
PHYSICAL REVIEW B 88, 195426 (2013)

Valley polarized transport in a strained graphene based Corbino disc
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We study analytically and numerically the magnetotransport of strained graphene in a Corbino geometry gating
in the presence of an external perpendicular magnetic field. The conductance of the Corbino disc of deformed
graphene with a uniaxial and an inhomogeneous strain is calculated by using the Landauer-Büttiker method. We
show that the oscillation period of the conductance as a function of the magnetic flux depends on uniaxial strain
and the conductance sharply drops along the direction of graphene stretching. The conductance amplitude, on
the other hand, can be manipulated by induced pseudomagnetic flux. A valley polarized regime, caused by the
inhomogeneous strain, is obtained and in addition we find a wide energy interval in which the system is fully
valley polarized.
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I. INTRODUCTION

Graphene has recently attracted a lot of attention as a
promising candidate material.1 An exciting physical feature in
graphene is strain exerted on graphene samples2–8 and it was
proposed that strain can be utilized to generate various basic el-
ements for all-graphene electronics.4 When the graphene sheet
is under external force, the side contacts induce a long-range
elastic deformation which acts as a pseudomagnetic field for its
massless charge carriers9,10 due to the fact that strain changes
the bonds length between atoms. Its band structure does not
change for realistic strains less than 15%.4,11 The influence of
the long-range strains on the electronic properties is a unique
feature of graphene.9,10 At low-energy spectrum, strains give
rise to a pseudomagnetic field which is added to the momentum
operators2 and thus a gauge field couples to electrons. The
most evident of the unusual ways in which strains affect
the electronic states is the scanning tunneling microscope
measurements of the electronic local density of states of
graphene grown on platinum.12 An average compression of
10% creates effective fields of the same order of magnitude
with the value observed in experiments.13 Tension can be
generated either by the electrostatic force of the underlying
gate14 which is caused by the interaction of graphene with
the side walls,15 as a result of thermal expansion,16 or by
quench height fluctuations.17 A particular strain geometry in
graphene can lead to a uniform pseudomagnetic field and might
open up interesting applications in graphene nanoelectronics
with real magnetic fields.18 It is believed that strains have
important influence on the electronic transport properties of
graphene.2

Many attempts have been made to study the bulk conduc-
tance of the Corbino geometry in two-dimensional electron
gas (2DEG) systems.19–21 There are experimental measure-
ments on the charge transport of bilayer graphene,22 thermal
transport,23 and spin response of the monolayer graphene24

in the Corbino geometry. Due to the Corbino shape, the
observation of Hall effect based magnetoresistance is allowed
by measuring the induced magnetic moment oscillations
around the quantized value of bulk Hall conductivity.25 In the
absence of the magnetic field, Fabry-Pérot-like oscillations in
the conductance of 2DEG is replaced with more moderate

and suppressed ones in graphene which is a consequence of
the reduced backscattering at the contacts and the absence of
the details of the leads.26–30 A periodic function of the Fermi
energy which displays an insulating behavior between the
Landau levels has been observed and surprisingly, oscillations
independent of the magnetic flux in undoped Corbino have
been also predicted theoretically.28 Recently, the physical
properties of graphene when its hexagonal lattice is stretched
out of equilibrium have been investigated by many groups.16

Scanning tunneling microscopy studies on the graphene
surface have indeed revealed a correlation between local strain
and tunneling conductance.

Besides, in valleytronics, which relies on the fact that
the conduction bands of some materials have more than
one minima at equal energies but at different positions in
momentum space,31–34 the valley degree of freedom can
be considered to produce valley polarization via controlling
the number of electrons in these valleys. Therefore, valley
polarization is a key to control current and carry information
analogous to spintronics. There are several proposals for
generating a valley polarized current in graphene including
the quantum point contact of a zigzag graphene ribbon,32

