ0 = 350 fs laser
pulse and a chirp parameter of φ′′ = ±0.5 ps2, leading to τp =
2.8 ps. Here, the highest intensity considered corresponds to a
pulse area of the FT-limited pulse of area 5.2π . One sees that
for both chirp signs, PB ≈ 1 is possible, even at a temperature
of 80 K. For the values chosen, the different threshold values
for adiabatic evolution and dynamic decoupling are indicated
as arrows for both chirp signs.
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FIG. 4. (Color online) Biexciton population for a short (τ0 =
350 fs) and only weakly chirped pulse (blue: φ′′ = 0.5 ps2; red:
φ′′ = −0.5 ps2; leading to τp = 2.8 ps), calculated by a numerical
solution of Eq. (2). PB ≈ 1 is achieved when both �p > �±

ad and
�p > �±

dc are fulfilled. The highest shown value, �p = 6 meV,
corresponds to a FT-limited pulse of area θ = 5.2π .

Finally, in Fig. 5 we plot a map of PB for τ0 = 350 fs,
obtained by the full numerical solution based on Eq. (3) using
T = 80 K and 2δ = −1.5 meV. The intensity is given with
reference to Pm, which corresponds to a FT-limited pulse of
θ = 7π . In this figure, we have indicated the condition for
adiabaticity [Eqs. (4) and (5)] and for dynamical decoupling
[Eqs. (10) and (11)]. Close to α ≈ 0, we find the typical
coherent population transfer showing a generalized Rabi
flopping. To access the adiabatic regime, the absolute value
of the chirp parameter needs to be larger than a minimal
value φ′′

c .34 In Refs. 24 and 34, a value of φc = πτ 2
0 is

estimated, which coincides with our finding here. Taking all
these conditions together, we can identify regions where a
plateau of PB ≈ 1 is reached. We further checked that the
adiabatic passage for biexciton preparation is also robust with
respect to variations of δ from dot to dot.35

These considerations are important for the realization of
high efficiency correlated photon sources. First, the exci-
ton generation is deterministic, occurring at well-defined
instants, an advantage with respect to nonresonantly excited
sources.3,5,6,36,37 The quasiresonant character of the excitation
prevents the generation of fluctuating charges in the vicinity
of the quantum dots,38 which should lead to longer corre-
lation times and thus better photon indistinguishability.36,37
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FIG. 5. (Color online) Biexciton population as a function of
intensity and chirp parameter, based on a FT-limited pulse with
τ0 = 350 fs and a maximum intensity corresponding to θ = 7π , at
a temperature of 80 K. The lines correspond to the threshold values
[Eqs. (4), (5), (10), and (11)], which, together with |φ′′| > πτ 2

0 , define
regions in parameter space where PB ≈ 1 could be realized (red areas
correspond to PB > 0.99).

Furthermore, electron-hole pair recapture by the dot3,4 would
be reduced, thus improving the quantum correlation between
the two emitted photons from the biexciton cascade, hence the
overall efficiency of the device.

In conclusion, we have developed a theory of rapid adiabatic
passage for the preparation of a biexciton state in a single
quantum dot coupled to a phonon bath. In the adiabatic limit,
we have derived an accurate analytical expression for the final
biexciton population, which makes the physics of the process
transparent, in particular, the asymmetry between positive and
negative chirp rates. The analytical approach also allows to
identify parameter regimes, where PB ∼ 1 at T = 80 K is
possible, proposing an experimental strategy for biexciton
generation at temperatures accessible by liquid nitrogen. These
findings are very promising in view of the optimal design of
robust and efficient sources of correlated photons.
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