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Quantum quenches, dynamical transitions, and off-equilibrium quantum criticality
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Several mean-field computations have revealed the existence of an out-of-equilibrium dynamical transition
induced by quantum-quenching an isolated system starting from its symmetry-broken phase. In this work we focus
on the quantum ¢* N-component field theory. By taking into account dynamical fluctuations at the Hartree-Fock
level, corresponding to the leading order of the 1/N expansion, we derive the critical properties of the dynamical
transition beyond mean-field theory (including at finite temperature). We find diverging time and length scales,
dynamic scaling, and aging. Finally, we unveil a relationship with critical coarsening, an off-equilibrium regime
that can be induced by quenching from the symmetric toward the symmetry-broken phase.
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Out-of-equilibrium quantum dynamics of isolated systems
is a fundamental research topic which has recently become
accessible to experimental investigations by trapping ultracold
atoms in optical lattices.! Since the pioneering work? in
which the Mott insulator—superfluid quantum phase transition
was observed, the field has boomed with many studies, in
particular on the so-called quantum quenches. These protocols,
consisting of a sudden change of an interaction parameter (for
example using Feschbach resonances), bring a system initially
in the ground state far from equilibrium.

Out-of-equilibrium quantum dynamics is a very broad field.
One of the main fascinating questions is whether, and to what
extent, there exist universal phenomena generalizing the ones
found for equilibrium systems. The quantum Kibble-Zurek
mechanism, describing the production of defects occurring
during ramps across a quantum critical point,’ is an example
of such universal properties. The main topic of this article is
another candidate for universal behavior originally discovered
in the Hubbard model*® and later found in a large variety
of quantum systems at the mean-field level.”” It consists
of a dynamical transition out of equilibrium occurring after
a quantum quench. Its main features are that long-time
averages display a singular behavior and the order parameter
vanishes when the final coupling U f, reached after the quench,
approaches a critical value U ?.

Attempts to go beyond mean-field theory in the Hubbard
model showed that fluctuations play an increasingly important
role approaching the transition.'%!! A full analysis, however, is
still lacking. Moreover, even though it is recognized that some
physical observables are singular at Ujf-, the critical nature
of the transition remains to be found yet. Actually, it is not
known whether there is a diverging correlation length scale
at the transition or whether some kind of critical dynamics
scaling takes place. In this work we provide answers to these
open questions by going beyond mean-field theory and taking
into account some dynamical fluctuations. In order to do that,
we shall focus on the ¢* N-components quantum field theory
and retain in the self-consistent 1/N expansion the leading
contributions in the large- N limit. An unexpected and interest-
ing result of our analysis is that the critical out-of-equilibrium
dynamics occurring at the dynamical transition coincides with
the one induced by quenches from the unbroken-symmetry
phase toward the broken-symmetry one, a situation similar to
the one leading to coarsening dynamics in a classical system. !?
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The model we focus on consists of an N-component real
scalar field interacting via a quartic term in three dimensions. It
was studied thoroughly at equilibrium, since, depending on the
value of N, it belongs to the same universality class as many
physical systems such as superfluids and ferromagnets.'> The
corresponding Lagrangian reads'*
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At equilibrium, this model has a quantum phase transition
between_a phase with spontaneous symmetry breaking in

which (¢) is aligned along a certain direction for ro < r§
and a paramagnetic phase, (¢;) = 6, for ro > rg. The critical
“mass” rg is negative, due to the enhancement of the effective
mass because of fluctuations. It was shown in Ref. 9 that this
model displays, at the mean-field level, a dynamical transition
due to quantum quenches in the mass ry (other regimes were
previously studied in Ref. 15). In the following, with the aim
of analyzing the effect of fluctuations on the dynamical transi-
tion, we retain in the two-particle irreducible/Baym-Kadanoff
expansion of the self-energy the leading-order contribution in
1/N, which corresponds to the the dynamical Hartree-Fock
approximation.'® The initial condition for the dynamics is the
ordered ground state before the quench (finite-temperature
initial conditions will be considered later). Without loss 9f
generality we focus on the case where the average field, ¢,
is aligned along the first component: ¢ =8, 1¢; = (&i’,).
Note that by symmetry the average field remains uniform for
t > 0 and only the diagonal terms n’ = n of the connected
Keldysh correlation functions, G™, = ({<136‘,t, Py — e,
are nonzero. The time-dependent Dyson equations governing
the evolution of the system after the quantum quench from r/,