strain,35–37 introducing line defects,39 helical scattering,40 and
using the effect of trigonal warping.41 Among these methods,
strain is more convenient due to its intrinsic features providing
the valley polarization such as introduction of a pseudogauge
field with the opposite sign in the two valleys. Also there has
been remarkable experimental progress in producing strain on
graphene sheets.12,42 A disruptive feature which may cause
great impacts on valley polarization is intervalley scattering
due to the defects and imperfection of the edges which is
commonplace in graphene nanoribbons and weakens the finite
size system as a prosperous method for producing a valley
polarized current.32 Generally, this effect is irrelevant in the
Corbino geometry. By this motivation, we would like to
explore the conductance of the Corbino disc in the presence of
strain. To produce a valley polarized bulk current we consider
a graphene based Corbino disc imposed on a uniaxial strain
and constant pseudo- and real magnetic fields. We show that,
using strains both inhomogeneous and uniaxial in the absence
of the edge scattering, the conductance is suppressed in one
valley in such a way that the bulk conductance becomes a
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FIG. 1. (Color online) (a) Corbino disc when a uniaxial strain is
exerted on graphene and the sample is determined by inner and outer
radiuses r1 and r2, respectively. (b) Nearest neighbor vectors along
with primitive vectors are depicted for an undeformed honeycomb
lattice. (c) K and K ′ points indicate the Dirac cones location in
Brillouin zone.

valley polarized in a desired direction whereas both the valleys
take part in the conduction in the cross direction. We assert
that by introducing strained graphene in Corbino like gating,
Fig. 1, one can eliminate both edge effects and extra doping.
Anisotropic energy dispersion with an elliptical cross section
in shifted Dirac points as a consequence of the application of
a uniaxial strain has been neglected in previous studies.18,35,37

Therefore, we would like to highlight the accuracy of the
calculations based on our approach to the problem considering
both shifts in the Dirac points and modifications in the
band structure. We investigate the effect of strain on the
oscillating nature of the conductance of the system. We also
find that the oscillating period and its amplitude depend on the
value and the sign of the uniaxial and inhomogeneous strain,
respectively. Furthermore, we obtain the valley polarization
by applying an inhomogeneous and a uniaxial strain on the
Corbino disc and its dependence on the size, the value of
the uniaxial strain, and also the directions of the Corbino
deformation.

The paper is organized as follows. In Sec. II we in-
troduce the formalism that will be used to calculate the
electron transmission in the Corbino geometry incorporating
strains and the external magnetic field. In Sec. III we
present our analytic and numeric results for the conduc-
tance relation and the valley polarization quantity in the
system. Section IV contains a brief summary of our main
results.

II. THEORY AND MODEL

We consider a strained Corbino disc in a graphene sheet
in the presence of a magnetic field. It is realized that, without
a magnetic field, the low-energy Hamiltonian of a uniaxially
strained graphene around the shifted Dirac points can be easily
described through the generalized Weyl Hamiltonian,3,4,8 in
which the uniaxial strain along a specific direction in the (x,y)
plane is accompanied with the modifications in the associated
Fermi velocity.

For the sake of completeness, we will derive the low-
energy Hamiltonian incorporating the inhomogeneous strain.
By applying the uniaxial strain to honeycomb structure,
the hopping integrals (ti) between three nearest neighbors
change from their equilibrium value, t0 = 2.7 eV, as ti =
t0e

−3.37(|�δi |/a0−1) (according to the previous experimental and
theoretical works4,38) in which �δi is the nearest neighbor
vectors in the deformed lattice and a0 = 0.142 nm is c-c
equilibrium distance. It should be pointed out that �δi can be
calculated by the nearest neighbor vectors in the undeformed
case [�δ(0)

i indicated in Fig. 1(b)] and strain tensors.8 It has
been shown that the uniaxial strain due to the modification of
the hopping integrals creates an anisotropic energy dispersion
around the new Dirac point which is shifted away from its
equilibrium position in undeformed graphene. The position of
the new K point is8

�KD = 1

2π

(
θ1 �b(0)

1 + θ2 �b(0)
2

)
, (1)

θ1 = arccos

(
t2
1 − t2

2 − t2
3

2t2t3

)
(2)

θ2 = − arccos

(
t2
3 − t2

2 − t2
1

2t1t2

)
, (3)

in which b
(0)
1,2 are the reciprocal basis vectors of the undeformed

lattice [see Fig. 1(c)]. For a typical uniaxial strain along the x

direction, we have t1 = t3cos θ1 = cos θ2 = − t2
2t1

and sin θ1 =
− sin θ2 =

√
1 − ( t2

2t1
)2; therefore, the Hamiltonian close to the

new Dirac point, with modified velocity along the x and y

directions, reads

H = vxpxσx + vypyσy, (4)

which is a generalized Weyl Hamiltonian, where v2
x =

3a2
0(4t2

1 − t2
2 )/4h̄2 and v2

y = 9a2
0 t

2
2 /4h̄2.

