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By combining the time-dependent Schrödinger equation with microscopic kinetic equations, a model for
femtosecond-laser-induced electron emission from a metallic surface is developed to capture the physics of
nonequilibrium heating and also the multiple-energy time-dependent tunneling. Using this model, we observe
an enhanced electron emission due to the tranmission resonance at a particular energy level with a barrier height
that produces a resonant frequency near to the laser frequency. Contrary to both pure optical tunneling and
pure multiphoton emission models, the model provides better agreement with experiments. The generalized
Einstein photoelectric effect is found to be inaccurate in this regime because of the nonequilibrium electron
energy distribution, the resonant enhancement, and the ultrashort laser pulse width. The role of photons in the
multiphoton electron emission regime is studied in detail. A smooth transition from the multiphoton regime to
the optical tunneling regime is demonstrated.
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I. INTRODUCTION

The generalized Einstein photoelectric effect predicts that
the number of photons required for photoemission is an
integer equal to the number of quanta that can overcome
the metal work function. Also known as multiphoton electron
emission, this effect is characterized by the Keldysh parameter
γ = ω

√
2m�/eF � 1, where ω is the laser frequency, F is

the electric field, and � is the metal work function. With recent
experiments using ultrafast lasers to induce electron emission
from metal tips,1–11 it is found that classical models do not
include important effects such as nonequilibrium heating,
tunneling in the transition regime (γ = 1 to 10), emission
from multiple energy levels, and electron acceleration due to
the ponderomotive force.

In this paper, we propose a time-dependent and nonequi-
librium quantum model that is able to account for the
effects mentioned above and is more consistent than prior
models which only cover part of the dynamical process.
The prior limitations include (a) the assumption of single
energy tunneling from the Fermi level while neglecting
the effects of heating and emission from multiple energy
levels (optical field emission),3,7,8,12,13 (b) solving only the
microscopic kinetic equations for nonequilibrium heating but
using time-independent tunneling approximations (photofield
emission),5,9,14,15 and (c) studying the effect of the field gra-
dient but ignoring both heating and time-dependent quantum
tunneling.11

To the authors’ knowledge, this is the first model which
includes all the effects mentioned above. Due to the tran-
mission resonance,16–18 an increment in barrier potential can
actually lead to increased photoemission when the energy
barrier faced by the electron is close to a multiple of the
photon energy (Fig. 4) and this effect leads to peaks in the
photoemitted electron energy distribution function (Fig. 5).
A smooth transition from the multiphoton regime (γ � 1) to
optical field emission (γ � 1) is shown in Fig. 7. Another
interesting finding is that the number of photons required for
photoemission deviates from that of the generalized Einstein
model, which implies that the latter is no longer valid in

ultrafast-laser-induced electron emission (Fig. 8). Finally, a
comparison with experiment confirms that our model gives
the best agreement (Fig. 9).

The system modeled here consists of a Gaussian laser pulse
of duration τ , wavelength λ, and phase angle φ incident on a
metallic tip with radius r0 such that the laser electric field
is perpendicular to the metal tip. The peak of the laser is
at t0 = 40 fs. In addition to the laser electric field F0, there
is a dc bias field Fdc applied at the surface of the metal in
order to facilitate the transport of emitted electrons to the
detector which is at a distance of 2 nm from the tip. The
material has a work function �m and the Fermi level is EF .
If unspecified, the values of the parameters used in this paper
are λ = 800 nm, F0 = 3 V/nm, Fdc = 0.2 V/nm, τ = 20 fs,
φ = 0, and r0 = 20 nm. The material is tungsten with Fermi
energy EF = 5.78 eV and work function �m = 4.4 eV. The
vacuum energy level Evac = EF + �m = 10.18 eV. These
default values correspond to an optical cycle of 2.67 fs. With a
pulse length of 20 fs, this equals 7.5 optical cycles. As found in
previous studies, the electron emission time is phase dependent
and is comparable to the optical cycle.8

Although the model is essentially one-dimensional (1D),
the values of the ac and dc electric fields at the surface (F0 and
Fdc) include the field enhancement factor, and the potential
profile [Eq. (10)] including the effects of a spatially decaying
field is described later. Note the plasmonic effect is completely
ignored.