to r({ read
A aVie)
812¢t=—<rt+@/pGﬁ/m>¢r=——a¢ s (1)
arszn’ = _(p2 + V;)G;m, (2
2~/ 2 Ao\ A
al Gptt’ =—\P +r + ﬁd)t Gptz” (3)

A 1 N —1
f
re=r +a<¢tz+§/pG{/m+T/pGlj;ﬂ), @)

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.88.201110

BRUNO SCIOLLA AND GIULIO BIROLI

0.01 I E

0.001 ¢ ‘

0.0001

10 100 1000
t

FIG. 1. (Color online) (a) Cartoon of the dynamical transition at
the mean-field level. From top to bottom: Quench above (a), at (t),
and below (b) the dynamical transition. (b) |r;| for a quench within
the unbroken symmetry phase (thick blue line) and at the dynamical
transition (thin red line). In the second case, r, decays faster than 1/z.

where the parallel index has been used for the n = 1 Keldysh
correlation function and the perpendicular one for all the others
(which are equal by symmetry). The initial conditionatt = Qs
given by the value of the field ¢ and the equal-time ( = ¢’ = 0)
Keldysh correlation function in the ground state corresponding
to the value of the mass r). See the Supplemental Material®!
for more details.

Since this problem is not exactly solvable, we integrated nu-
merically the equations for a large value of N = 10°.!7 (Note
that the average field scales as +/N.) Although the dynamics
of the field ¢, and correlations G’ look superficially similar
to a free field evolution, the time dependence of the effective
mass r; has dramatic effects as we shall show.

Let us first recall the main result of mean-field theory, which
corresponds to neglecting all the feedback of correlations
on the dynamics of ¢, in (1).'"® The motion of the field is
qualitatively represented in Fig. 1(a), where various quenches
with different initial mass r{ and with same final mass r({
are depicted. [This means that the potential V(¢) after the
quench is the same. The initial condition instead depends on
the value of ¢ in the ground state before the quench, i.e.,
on ré.] Above the transition [case (a)] the field oscillates
symmetrically around zero and, consequently, is characterized

by a zero time average ¢ = limy_, o(1/T) fOT dt ¢,. Below the
transition [case (b)] the field oscillates around one minimum
of the potential and, hence, is characterized by a nonzero
. In between, at the dynamical transition when r{ = r/”
[case (t)], the field relaxes exponentially to zero, i.e., to the
maximum of the potential at ¢ = 0. The phenomenology of
this mean-field transition is identical to the one found in other
mean-field models.”® For example, the time-averaged value
of the field has a logarithmic singularity at the dynamical
transition: ¢ o< 1/1n|A|, where A is the relative distance to
the dynamical critical point:

A= [l = D). )

Our goal is to determine the impact of fluctuations at first
order in 1/N on this scenario. The numerical analysis of the
evolution Eqgs. (1)—(4) shows that the system always reaches
a steady state at long times'® which is however nonthermal
(thermalization is only reached when terms of second order in
1/N are considered'®). This is the first difference with respect
to mean-field theory, in which oscillations instead persist even
at long times. We show in Fig. 1(b), as an example, the
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FIG. 2. (Color online) (a) Long-time averages, ¢/~/N and 77, as
a function of the relative distance to the critical point A (in %).
(b) Critical length &* versus A the distance from the dynamical
transition. Notice that despite the different definitions below and
above the transition, &£* diverges as d/+/A on both sides of the
transition, with d, and d, two different constants.

