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We perform a general group-theoretical study of the Kondo problem in monolayer and bilayer graphene around
the charge neutrality point. Utilizing the group representation theory, we derive from symmetry considerations a
family of the Kondo models for all symmetric placements with either a 3- or a 6-fold rotational axis of an impurity
atom in an arbitrary orbital state. We find six possible classes of the partially anisotropic four-channel Kondo
model. As the key result, we argue several possibilities to realize the regime of the dominant channel-symmetric
two-channel Kondo effect, protected by the local symmetry and specifics of the graphene band structure. Our
findings open prospects for the observation of the rich multichannel Kondo physics in graphene and the associated
non-Fermi-liquid behavior.
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Introduction and main results. The Kondo effect—the
interaction of local spin or orbital degrees of freedom with
conduction electrons—plays a fundamental role in a wide
variety of condensed matter systems, ranging from quantum
dots to strongly correlated materials.1,2 The Kondo effect in
graphene3 has attracted significant interest4–21,23–27 due to its
peculiar electronic properties and potential for the realization
of the multichannel Kondo effects. A number of theoretical
studies of the quantum impurity problem have been undertaken
for monolayer graphene (MLG),4–22 and many fewer for
bilayer graphene (BLG).23 However, the analysis of possible
Kondo models in graphene has not yet been performed in its
full generality. In particular, the feasibility of the multichannel
Kondo effect in graphene remained a debated question: both
pro4,16,19 and con21 arguments have been put forward.

Motivated by these interesting questions, in this Rapid
Communication, we perform a general group-theoretical study
of the Kondo effect in MLG and Bernal-stacked BLG around
the charge neutrality point (CNP). Following the original
recipe of Nozieres and Blandin,1 we utilize the group represen-
tation theory28,29 to derive the family of four-channel Kondo
models for all symmetric placements with either a 3- or a
6-fold rotational axis of an impurity atom (IA) in an arbitrary
orbital state without appealing to any microscopic details. We
find six possible classes of the Kondo models: there are three
cases for the structure of conduction electron channels and the
impurity can be in either a singlet or doublet orbital state.

Most importantly, we argue that in several cases of the
impurity placement the two-channel Kondo effect is realized,
where the exchange couplings for a pair of equivalent channels
Ee± belonging to one two-dimensional (2D) irreducible
representation (IR) Ee are dominant. In these cases, in the
low-energy regime, the symmetric two-channel Kondo model

˜̂H
sglt

J = ψ̂
†
Ee

(0)(J ρEeEe + J σEeEeσS)ψ̂Ee
(0) (1)

is realized in the orbital singlet case and the two-channel
Kondo model

˜̂H
dblt

J = ψ̂
†
Ee

(0)
∑

γ=0,x,y,z

(
J ρEeEe

γ + J σEeEe

γ σS
)
τγ Tγ ψ̂Ee

(0)

(2)

with partially anisotropic (J ...
x = J ...

y �= J ...
z ) orbital Kondo

interactions is realized in the orbital doublet case. Here,
ψ̂Ee

= (ψ̂Ee+↑,ψ̂Ee+↓,ψ̂Ee−↑,ψ̂Ee−↓)t is a spinor in the product
of the channel (Ee±) and spin (↑,↓) spaces, τγ and Tγ are unity
(γ = 0) and Pauli (γ = x,y,z) matrices in the channel and
impurity orbital doublet spaces, respectively, σ = (σx,σy,σz)
are spin Pauli matrices of conduction electrons, and S =
(Sx,Sy,Sz) are the impurity spin operators.

Both models present considerable physical interest, largely
due to non-Fermi-liquid behavior exhibited in a number of
regimes, but have proven challenging to realize in practice.
Our findings thus pose MLG and BLG as promising materials
for the realization of the rich multichannel Kondo physics and
associated non-Fermi-liquid behavior.

Graphene lattice and local symmetry of the impurity atom.
MLG and BLG3 are two-dimensional carbon allotropes, shown
in Fig. 1. Both have a triangular Bravais lattice with primitive
translation vectors a1,2. MLG has P 6/mmm space group and
D6h point group; its unit cell contains two atoms denoted A

and B. BLG has P 3̄m1 space group and D3d point group; its
unit cell contains four atoms A, B, Ã, and B̃, two in each layer.