In Sec. II, we describe the model used to calculate the
photocurrent. The findings are reported in Sec. III. In Sec. IV,
we discuss the assumptions used in the model, comparison
with prior works, and some important issues for future works.
Finally, we conclude our paper in Sec. V.

II. METHODOLOGY

The model consists of two parts: the kinetic part which
determines the effect of laser heating on the electron energy
distribution and the quantum tunneling part which calcu-
lates the tunneling current by solving the time-dependent
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Schrödinger equation over many transmission channels which
are determined from the different energy levels obtained from
the kinetic part. The photocurrent as a function of time is
determined by integrating over these channels.

A. Nonequilibrium heating

To account for heating, we need to obtain the nonequilib-
rium electron energy distribution function f (Ee,t) because
the pulse length of the ultrafast laser is shorter than the
electron-phonon relaxation time which is several hundred
femtoseconds.19 Before the laser excitation, the electron
distribution f (Ee) and phonon distribution g(Ep) follow the
Fermi-Dirac and Bose-Einstein distributions, respectively, at
room temperature. The laser excitation causes a rise in the
electron energy levels. At the same time, electron-electron
and electron-phonon collisions lead to a cooling effect on the
electron gas which is particularly dominant after the peak of
the laser pulse. Hence, the evolution of the electron and phonon
energy distributions can be written as

∂f (Ee)

∂t
= ∂f (Ee)

∂t

∣∣∣∣
e-e

+ ∂f (Ee)

∂t

∣∣∣∣
e-p

+ ∂f (Ee)

∂t

∣∣∣∣
absorp

(1)
∂g(Ep)

∂t
= ∂g(Ep)

∂t

∣∣∣∣
p-e

,

where e-e represents the effect of electron-electron collisions,
e-p and p-e represent the effects of electron-phonon collisions,
and absorp represents the effect of laser energy absorption.

Based on first-order perturbation theory, we have14,15,20

∂f (k)

∂t

∣∣∣∣
e-e

= 2π

h̄

∑
k1,k2,k3

|Mee|2F (k,k1,k2,k3)

× δ(k + k1 − k2 − k3)

× δ[E(k) + E(k1) − E(k2) − E(k3)], (2)

where F (k,k1,k2,k3) = −f (k)f (k1)[1 − f (k2)][1 − f (k3)] +
f (k2)f (k3)[1 − f (k)][1 − f (k1)] represents the possible
energy transitions of the electrons and δ(k + k1 − k2 − k3)
and δ[E(k) + E(k1) − E(k2) − E(k3)] represent momentum
and energy conservation, respectively. The interaction matrix
Mee is based on a screened Coulomb potential given by

|Mee|2 =
[

e2

ε0V

1

�k2 + κ2
sc

]2

,

(3)

where κ2
sc = e2me

π2h̄2ε0

∫ ∞

0
f (k)dk.

Here, �k = k1 − k2 = k3 − k is the scattering transferred
momentum and κsc (Ref. 20) is the static screening length
which is calculated at each time step. Note, me is the effective
mass of a free electron in the conduction band.

The electron-phonon interaction contributions are given by

∂f (k)

∂t

∣∣∣∣
e-p

= 2π

h̄

∑
q

|Mep|2{S−(k,q)

× δ[E(k) − E(k−) − Eph(q)]

+ S+(k,q) × δ[E(k) − E(k+) + Eph(q)]}, (4)

∂g(q)

∂t

∣∣∣∣
p-e

= 2 × 2π

h̄
|Mep|2

∑
k

S+(k,q)

× δ[E(k) − E(k+) + Eph(q)], (5)

where S−(k,q) =f (k−)[1 −f (k)]g(q) −f (k)[1 −f (k−)][1 +
g(q)] and S+(k,q) = f (k+)[1 − f (k)][1 + g(q)] −
f (k)[1 − f (k+)]g(q). k+ = k + q and k− = k − q are
the possible transitions of the electron wave vector with the
absorption and emission of a phonon.

If the phonon energy is Eph(q) = h̄vsq and vs is the speed
of longitudinal phonons, the interaction matrix is given by

|Mep|2 = 1

2ε0V

e2

q2 + κ2
sc

Eph(q). (6)

Finally, the laser perturbation is described by

∂f (k)

∂t

∣∣∣∣
absorp

= 2π

h̄

∑
q

|Mep|2
∑

l

J 2
l

(
eFlaser · q

meω2

)

×{S−(k,q) × δ[E(k) − E(k−) − Eph(q) + lh̄ω]

+ S+(k,q) × δ[E(k) − E(k+) + Eph(q) + lh̄ω]},
(7)

where ω is the laser frequency and Flaser is the laser field. The
heating process is assumed to be isotropic.