evolution of the mass for two different quenches: we find that
oscillations are damped and r, converges toward an asymptotic
value. Similar results are found for the field. By studying
quenches for several values of the final and initial mass, we
find that the dynamical transition continues to take place, as
was already mentioned in contexts related to cosmology.?” In
the following, we study its critical features. As in mean-field
theory, the transition happens for quenches within the regime
of broken symmetry, ré <r5— r({ @ - r§, and corresponds
to a singularity in the asymptotic value (or equivalently the
time-averaged value) of the field. We show in Fig. 2(a) ¢ and
the average mass as a function of A. Below the transition, the
field relaxes to a nonzero asymptotic value and r, vanishes.
Above the transition, the field relaxes to zero, whereas the
mass converges to a positive value. The critical behavior is
different from the mean-field one, since instead of a loga-
rithmic singularity the average field vanishes as ¢ ~ |A|'/*
approaching the transition from below (A — 0T), whereas
the asymptotic value of r, vanishes as A for A — 072! After
having established the existence of a critical point let us now
study its properties, i.e., focus on the physical behavior after
quenches right at A = 0. We find that the dynamics is divided
in two stages. First, the field relaxes to zero on a time scale 7
smaller than the one characterizing the evolution of |r;|. In the

L
second stage, G,

for all momenta below a cutoff A> = |r,_g|. This leads to a
growth of the effective mass r;, which eventually stabilizes
around zero, with a slow, oscillating, power-law decay shown
in Fig. 1(b). This in turn stabilizes the growth of Gjn. Atlarge
times, the low-momentum modes enter a remarkable two-times
dynamic scaling regime:

. . —p2_
increases exponentially, as Gpgoez\/ prnt

A t
L~ z
Gow = ?f <Pt F) (6)

t t v
F(pt,;) ~ COos |:pt<1 — 7>:| — cos |:pt<1 + 7)] @)

with a dynamical exponent z =1 and A a nonuniversal
constant. The parallel mode G/ follows the same
scaling law. The real-space counterpart of Eq. (7) reads
G, ~ 1O(r| — (t — t)O(t + 1’ — |r|). The existence of the
scaling variable ¢’ /¢ means that the system remains always out
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FIG. 3. (Color online) (a) Equal-time correlations |G ;| as a
function of p for r = {1000,2000,4000} in a log-log scale. Notice
the divergence of correlations below a cutoff scale p < A >~ 0.2.
(b) Rescaled equal-time correlations |G ,;, / 12| as a function of pt for
the same data, y axis in log scale. All data collapse on the scaling
law (7) drawn in black.

of equilibrium: itis not characterized by any intrinsic time scale
besides its age after the quench, a phenomenon called aging.?

The scaling (6) and (7) is demonstrated in Fig. 3 for equal-
time correlations (in Fourier space), and for ¢ # ¢’ (in real
space) in Fig. 4(b). An explanation for the form of the scaling
function can be found analyzing quenches in a free field theory
where the final mass is r({ = 0. Indeed, by generalizing the
result of Ref. 23 for a sudden quenches in a free field theory we
find the following expression for the real-space two-times cor-
relations in the continuum limit (using the notation @}, = p?):

1 i d3p eiﬁ; / ’
G, =r m?(cos[wp(t — )] = cos[w,(t +1)]).
p

This is just the Fourier transform of Egs. (6) and (7). It is
important to realize that, contrary to the free field theory
case, now the vanishing mass is dynamically generated by
interactions. The functional form of the decrease of the mass
at long times can be obtained, plugging the dynamical scaling
form of the propagator into (4). Calling A a high-momentum
physical cutoff, we find