To study the effect of pseudomagnetic field on transport
properties of the system in the presence of the uniaxial
strain, we apply an inhomogeneous strain to the uniaxially
deformed lattice. After calculating the form factor at the
new Dirac point, one can find f (KD) = �i(ti + δt i)ei �KD ·�δi =
δt1e

−i �KD ·�a2 + δt2 + δt3e
−i �KD ·�a1 , which can be written as

f (KD) = δt1 cos θ2 + δt2 + δt3 cos θ1

− i(δt1 sin θ2 + δt3 sin θ1) (5)

with �KD · �ai = θi . Defining a fictitious gauge field as

f (KD) = evxA
el
x − ievyA

el
y , (6)

evxA
el
x = δt1 cos θ2 + δt2 + δt3 cos θ1, (7)

evyA
el
y = δt1 sin θ2 + δt3 sin θ1, (8)
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and substituting the value of the θ1 and θ2 in the above
formulas, one can find

evxA
el
x = δt2 − t2

2t1
(δt1 + δt3), (9)

evyA
el
y =

√
1 −

(
t2

2t1

)2

(δt3 − δt1). (10)

Change of the bond length values can be carried out through
the method initiated in Ref. 9, where the equations of the
fictitious gauge field in graphene as a function of strain tensor
components (εxx , εyy , and εxy) would be retrieved, evxA

el
x =

3t2
4 (εxx − εyy), evyA

el
y = −√

3
√
t2
1 − t2

2 /4εxy .
Therefore, the low-energy Hamiltonian in the presence of

uniaxial strain and pseudo- and real magnetic field can be
generalized as

Hτ = τvx	
τ
xσx + vy	

τ
yσy + U (r)σ0, (11)

with

U (r) =
{

U0, r1 < r < r2,

U∞, otherwise,
(12)

where �τ = p + eA + eτAel with A denoting the real mag-
netic field and Ael standing for the pseudogauge field. τ (±)
indicates the Dirac point (K,K ′). Notice that we have neglected
the material independent term because that term does not have
any contribution to the pseudomagnetic field.43

We are interested in application of a symmetric gauge A =
B
2 (−y,x) considering the Corbino geometry. With the choice
of an appropriate inhomogeneous deformation added to the
uniaxially deformed graphene, one can induce a pseudogauge
field as Ael = (λxAx,λyAy) which is proportional to the real
gauge field. A symmetric fictitious gauge field, by choosing the
preferred strain profile as ux = −2u0xy/a0 and uy = u0(y2 −
x2)/a0, is given through

λx = 6u0t2

Bevxa0
, λy = 4

√
3
u0

√
t2
1 − t2

2

/
4

Bevya0
, (13)

where u0 is a dimensionless parameter indicating the magni-
tude of deformation and, for example, equals u0 = 7.6 × 10−6

for Bel = 1 T at ε = 0.
Notice that we assume that the circular leads are highly

doped (U∞ � U0). Consequently, we neglect the effect of
the real magnetic and pseudomagnetic fields on these regions,
since the high-energy electrons in heavily doped leads are
immune to the Landau levels introduced by strain and the real
magnetic field. In other words, high-energy electrons cannot
be trapped by magnetic field with reasonable strength and
hence the effect becomes ignorable on them. The eigenvalue
problem of the Hamiltonian leads to a second-order differential
equation for each pseudospin component, and should be solved
in the three regions of the Corbino system denoted in Fig. 1.
The main eigenvalue problem leads to{

v2
x	

τ2
x + v2

y	
τ2
y + lpseBh̄(λ + τ )vxvy

− [E − U (r)]2
}
�τl(x,y) = 0, (14)

in which l =↑ (↓) denotes the lattice pseudospin with corre-
sponding lps = +(−) and λ = (λx + λy)/2. Further simplify-
ing Eq. (14), a second-order differential equation can then be

achieved:{
v2

xp
2
x + v2

yp
2
y + τeB(λ + τ )