Using the nonequilibrium heating model described above,
the time-dependent electron energy distribution f (Ee,t) is
calculated as shown in Fig. 1. From the figure, we see that
f (Ee,t) starts with a Fermi-Dirac distribution at t = 0 fs, and
a steplike profile appears at a later time, which is characteristic
of nonequilibrium heating and one step size corresponds to the
energy of a photon absorption. The evolution continues until
a maximum at t0 = 40 fs (blue line), which is at the peak
of the laser pulse. After 40 fs, the distribution starts to drop
(due to the decreasing of the laser intensity) and reachs a
new quasiequilibrium Fermi-Dirac distribution with a higher
temperature as seen at 60 fs (pink line).

FIG. 1. (Color online) Evolution of the nonequilibrium electron
energy distribution f with time. The vertical dashed line represents
the Fermi level EF .
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To determine the amount of electron tunneling from the a
surface to vacuum (for multiple energy channels, which vary
with time), we calculate the time-dependent electron density
N (Ex,t) with energy Ex in the x direction (normal to the
surface). From the calculated f (Ee,t) as shown in Fig. 1,
N (Ex,t) is calculated by

N (Ex,t)dEx =
(

me

2

)3/2

dEx/π
2h̄3

√
Ex

∫ ∞

Ex

f (Ee)dEe,

(8)

which can be considered as the time-dependent electron supply
function as normally defined in the electron emission model.

It is important to note that the energy parameter Ex in
N (Ex,t) also changes as a function of time, which is at the
femtosecond time scale comparable to the tunneling time, so
a multiple-energy time-dependent tunneling model is required
to include the time evolution of the electron energy Ex(t).
A numerical scheme has been created to calculate Ex(t) [see
Eq. (9) below]. Consider electrons with initial energy E0 at
t = 0, due to the nonequilibrium laser heating (see Fig. 1), the
electrons will have higher energy Ex(t) at a later time. As the
number of electrons for a given initial energy E0 is a constant,
we obtain a relation of N [Ex(t),t] = N (E0,0), from which we
can infer that the energy of the electron is (as a function)

Ex(E0,t) = N−1[N (E0,0),t], (9)

and the function N (E0,0) is calculated from Eq. (8).
In Fig. 2, we plot Ex(E0,t) for various E0 = 3.6 to 6.1 eV.

For low E0 = 3.6 eV, the electron energy is fairly constant.
For high E0 > 5.78 eV, which is larger than the Fermi energy
level (EF = 5.78 eV), Ex shows a steplike profile due to the
quantization of photon absorption, and it decreases gradually
after the peak of the laser pulse at 40 fs. The horizontal and
vertical dashed lines indicate, respectively, the Fermi energy
EF = 5.78 eV and the peak of the laser pulse at 40 fs. As
expected, electrons gain energy during the initial part of the
pulse and gradually cool down after the peak of the laser pulse.

FIG. 2. (Color online) Evolution of the electron energy for
different initial energies E0. The vertical dashed line represents t0
and the horizontal dashed line represents the Fermi level EF .

B. Multienergy time-dependent tunneling

In the second part of the model, we use the calculated
Ex(E0,t) to solve for the time-dependent Schrödinger equation
(TDSE) to calculate the total time-dependent current density
J (t) over all channels and also the time-integrated emitting
charge density σ . Depending on the initial energy level E0,
the electrons will have different energies as a function of time,
which are obtained by solving Ex(E0,t) or Eq. (9) numerically.
For each E0, we may define a transmission channel in the sense
that all electrons with the same E0 will have the same tunneling
probability since the time evolution of Ex(E0,t) has been
determined by Eq. (9). To ensure our calculations cover the
entire range of energy levels, we have used a very fine sampling
of E0 = 0 to 6.6 eV to define our transmission channels in our
model, so that we can calculate the evolution of the wave
function of these electrons. Specifically, one time-dependent
Schrödinger equation is solved for each transmission channel,
and in total, we typically solve about 150 of them for a given
set of parameters.