In the presence of the IA, the spatial symmetry is reduced
to a point group G,28,29 with the center of the impurity
being the fixed point. In this communication, we consider
only such impurity placements that G contains either a 3- or
6-fold rotational axis (these, at the same time, may be the
likely adsorption sites). Only in these cases (for a hexagonal
lattice) G has 2D IRs, which is a necessary condition for the
realization of the channel-symmetric 2-channel Kondo effect.
Lower-symmetry point groups have no 2D IRs, in which cases
the 2-channel Kondo effect is not feasible.

For MLG, there are two such vertical axes, denoted a and
b (Fig. 1). For axis a going through the center of the carbon
hexagon, G = C6v , if the IA is out of the MLG mirror plane
and G = D6h = C6v × Cs (Cs is the group of mirror reflection
z ↔ −z), if the IA is in the mirror plane. For axis b going
through the center of the carbon atom, G = C3v , if the IA is
out of the MLG plane, and G = D3h = C3v × Cs , if the IA is
in the MLG plane (i.e., IA substitutes the carbon atom).

For BLG, there also are two such vertical axes, denoted
c and d (Fig. 1). For axis c going through the center of the
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FIG. 1. (Color online) Lattice structure of MLG (top) and BLG
(bottom) and considered IA placements (green). The phases ε0,1,2,
ε = e2πi/3, of the Bloch wave functions χKA,KB (r) in MLG (top right)
and χKÃ,KB (r) in BLG (bottom right) are shown.

hexagon of one layer and a carbon atom (B) of the other
layer, G = C3v for any of the vertical position of IA on the
axis. For axis d going through two carbon atoms (A and B̃)
of the layers, G = D3d = C3v × Ci (Ci is the point group of
inversion), if the IA is at the midpoint between the layers, and
G = C3v for any other IA placement on the axis. These cases
are summarized in Table I.

Impurity degrees of freedom. A generalized Kondo model1,2

describes minimal coupling of the conduction electrons to the
spin and (if present) orbital degrees of freedom of a decoupled
IA, i.e., neglecting the hybridization to the conduction states.
The decoupled IA has a definite electron occupancy number
N and spin S (according to the Hund’s rule, S = N/2 and
S = 2l + 1 − N/2 for less- and more-than-half-filled orbital
with angular momentum l, respectively). In the crystalline
environment, the orbital ground state of the IA belongs to
one of the IRs Ri of G (we assume spin-orbit interactions
weak). In all cases we consider (Table I), G has only 1D
or 2D IRs.28,29 Thus, the IA ground state is either an orbital
singlet |Sz〉 or doublet |α〉 ⊗ |Sz〉 if it belongs to one of the 1D
(Ri = Ai) or 2D (Ri = Ei) IRs, respectively. Here, Ai and Ei

denote arbitrary 1D and 2D IRs of the impurity orbital state,
respectively, Sz = −S, . . . ,S, and α = ± are the quantum

TABLE I. Considered cases of IA placement (first column),
labeled by the rotational axis a,b,c,d and symmetry group G (Fig. 1)
and decompositions of the 4D space Re of conduction electrons into
IRs of G (second column).

MLG Re

(a, C6v) E1 + E2

(a, D6h) E1 + E2

(b, C3v) A1 + A2 + E

(b, D3h) A1 + A2 + E

BLG Re

(c, C3v)  2E = Eα + Eβ

(c, D3d) Eg + Eu

(d, C3v) A1 + A2 + E

numbers of the orbital doublet Ri = Ei . We choose the basis
states |α = ±〉 so that they transform as eαiϕ under C3v if
Ri = E, and as eαiϕ and e−α2iϕ under C6v if Ri = E2,E1,
respectively.

Thus, among the variety of microscopic possibilities of
different l, N , and sequences of crystal field splittings, group
theoretically, there are only two different classes of the orbital
state of IA.