(
v2

ypyx − v2
xpxy

)

+
(

eB

2

)2

(λ + τ )2[(yvx)2 + (xvy)2]

× lpseBh̄(λ + τ )vxvy

}
�τl(x,y)

= [E − U (r)]2�τl(x,y). (15)

We neglect the term �λD(x,y)�τl(x,y) + O(�λ2) in deriving
Eq. (15), where

D =
(

eB

2

)2

(λ + τ )[(yvx)2 − (xvy)2]

− τ
eB

2

[
yv2

xpx + xv2
ypy

]
since strained hopping energies and velocities along the x and
y directions up to the first order of the ε in a uniaxially (i.e.,
εxx = ε, εyy = −νε, and εxy = 0) deformed graphene are

vx ≈ vF(1 − 3.37ε),

vy ≈ vF(1 + 3.37εν),

t2 ≈ 1 + 3.37νε,

t1 = t3 ≈ 1 − 3.37

4
(3 − ν)ε,

where ν = 0.165 is the Poisson’s ratio and vF 
 106 m/s is the
Fermi velocity. Therefore, the term λx − λy = u0ε40.44(1 +
ν)/(BevFa0) is ignorable, since it is proportional to the second
order of strain. We will first take the steps to solve the equation
of the down component of the pseudospin and then find the
other one with help of the first-order coupled equation which
is given by

�τ↑(x,y) = 1

E − U (r)

(
τvx	

τ
x − ivy	

τ
y

)
�τ↓(x,y). (16)

We transform the equations into a new coordinates, using new
variables (R, �), where boundary conditions can be applicable.
A straightforward calculation on Eq. (15) yields[

∂2
R + 1

R
∂R + ∂2

�

R2
+ Ẽ2 + 2γ (iτ∂� − lps) − γ 2R2

]
×�τl(R,�) = 0, (17)

where we have introduced the following dimensionless vari-
ables,

R(r,θ ) = r

vFrs

√
v2

y cos2 θ + v2
x sin2 θ,

�(r,θ ) = tan−1

(
vx sin θ

vy cos θ

)
,

γ = eB̃r2
s

2h̄
,Ẽ = E − U (r)

Es

, (18)

in which B̃ = B(λ + τ )v2
F/vxvy and Es = h̄vxvy/vFrs . A

typical length scale of the system, rs , which is considered to be
equal to the inner radius, is introduced. For more simplification
in notations, hereafter, we drop the r and θ dependence of
R(r,θ ) and �(r,θ ).
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Since operator Ô = XPY − YPX + σz/2, in which
(X,Y ) = vFrs(R cos �,R sin �), commutes with the Hamilto-
nian, its eignestate, eim�, is the eignestate of the Hamiltonian
simultaneously where m is the associated quantum number
with an integer value. By substituting �τ↓ = ei(m+1)τ��τ↓(R)
in Eq. (17), the differential equation reduces to the confluent
hypergeometric. The R-dependent term of the wave function
reads to the Hankel function in the absence of the real
and pseudomagnetic fields in the inner and the outer leads
(r < r1,r > r2). Eventually, the Corbino states in the inner
and the outer leads become

�τ
1 (R,�) = eimτ�

[(−isgn(Ẽ∞)H1
m(|Ẽ∞|R)

H 1
m+1(|Ẽ∞|R)eiτ�

)

+ κ

(−isgn(Ẽ∞)H2
m(|Ẽ∞|R)

H 2
m+1(|Ẽ∞|R)eiτ�

)]
, (19)

�τ
3 (R,�) = teimτ�

(−isgn(Ẽ∞)H1
m(|Ẽ∞|R)

H 1
m+1(|Ẽ∞|R)eiτ�

)
, (20)

where κ and t are the reflection and the transmission
amplitudes, respectively. Moreover, the corresponding wave
function between the two leads is given by