Consider the metal-vacuum interface at x = 0, the time-
dependent potential energy outside the metal (x � 0) due to
the laser is

U (x,t) = Evac − e2

16πε0(x + x0)

− e

{
Fdcx + F0x exp

(
− 2 ln 2

(t − t0)2

τ 2

)

× cos[ω(t − t0) + φ]

}

×
[

(1/2)
r0

x

(
1 − 1

(x/r0 + 1)2

)]
, (10)

where Evac is the vacuum energy level, ω = 2πc/λ is the
laser angular frequency, x0 = e/[16πε0Evac] (for continuity),
and t0 = 40 fs is a reference point at the center of the
laser pulse. The second term is the classical image charge
term and the next term represents the electric field (Fdc

and F0). The last term in Eq. (10) accounts for the effects
of the spatially dependent laser electric field near the tip:
F (x) ≈ F × [r0/(x + r0)]3, under the assumptions that the
beam waist is large as compared to the barrier width and the tip
has a large geometric field enhancement,11 both of which are
valid in almost all experimental studies.2–9,11,21 Note we have
used a classical image charge term similar to the one used in
previous studies [second term in Eq. (10)].3,13 As a reference
point, we have defined the Evac such that the Evac − �m = 0.

It should be noted that the laser field (F0) specified in
Eq. (10) is the peak envelope of the laser field measured at
the surface of the metal. While the spatial dependence caused
by the tip radius has been taken into account in the last term of
Eq. (10), we did not explicitly calculate the field enhancement
factor separately, which we have assumed to be included in the
specified value of F0 used in the calculation. In other words, the
field enhancement factor has been included at the zero-order
approximation in this 1D model.

To solve for the TDSE at a given channel, we need to know
the initial wave function at t = 0 with energy E0. To do so,
we solve for the time-independent Schrödinger equation in the
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FIG. 3. (Color online) The time- and energy-dependent emission
current density J [Ex(E0,t),t] for channels with different E0. The
blue and black lines use the left y axis and the red line uses the right
y axis.

absence of any external fields, which gives

�0(x < 0) = C1 sin(kmx) + C2 cos(kmx),
(11)

�0(x > 0) = C3Wa/2
√

b,−1/2[2
√

b(x + x0)],

where km = √
2mE0/h̄, Wk,m(x) is the Whittaker W function,

a = e2m/(8h̄2πε0), and b = 2(Evac − E0)/h̄2.
In addition to the acceleration and tunneling of the electrons

by the laser field, the potential barrier is also lowered by the
increase in electron energy due to laser heating. Hence, the
potential energy as a function of time becomes U (x,t) −
[Ex(E0,t) − E0] due to heating. For a given E0, we first
calculate Ex(E0,t) from Eq. (9) and then solve the TDSE with
U (x,t) − [Ex(E0,t) − E0] (due to heating) to calculate the
wave function as a function of position and time. From these
solutions of TDSE calculated for each E0, we can obtain the
time- and energy-dependent emission current density defined
as J [Ex(E0,t),t], which is determined from the wave functions
at 2 nm from the surface of the metal.

A typical profile of J [Ex(E0,t),t] is plotted in Fig. 3 for
E0 = 5.5, 5.78 (Fermi energy level), and 5.9 eV. The total
time-dependent current density is calculated by integrating
over all channels: Jtot(t) = ∫

N (Ex)J (Ex,t)dEx (see Fig. 6).
The time-integrated emitted charge density (σ ) can also be
calculated by integrating Jtot over the entire laser pulse length
(see Fig. 7).

III. RESULTS

In this section, we first show that the effect of the transmis-
sion resonance that has been observed in gas ionization16,17 is
also possible for the ultrafast laser electron emission studied
in this paper. The emitted charge density σ (calculated by
integrating Jtot) at a single channel energy is plotted in
Fig. 4(a) as a function of the barrier height Eb = Evac − Ex .
The figure shows that σ decreases with increasing Eb, but there
are distinct localized peaks corresponding to the transmission
resonances. Taking into account the lowering of the potential
barrier by the dc bias, these peaks appear when the effective
barrier height (Eb − Edc) is equal to the energy of N photons or
Eb = N × hν + Edc, where hν is the photon energy, Edc is