Conduction electron channels in MLG and BLG. The elec-
tronic band structure in both MLG and BLG3,30,31 around zero
doping is governed by four Bloch states χμ(r) (Fig. 1), μ =
KA,KB,K ′A,K ′B in MLG and μ = KÃ,KB,K ′Ã,K ′B in
BLG, at two high-symmetry points referred to as valleys K

and K ′, with energy ε = 0 exactly at the charge neutrality
point (CNP). The states in the two valleys are related by
time-reversal symmetry: χK ′...(r) = χ∗

K...(r). In MLG, the two
states per valley reside on either A or B sublattice and are
labeled accordingly. In BLG, the two states per valley reside
on either Ã or B sublattice, located in different layers, while
their weight on the A and B̃ sublattices vanishes.

These four states χμ(r) form 4D IRs of the respective space
groups of MLG and BLG, which become reducible represen-
tations Re of the impurity symmetry group G. Applying the
symmetry operations of G to χμ(r) in each considered case,
we obtain the decomposition of Re into IRs of G (Table I)
and their basis functions χη(r) (Table I of the Supplemental
Material;32 η label the basis states of the IRs). Similarly to
the impurity states |α = ±〉, we choose the basis states of the
2D IRs so that they transform as χE± ∼ e±iϕ under C3v and
as χE2± ∼ e±iϕ and χE1± ∼ e∓2iϕ under C6v . This convention
eventually leads to the most natural form of orbital Kondo
interactions (Table II).

We find that the seven considered cases of the impurity
placement fall into 3 different classes, presented as columns
of Table II: the conduction states Re split into (I) two different
2D IRs; (II) one 2D and two 1D IRs; (III) two 2D IRs of the
same type. For the cases (a,C6v) and (b,C3v) in MLG, our
results for the classification of χμ(r) agree with earlier results
of Refs. 13,14,16.

The vicinity of CNP can be described by the low-energy
expansion of the electron field operator

�̂σ=↑,↓(r) =
∑

η

χη(r)ψ̂ησ (r)

in terms of the exact eigenstates χη(r) at ε = 0 and the
operators ψ̂ησ (r) that vary over large spatial scales. At such
scales, the atomic impurity may be considered as a point object,
whose degrees of freedom couple only to the conduction states
with nonvanishing weight ψ̂ησ (0) at its position r = 0. As the
solution for the single-particle spectrum in polar coordinates
shows, see Refs. 4,16,19 and the Supplemental Material,32 for
both MLG and BLG there is exactly one such radial channel
for each of the four components ψ̂ησ (r) per σ . By the standard
“unfolding” procedure,2 where the outgoing and incoming
radial waves are mapped to the plane waves in s > 0 and
s < 0 regions of the effective 1D axis, these four channels can
be represented as chiral 1D channels with kinetic energy

Ĥ0 =
∫

ds ψ̂†(s)(−i∂s − εF )ψ̂(s). (3)
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TABLE II. The most general forms allowed by symmetry of the exchange interaction Hamiltonian ĤJ [Eq. (4)] in MLG and BLG around
the CNP for all possible IA placements with either a 3- or a 6-fold rotational axis (Fig. 1 and Table I). The entries are the expressions for
Ĵ ρ,σ ; both have identical structure in Re but their own sets of coupling constants J ρ...

... and J σ...
... ; we suppress the indices ρ,σ for brevity. In (I),

Ee1,e2 = E1,2,E
′′
1,2,Eg,u; in (II), T± = Tx ± iTy . In the orbital doublet case, the summation goes over γ = 0,x,y,z and everywhere J ...

x = J ...
y ,

since τxTx + τyTy is an invariant.

Ĵ ρ,σ (I) MLG: (a,C6v/D6h); BLG: (c,D3d ) (II) MLG: (b,C3v/D3h); BLG: (d,C3v) (III) BLG: (c,C3v)

sglt.:

(
J Ee1Ee1 0

0 J Ee2Ee2

)
⊗ τ0

⎛
⎝ J A1A1 0 (0,0)

0 J A2A2 (0,0)
(0,0)t (0,0)t J EEτ0

⎞
⎠ (

J EαEα
J EαEβ

J EαEβ∗ J EβEβ

)
⊗ τ0

dblt.:
∑

γ

(
Jγ

Ee1Ee1 0
0 J Ee2Ee2

γ

)
⊗ τγ Tγ

⎛
⎝ J A1A1T0 J A1A2Tz J A1E(T−,T+)

H.c. J A2A2T0 J A2E(T−, − T+)
H.c. H.c.