o f N dp 1
=T + 12 L (27_[)3 Gptl
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FIG. 4. (Color online) (a) Qualitative interpretation of the corre-
lations in real space in terms of a common virtual emitter in the past.
G, vanishes in the dashed areas, where it is out of causal reach of
virtual emitters. (b) Rescaled two-times correlation function r G,
as a function of /¢ fort /¢' = 1.2. All data collapse on a step function
as ¢ increases, with finite-size effects on scale A~!.
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where to establish the last identity we have used that the
constant contributions cancel since at the transition the theory
is asymptotically massless. By taking into account subleading
corrections to the dynamic scaling form of the propagator
one can show that the mass decays even faster than 1/¢,2%%
as indeed we find numerically; see Fig. 1(b). Note that the
mapping to a free field theory, valid at large times, is also useful
to interpret the form of the two-times scaling found previously.
One has to use that excitations propagate at fixed speed?® and
that in the limit of a large number of excitations the fields
become classical. Then, according to the Huygens-Fresnel
principle, plane wave propagation can be interpreted, in three
dimensions, in terms of a continuum of virtual emitters. This
is illustrated in Fig. 4(a): between the origin and a point at a
distance r, correlations G, at successive times ¢ and ¢ are
nonzero only provided there is a virtual emitter in the past, sus-
ceptible to reach the two points at times ¢’ and ¢, respectively.
Notice that this effect includes the usual light-cone effect found
in various systems,”>?3 but that the two-time scaling is really
a new feature, due to the critical nature of all effective exci-
tations. Away from the dynamical transition, we still observe
the light cone effect but dynamic scaling does not hold any
longer.

We now analyze how the critical behavior emerges ap-
proaching the transition. Note that in this case there are two
regimes: First, an out-of-equilibrium transient that persists for
a time scale t3;. In this regime, corresponding to times ¢ such
that T, > ¢ > A~!, the dynamical scaling (6) remains valid
(on both sides of the transition) and, hence, the characteristic
time scale is the age of the system itself and the characteristic
scale for the momentum is the inverse of that. In the second
regime, corresponding to ¢ ~ 1, the system reaches a steady
state in which the Keldysh correlation function becomes time-
translation invariant. The relaxation time scale to the steady
state, 77, diverges approaching the dynamical transition.
Numerically we found 7%, ~ 1/|A|'/2.

In the stationary regime the transverse correlation function
becomes time-translation invariant and has a scaling form:

L 1 L=t
Gplt’ = ?F p§”, . 9

T*

The low-momentum behavior is critical, e.g., Gf;n ~1/ pz,
until values of p of the order of 1/£* are reached, accordingly
F(x,y) = x2f(y) for x — 0. More details on the scaling
function can be found in Ref. 21. Both t* and &* diverge
as 1/|A|'/? approaching the transition.?® The fact that they are
characterized by the same critical exponent is in agreement
with the unit value of the dynamical exponent z found
previously. The similar divergence of the decorrelation time in
the steady state, t*, and the relaxation time toward the steady
state, 7,5, can be understood assuming that that there is no in-
termediate regime. Indeed, if the out-of-equilibrium evolution
stops when the typical momentum scale during aging, which
is proportional to the time ¢ elapsed after the quench, reaches
the steady-state value 1/£*, then one finds 7,5 ~ 1/&% ~ t*.
Note that the asymptotic value of the effective mass r; is not
directly related to £*. The latter is determined by studying
the low-momentum properties of Gjn whereas the former
is relevant only for the dependence in ¢t — #’. The diverging
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length is shown in Fig. 2(b); its divergence is a power law
£*(A) ~ 1/A'Y?, as shown in the Supplemental Material.”'
In summary, the dynamical transition has scaling properties
£~ A7V, % ~ A™% and ¢ ~ AP with exponents v = 1/2,
z =1, B = 1/4. For comparison, both the finite temperature
and the quantum phase transitions are characterized by
B =1/2 in three dimensions at lowest order in 1/N. In
consequence, the dynamical transition does not appear to be
related to any of those. Instead, it is possibly related to the
existence of a nonthermal fixed point, as suggested by previous
works.3:6:16:27