FIG. 4. (Color online) (a) Emitted charge as a function of the
energy barrier with different parameters: Fdc [V/nm] = 0.1 (pink
line), 0.2 (black line), and 0.4 (blue line), laser pulse widths τ = 20 fs
(solid lines), 8 fs (dashed line), and 4 fs (dotted line). λ = 800 nm in
all cases except the green circles which correspond to λ = 1600 nm.
The Keldysh parameter γ is between 3.1 and 9. The vertical dashed
lines are multiples of the photon energy. (b) Comparison of the current
vs time curve for Eb = 2.9 eV (black lines) and 3.4 eV (red lines).
The solid lines represent the case of the full laser pulse while the laser
and dc field are turned off near the middle of the pulse for the dashed
lines. (c) Plot of the probability density at the metal surface at two
different values of Eb corresponding to the dotted lines in Fig. 4(b).

the lowering of the barrier by the dc field, and N = 1,2, . . .

is an integer.
Here, the peaks (or resonance transmissions) occur when

the effective barrier height (Eb − Edc) is equal to the energy
of N photons. At 800 nm and Fdc = 0.2 V/nm (black solid
line), we have hν = 1.55 eV and Edc ≈ 0.3 V, and the
three peaks (N = 1, 2, and 3) are at Eb ≈ 1.85, 3.4, and
4.95 eV, respectively, as shown in the figure. By changing
Fdc = 0.1 V/nm (pink) and 0.4 V/m (blue), the peaks will be
shifted slightly to new Eb due to the difference in Edc. From
Eq. (10), we can see that the magnitude of the peak shift is
similar to the lowering of the barrier by Fdc. Interesting, the
resonance is found to become less important at small τ for
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which the peaks become less prominent when τ is reduced
from 20 fs (solid line) to 8 fs (dashed line) to 4 fs (dotted line).

Because of the peaks, an increase in the barrier height
can actually increase photoemission. For example σ at Eb =
3.4 eV is much higher than Eb = 2.9 eV [see the black
solid line in Fig. 4(a)]. To explain this, the emitted current
density J (t) is plotted in Fig. 4(b) for Eb = 2.9 eV (black)
and 3.4 eV (red), respectively. The corresponding dotted lines
have identical parameters except that both the laser field and
the dc field are turned off at the time when the laser field returns
to zero after the peak laser field at 40 fs. From the figure, it
is clear that the emitted current persists even after the fields
are turned off. From the wave functions obtained from solving
the TDSE, we realize that the laser field sets up oscillations
in the wave function. In Fig. 4(c), the probability density at
the metal surface with two different values of Eb is plotted
corresponding to the dotted lines in Fig. 4(b); i.e., the fields
are turned off after the center peak. The oscillations can be
clearly seen in Fig. 4(c) with a frequency equal to the laser
frequency before t0 = 40 fs.

Once the fields are turned off, the oscillations persist and
they settle at their natural frequency, which is about Eb/h and
is independent of the laser frequency used. At Eb = 3.4 eV,
we have Eb/h ≈ 820 THz, which is very close to the 800 THz
obtained from direct observation of the wave function as a
function of time near the surface [see the oscillation after
t > 40 fs, Fig. 4(c)]. The measured frequency is within 3% of
Eb/h for Eb once the oscillations attain their natural frequency.
Thus, when the effective barrier equals a multiple of the photon
energy, i.e., Eb (at the peak)−Edc = N × hν, this natural
oscillation frequency matches the frequency of the laser field,
which provides the enhancement in the oscillation amplitude
and explains the localized peaks in Fig. 4(a).

These oscillations require a finite time to be set up and,
hence, the resulting current is slightly delayed as shown in
Fig. 4(b). At the beginning of the pulse (<40 fs), the lower
barrier case (2.9 eV, black line) has a higher current because
oscillations for the higher barrier case (3.4 eV, red line) have
not started yet, for which they become dominant only at a
longer time later (t > 40 fs). This finite delay time explains
why the peaks become less prominent at shorter pulse lengths
(not enough time to set up the oscillation) from τ = 20 to
8 fs (dashed line) to 4 fs (dotted line) as observed in Fig. 4(a).
Similarly, if we increase the wavelength λ from 800 to 1600 nm
(symbols), the peaks also become smaller due to the same
effect. The corresponding number of laser periods for the three
cases of smaller peaks (dashed line, dotted line, and symbols)
are f τ = 3, 1.5, and 3.75, which are smaller than f τ = 7.5 at
λ = 800 nm and τ = 20 fs (solid line). Thus we predict that
such resonance transmission will require a finite laser period
on the order of 10.