∑
γ J EE

γ τγ Tγ

⎞
⎠ ∑

γ

(
J EαEα

γ J EαEβ

γ

J EαEβ∗
γ J EβEβ

γ

)
⊗ τγ Tγ

ψ̂ = (ψ̂Ee1+,ψ̂Ee1−,ψ̂Ee2+,ψ̂Ee2−)t ψ̂ = (ψ̂A1 ,ψ̂A2 ,ψ̂E+,ψ̂E−)t ψ̂ = (ψ̂Eα+,ψ̂Eα−,ψ̂Eβ+,ψ̂Eβ−)t

We arrange the operators ψ̂ησ into eight-component spinors
ψ̂ presented in Table II, where ψ̂η = (ψ̂η↑,ψ̂η↓)t . Thus, for an
atomic-size impurity, a 4-channel Kondo model is generically
realized in MLG4,16,19 and BLG around CNP.

Kondo models from the symmetry approach. We now
derive the Kondo models. As first outlined by Nozieres
and Blandin1 and later implemented in a number of works
for various Kondo systems,2,33 the most general possible
form of the exchange interaction Hamiltonian ĤJ can be
obtained based on the symmetry grounds without appealing
to any microscopic model: ĤJ must remain invariant under
all symmetry operations of the system. The most general form
invariant under spin rotations reads

ĤJ = ψ̂†(0)(Ĵ ρ + Ĵ σσS)ψ̂(0). (4)

In Eq. (4), Ĵ ρ,σ are the operators in the orbital sector Re ⊗ Ri :
they are 4 × 4 matrices in the orbital space Re of conduction
electrons; in the impurity doublet case, they also contain the
orbital “isospin” operators Tγ , γ = 0,x,y,z (unity and Pauli
matrices) acting in the space Ri = Ei of the states |α = ±〉.

The operators Ĵ ρ,σ must remain invariant under the orbital
symmetry group G.34 Such invariant form is efficiently
constructed using the algebra of the group representation
theory28,29 as follows.1,2 The operators

Ĵ ρ,σ ∼ (Re × R†
e) × (Ri × R

†
i ) (5)

transform as a product of four representations of G, where
Re × R

†
e and Ri × R

†
i describe the transformation properties in

the conduction electron and impurity subspaces, respectively.
The decomposition of the product (5) into IRs can readily be
calculated.28,29 The only allowed terms in Ĵ ρ,σ are the invari-
ants, which transform according to the unity IR A1/A

′
1/A1g

of G; each invariant may enter Ĵ ρ,σ with its own coupling
constant J . The explicit form of these invariants is constructed
by utilizing the transformation properties of ψησ and |α = ±〉
under G.

This procedure yields the most general forms allowed by
symmetry of the Kondo exchange interaction Hamiltonians
ĤJ [Eq. (4)], presented in Table II; details of the derivation
are provided in the Supplemental Material.32 The contents of
Table II, along with Table I and Eqs. (3) and (4), constitute
the central result of our work. They describe the family of the

four-channel Kondo models

Ĥ = Ĥ0 + ĤJ

in MLG and BLG in the vicinity of CNP for all possible
seven cases (Table I) of the symmetric placements of the
IA with either 3- or 6-fold rotational axis. In the rest of this
communication, we discuss their key properties and physical
implications.

Main properties. We find 6 possible classes of the Kondo
models: there are the 3 above-mentioned classes (I), (II), and
(III) (columns of Table II) for conduction electron states and
two classes of impurity orbital states, singlet (sglt., Ri = Ai)
and doublet (dblt., Ri = Ei) (rows of Table II). All cases of the
impurity placement within one class have identical structure
of the Kondo model.

In the orbital-singlet class (I) and (II) models, when
conduction states Re break into IRs of different types, the
channels are not coupled by exchange interaction and the two
channels belonging to the same 2D IR are characterized by
the same coupling constant, protected by symmetry. These
are prerequisites for the realization of the two-channel Kondo
effect. On the other hand, in the orbital-singlet class (III)
model, the conduction sea Re = 2E = Eα + Eβ consists of
two 2D IRs of the same type E (the labels α,β are used
to distinguish between the two subspaces). As a result the
“conversion” processes Eα ↔ Eβ , whereby the conduction
electrons are transferred between two IRs, are present.