A natural question is to what extent starting from the
ground state is important to induce the dynamical transition.
We have addressed this issue, considering quantum quenches
from an initial thermal state, and we find that the dynamical
transition remains unaffected, provided the initial state is
still in the broken-symmetry phase.>' Nonuniversal features,
such as the position of the dynamical transition r({ @ , instead
are different. By increasing the temperature at fixed r) one
finds that the value of the critical mass approaches rf; they
become equal when T reaches the value corresponding to the
thermal equilibrium phase transition. For higher temperatures
the dynamical transition does not exists any longer.

Let us now turn to an apparently unrelated problem:
quantum quenches starting from a symmetric ground state,
ré > r§, toward values of the mass at which the system would
be ordered at equilibrium, r) < r§. This problem has been
studied in cosmology and in statistical physics; it is referred to
as spinodal decomposition.'>?82° Physically, one expects that
the system globally remains in a symmetric state but locally,
on length scales and time scales that increase with time, it
breaks the symmetry. Since the average field remains zero for
all times*® and ¢ is the only dynamical quantity analyzed at
the mean-field level, the latter method is useless to study these
quantum quenches. The growth of local order is visible at the
level of correlations, which requires going beyond mean-field
theory. In the following we briefly present our results obtained
at the leading order in 1/N.

The initial conditions for quenches from the unbroken-
to the broken-symmetry phase correspond to ¢, = 0 (the
initial state is symmetric) and negative masses. These are
qualitatively similar to those of a quench at the dynamical
transition after the time 7 defined above. Indeed, it turns
out that the subsequent out-of-equilibrium dynamics is the
same. In particular, the effective mass vanishes asymptotically,
and the two-time correlations scale like (7). Thus we find
that the dynamical transition is characterized by the same
critical properties as coarsening dynamics at the leading order
in 1/N. Note, however, that in usual classical coarsening'?
the equal-time propagator is not critical since the system is
formed by (growing) regions with a definite value of the order
parameter. Here, instead, we find a nonequilibrium critical
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FIG. 5. (Color online) Quench phase diagram: Long-time typical
dynamics after a quench rj — rof for x =1. DT: Dynamical
transition, OESB: off-equilibrium symmetry breaking, R: relaxation
on large times to a noncritical state. Error bars are smaller than item
size. The exact position of transition lines depends on nonuniversal
features, such as the interaction strength A and the cutoff A.

state, akin to the one obtained by quenching to an equilibrium
critical point, a phenomenon called critical coarsening.’! The
reason for this discrepancy between quantum and classical
cases is unclear: it is the object of ongoing research®’ and
could disappear when 1/N? terms are taken into account.

A complete quench phase diagram is shown in Fig. 5(a),
summarizing all possible quenches ré — r({ . When the initial
field is nonzero, ré < rg, the system relaxes to a steady state
on both sides of the dynamical transition, either to a state of
positive field ¢ or of positive mass 7. The correlations follow
the scaling form (6) on the dynamical transition (DT) and in
the whole region (OESB) of quenches from the symmetric
phase to the broken-symmetry phase.

In conclusion, by going beyond mean-field theory and
taking into account fluctuations at the leading order in 1/N,
we have shown the existence of an off-equilibrium transition
induced by quantum quenches which is characterized by bona
fide critical properties, in particular diverging time and length
scales. Elucidating the nature of this dynamical transition will
be the subject of future works. It may be related to either
the physics of nonequilibrium fixed points'®?’ or of quenches
to the thermal critical line.! Recent studies in the Hubbard
model favor the former scenario,>® whereas the relationship
with critical coarsening favors the latter one. Clearly, in order
to answer this question and generalize our finding to systems
directly relevant for experiments, it is worthwhile to extend our
results to take into account the next leading order contribution
in 1/N (Ref. 27) and to more physical models, such as the
Bose-Hubbard one.
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