In Fig. 5, the photoemitted electron energy distribution
function femit(Ex) = ∫

N (Ex,t)J (Ex,t)dt is plotted in order
to show the relative contributions of different energy levels.
The figure shows that the peak emission is not from the Fermi
level as is generally assumed in other works. The peaks in
the emission spectrum are separated by a photon energy of
1.55 eV (800 nm) or 2.25 eV (550 nm), which represents the
energy corresponding to the resonance transmission discussed
earlier. For example, the peak at Eb = 4.95 eV for 800 nm

FIG. 5. (Color online) Spectrum of the emitted charge density for
different laser parameters. The black solid line represents λ = 800 nm
and τ = 20 fs. The other plots are F0 changed from 3 to 30 V/nm (red
line), λ changed from 800 to 550 nm (green line), and f (Ee) equal
to the Fermi-Dirac distribution, i.e., no heating but multiple electron
energies (dashed line). The vertical dashed line represents the Fermi
level.

in Fig. 4(a) is seen here as the N = 3 photon absorption at
an energy equal to Ex = Evac − N × hν − Edc = 5.23 eV as
shown by the first peak in Fig. 5. When heating is turned
off, f (Ee) is equal to the Fermi-Dirac distribution (dashed
line), and the two peaks at energy higher than EF disappear
[see dashed lines in Fig. 5], which confirms the importance of
having heating in order to describe accurately the multiphoton
electron emission due to the ultrafast laser. A comparison at
550 nm (green line) is also plotted. At high F0 = 30 V/nm (red
line) in the optical tunneling regime, the spectrum broadens as
tunneling becomes more dominant than the multiple photon
absorption as expected.

As mentioned, the importance of heating cannot be ignored
as it will also strongly affect the amount of emitted current.
As expected, heating leads to a higher current and the effect
of heating is more apparent at larger pulse width. With a 20 fs
pulse, the photocurrent with heating included is 2.4 times
greater than when heating is ignored, but with an 8 fs pulse
this ratio is reduced to 1.8 as can be seen in Fig. 6.

In Fig. 7, we show the emitted charge density σ as a function
of the laser field F0 in the range of 3 to 50 V/nm, from the
multiphoton regime (F0 ≈ 3 V/nm) to the optical tunneling
regime (F0 > 10 V/nm) with λ = 800 nm and τ = 20 fs as
default parameters. Our model does not produce the unphysical
fluctuations shown by single energy models (pink line)12,13

at F0 > 10 V/nm (optical tunneling regime) and also gives
a smooth transition consistent with experimental findings.7

FIG. 6. (Color online) Comparison of the current vs time graph
with (solid line) and without (dashed line) heating for pulse lengths
of 20 fs (black lines) and 8 fs (red lines).
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FIG. 7. (Color online) Dependence of emitted charge density σ on
F0 for different laser parameters. The black solid line is the combined
model with λ = 800 nm and τ = 20 fs (default case). The pink and
dashed black lines represent the single energy model and the no-
heating case, respectively, with the same parameters. λ is changed to
550 nm for the red line and τ is reduced to 8 fs for the green line.
A smooth transition into the tunneling regime is seen as observed
experimentally.

Comparisons under different settings are also plotted: 550 nm
(red line), 8 fs (green line), and without heating (dashed line).

The number of photons incident on the metal is proportional
to the laser intensity or F 2

0 . For n number of photon absorption,
the process should be of order n, and thus the emitted charge
density should scale as σ ∝ F 2n

0 . From Fig. 7, we obtain the
value of n photon absorption (in the multiphoton regime) by
using a fitting of σ ∝ F 2n

0 at F0 = 3 V/nm. In other words, n

is simply half the slope of the log(σ ) vs log(F0) calculated at
around F0 = 3 V/nm in the figure. In may be worth mentioning
that such a method has been used to estimate the average
number of photon absorption for electron emission by fitting
the experimental measured data7 with such scaling.