In the orbital doublet case, for any class (I), (II), or
(III), the two channels belonging to each 2D IR Ee couple
to the impurity via anisotropic orbital Kondo interaction
J ...

0 τ0T0 + J ...
z τzTz + J ...

⊥ (τxTx + τyTy), where τγ are unity
(γ = 0) and Pauli (γ = x,y,z) matrices acting in the space of
Ee± states. The class (I) model consist of two decoupled two-
channel contributions of this kind and there are no conversion
processes Ee1 ↔ Ee2 between them. In the class (II) model the
conversion processes A1 ↔ A2 and A1,2 ↔ E between all IRs
are present. In class (III), the conversion processes Eα ↔ Eβ

between two 2D IRs of the same type are present as well, with
the structure of the orbital Kondo interactions above.

Thus, our group-theoretical analysis allows us to make
definitive symmetry-based conclusions about the structure of
the Kondo model without relying on any specific microscopic
details. In particular, it tells exactly whether and how different
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conduction channels are coupled by the exchange interaction,
Table II. We emphasize that generally the channel states χη(r)
can be either pure valley states or mixtures thereof, as seen
from Table I of the Supplemental Material.32 This analysis
also resolves the concern21 that “valley mixing” by the
impurity potential could be detrimental for the multichannel
Kondo effect: while valleys can indeed be mixed, the local
symmetry dictates that properly hybridized valley states
act as independent channels in several instances (Table
II), which are also completely equivalent if they belong to
one 2D IR.

Feasibility of the channel-symmetric two-channel Kondo
effect. We now discuss the implications of our results for
the realization of the multichannel Kondo effects. It is well
established1,2 that the low-energy behavior of the multichannel
Kondo model is determined by the channel(s) with the
largest exchange coupling. Thus, effectively, the regime of
the multichannel Kondo effect can be realized only if the
common coupling of several channels (belonging to the same
multidimensional IR) exceeds all single-channel couplings.
This condition proved to be extremely hard to achieve
in practice: in a “typical” band structure with no special
properties, some single-channel coupling will usually prevail.

Our findings suggest that, owing to the peculiarities of
graphene band structure, the regime of the dominant two-
channel Kondo effect is feasible in MLG and BLG in several
cases.

The class (I) Kondo model, which includes the cases
(a,C6v/D6h) in MLG and (c,D3d ) in BLG, consists of two
decoupled symmetric two-channel contributions with their
own couplings. Whichever couplings are greater, the low-
energy behavior will be dominated by the two channels of
that 2D IR.

In the BLG (d,C3v) case, if the IA is placed above the
center of the carbon hexagon of one layer, as shown in Fig. 1,

the atomic orbitals of the 2D IR E channels, located on the
Ã sublattice in that nearby layer, are much closer to the
impurity than those of the 1D IR A1,2 channels, located on
the B sublattice in the remote layer. Thus the hybridization
with the E channels is likely to be considerably greater than
with A1,2 channels. This should result in greater exchange
couplings JEE

... > JA1,2A1,2
... and the low-energy behavior will

be dominated by the two E channels.
In these cases, in the low-energy regime, the symmetric

two-channel Kondo models (1) and (2) will be realized in the
orbital singlet and doublet cases, respectively, in the subspace
of the two dominant channels Ee±.

Conclusion and outlook. In summary, motivated by the
prospect of realizing multichannel Kondo effects, we per-
formed a general group-theoretical classification of the Kondo
models in MLG and BLG in the vicinity of the CNP for
all placements of the IA with either 3- or 6-fold rotational
symmetry. We found six possible classes of the four-channel
Kondo models, summarized in Table II. We argued several
possibilities for realizing the channel-symmetric two-channel
Kondo effect, described by the models (1) and (2), which are
known to exhibit non-Fermi-liquid behavior in a number of
regimes but have proven challenging to realize in practice.
When combined with ab initio simulations, such as those
of Refs. 13,14,18, our results should enable one to make
definitive conclusions not only about the possible forms of
the low-energy Kondo models but also about the values of the
exchange couplings realized for specific magnetic adatoms.
Our findings thus open prospects for the observation of the
multichannel Kondo physics in MLG and BLG, which could
be pursued experimentally using the local probes, such as
scanning tunneling microscopy, or transport measurements.
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