In Fig. 8, the value of n is plotted as a function of λ at τ =
20 fs (in black) for three different scenarios: multiple energy
with (solid line) and without (dashed line) heating, and also
single energy at EF (dotted line). We have chosen a work func-
tion of �m = 3.6 eV for reasons that will be explained shortly.
Unlike the generalized Einstein photoelectric effect (circles),
which predicts an abrupt jump from n = 2 to 3 at λ = 689 nm,
our model shows a smooth transition in the range of 689 to
900 nm. Compared to the single energy case (dotted line), the
wavelength λ at the transition (n = 2 to 3) for both multiple
energy with (solid line) and without (dashed line) heating cases
shifts to smaller λ because the majority of the electron emission
(from both cases) is from energy smaller than EF (see Fig. 5).
Comparison with a smaller τ = 8 fs is also plotted (green line).

We use �m = 3.6 eV (magnesium) in Fig. 8 because it
gives λ = 800 nm (in the middle of the transition from n = 2
to 3), which is suitable if the model is to be verified by using
a femtosecond pulsed Ti:sapphire laser. By shining an 800 nm
laser on a material with � = 3.6 eV, it should be possible to
observe the transition between n = 2 and n = 3 as predicted
by this paper. If a work function of �m = 4.4 eV (gold or
tungsten), the wavelength of the transition will be around
670 nm.

FIG. 8. (Color online) Dependence of the order of the multipho-
ton emission process n on the laser wavelength λ under different
conditions, where n is calculated from the scaling of σ ∝ F 2n

0 from
Fig. 7. The black solid line is the combined model with λ = 800 nm
and τ = 20 fs (default case). The dashed and dotted black lines rep-
resent, respectively, the multiple energy without heating case and the
single energy without heating case, with the same parameters. The
green line represents the default case with a smaller τ = 8 fs.
The circles represent the generalized Einstein photoelectric effect.
The red line represents nE .

It is interesting that even though a significant portion of
the electron emission is from energies greater than EF (see
Fig. 5), this does not translate into a significant reduction
in photon absorption n. In the traditional understanding, we
expect a small number of photons are required if the energy
of the electrons is increased since the barrier will be smaller.
To explain this, we need to study the contribution of n in more
detail, namely, the value of n can be divided into two parts:
n = nH + nE , where nH is due to the heating effect and nE is
due to the absorption of photons at each energy level.

In order to separate nE from the total n, we assume a
constant N (Ex,t) [to ensure no heating] in calculating the
slope of log(σ ) vs log(F0). Specially, in calculating the slope of
Fig. 7, we take two points close to 3 V/nm. For nE (no heating),
we only calculate N (Ex,t) at one of the two points and use it
as an input to calculate the emitted charge at both points. In
doing so, we are able to calculate nE , which is not affected by
the heating part of the model, and it is plotted (solid red line)
as compared to the total n case (solid black line) in Fig. 8.

It is important to clarify the difference between nE and the
total n with a Fermi-Dirac distribution (dashed black line).
Here, nE uses a fixed N (Ex,t) at F0 = 3 V/nm and the Fermi-
Dirac distribution uses N (Ex,t) at F0 = 0 V/nm. The drop
below n = 2 in the single energy case (dotted black line) near
λ = 800 nm is related to the resonant enhancement discussed
earlier in Fig. 4.

It is clear that heating process will reduce nE because of
the electron emission from higher energies due to heating (Ex

is higher), and this explains the multiphoton emission process
does require fewer photons because of heating. However, there
are photons being absorbed at different energy levels, instead
of heating the metal, and thus nH increases. This combined
effect explains why there is not a significant difference in the
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total n for the multiphoton emission process as presented in in
Fig. 8 (compare the solid and dashed black lines).

We can also use the calculated n and nE values to determine
the average number of photons absorbed (nH ) for heating
purposes at different wavelengths, which is nH = n − nE . For
the heating case (solid black line), we have n = 2 to 3, and
nE = 1.75 to 2, which gives nH = n − nE = 2 − 1.75 = 0.25
(at small λ) to nH = n − nE = 3 − 2 = 1 (at large λ) over
the range shown in Fig. 8. For the Fermi-Dirac case (dashed
black line), we have n = nE and nH = 0 (no heating included
in the model).

Our findings show that the detailed mechanism (either hear-
ing or pure multiphoton absorption) of electron photoemission
cannot be completely understood just by plotting the σ ∝ F 2n

0
to determine the n. By measuring this n experimentally, we
are not able to separate the emission process, namely, the
traditional multiphoton emission (no heating) and heating
mechanism or in between. To have better characterization
of the emission process, it is important also to measure the
emission energy spectrum as performed by others5,9 in addition
to the σ ∝ F 2n

0 measurement. For example, our Fig. 5 has
shown the calculated results to indicate the energy levels of
the emitted electrons.

Prior experimental results had reported measured data in the
form of a peak-to-baseline ratio, which is defined as the ratio
of the total photoemitted charge at F0 = Fpeak = 2 × Fbase to
twice the emission at F0 = Fbase. The details can be found
in Hommelhoff et al.3 In Fig. 9, we compare our results
(solid line) with the published measured data (symbols) by
using a value of Fbase = 0.3 V/nm. Comparison with our
prior models13,15 and simplfied model3 are also presented.
Compared to the experimental data (symbols), the pure optical
tunneling model (black dashed-dotted line),13 the pure heating
model15 (red dotted lines), and the combined models in this
paper (black solid line) are fairly accurate for Fdc > 1 V/nm.
This is expected as the effect of the laser field is not important

FIG. 9. (Color online) Comparison of the peak-to-baseline ratio
from different models with experiment. The circles are experimental
results from a previous paper3 and the blue dashed line is a simplified
optical tunneling model (with Fbase = 2.7 V/nm) from the same
paper. The black solid line and the black dash-dotted line represent
the result of our combined model and pure optical tunneling model
with Fbase = 0.3 V/nm. The red dotted line is a fit from a pure heating
model.15

in this high dc field regime. At lower Fdc for which the effect of
the laser field is important, however, the pure optical tunneling
model (black dash-dotted line) underestimates the nonlinearity
of the emission process and the pure heating model (red dotted
line) overestimates it. The combined model (black solid line)
is found to lie between these two models and thus provides a
better agreement with the experimental data. It is important to
note that our model (solid line) is better than the a simplified
model (blue dashed line) that had used Fbase = 2.7 V/nm as a
best fit to the measurement.3

IV. REMARKS

In order to reduce the intense computational requirement,
our model assumed an isotropic heating model, which could
overestimate the effect of heating and may be responsible for
the slightly higher nonlinearity in Fig. 9. The accuracy of the
model could be improved in the future by improving on this
assumption.

Electron-electron interactions have been ignored in the
model and it would be interesting to study space charge effects
in the emission process. Thermal conduction, diffusion, nor-
mal heating of the laser,22 and absorption due to roughness23

have also been ignored since these effects occur on a much
longer time scale.

Although we have included the effects of field enhancement
on our potential by using a spatially dependent electric field,
our model is 1D. As mentioned before, while we have taken
into account the spatial dependence of the field, the field
enhancement due to the tip radius is never explicitly calculated
and the input laser field in the model must be linked to the laser
power directly. A recent paper24 has explicitly calculated the
field enhancement factor using finite difference time domain
simulations and similar simulations could be added to our
model to allow us to relate the emission characteristics with
the incoming laser power directly rather than with the electric
field at the surface. It should be noted that the study24 has not
taken into account the nonequilibrium heating of the metal.

A classical time-independent image charge term has been
assumed in our model. A recent study has introduced a formu-
lation for the time-dependent image charge25 which is beyond
the scope of this paper. However, it would be of interest to study
the impact of a time-dependent image charge potential in future
studies. Finally plasmonic effect can be included as well.

V. SUMMARY

In summary, we have developed a much improved and more
consistent model for ultrafast-laser-induced photoemission in
order to account for the effects of nonequilibrium heating,
time-dependent quantum tunneling, and multiple energy emis-
sion. Using this model, we observe an enhanced emission due
to the tranmission resonance at a particular energy level with a
barrier height that produces a resonant frequency near the laser
frequency. The role of photons in the multiphoton electron
emission regime is also studied in details. The model is able
to provide a better agreement with experimental data. Smooth
transition from the multiphoton regime to the optical tunneling
regime is demonstrated. Using this model, the transition based
on Einstein generalized photoelectric effect from two-photon
to three-photon electron emission is no longer valid.
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