�τ
2 (R,�) = eimτ�R|m+1|e− |γ |R2

2

×
( −i[AM↑(R) + CU↑(R)]

[AM↓(R) + CU↓(R)]eiτ�

)
, (21)

where

Zσ (R) = [δσ↑f (R)/Ẽ0 + δσ↓]Z(α,β,|γ |R2)

+ (δσ↑/Ẽ0)(2γRα/ξZ)Z(α + 1,β + 1,|γ |R2),

(22)

in which Z(x,y,z) can be either M(x,y,z) or U (x,y,z)
denoting the confluent hypergeometric functions44 with
α = β/2 − (Ẽ2

0 − 2γm)/4|γ | and β = |m + 1| + 1. We have
ξM = β and ξU = −1 for the two kinds of the hypergeomet-
ric functions. Furthermore, f (R) = (γ − |γ |)R + (m + 1 +
|m + 1|)/R, δij is the Kronecker delta, and Ẽ0,∞ = (E −
U0,∞)/Es is namely the doping rate. A and C are also two
constants that can be determined through boundary conditions.

We solve matching boundary conditions to find the trans-
mission probability. Since the � dependence of the wave
function is ineffective, the procedure in both valleys therefore
reduces to only the �(R) continuity constraint as

�τl
1 (R(r1,θ )) = �τl

2 (R(r1,θ )), �τl
2 (R(r2,θ )) = �τl

3 (R(r2,θ ))

(23)

and the electron transmission is given by Tm(E,θ,τ ) = |t |2. We
anticipate a direct dependence of the transmission probability
on θ since the uniaxial strain results in an anisotropic disper-

sion relation. Using H 1
m(ρ) =

√
2

πρ
exp [i(ρ − mπ/2 − π/4)]

as the asymptotic behavior of the Hankel functions in highly
doped leads, the transmission probability is thus given by

Tm(E,θ,τ ) =
(

r2

r1

)2β−1 4e
|γ |

(
R2

1−R2
2

)
η

↓↑
22

2

(η↑↑
12 − η

↓↓
21 )2 + (η↑↓

12 − η
↓↑
21 )2

,

(24)

where ησσ ′
ij = Mσ (Ri)Uσ ′

(Rj ) + σ · σ ′Mσ̄ (Ri)Uσ̄ ′
(Rj ) and

Ri:1,2 indicates R(ri,θ ).
To evaluate the disc conductance, we then use the Landauer-

Büttiker formula which presumes conducting through the
channels of different modes and sums up over all modes,
considering all channels’ contributions to the conductance of
a two-terminal system in zero temperature:

Gτ = 2e2

h

∑
m

Tm(E,θ,τ ). (25)

Here the factor 2 stands for spin degeneracy. Notice that the
conductance, in the Corbino geometry, is attainable from bulk
channels which means proportionality to σxx .

For better understanding, we consider the conductance in
the zero doped Corbino disc, where setting Ẽ0 = 0 causes
reduction in the hypergeometeric functions44 as follows:

case m + 1 > 0

α+ = m + 1,β+ = m + 2,

M
↑
i = 2(m + 1)eci

Ẽ0Ri

,

(26)
M

↓
i = (m + 1)(−ci)

−(m+1)γ (m + 1, − ci),

U
↑
i = 0,U

↓
i = c

−(m+1)
i ;

case m + 1 < 0

α− = 0,β− = −m,

M
↑
i = −2ciα−

mẼ0Ri

eci cm
i (�(1 − m) + m�(−m,ci)),

(27)
U

↑
i = −2ciα−

Ẽ0Ri

eci cm
i �(−m,ci),

M
↓
i = 1,U

↓
i = 1;

where we consider the real magnetic field in the z direction;
i.e., |γ | = γ and ci = γR2

i .
By substituting the new format of the hypergeometric func-

tions Eqs. (26), (27) in Eq. (24), the transmission probability
in both cases reduces to

Tm(Ẽ0 → 0,θ,τ ) = 1

cosh2[(m + 1/2)L + X ]
, (28)

with L = ln(R2/R1) and X = γ (R2(r2,θ ) − R2(r1,θ ))/2.
Then after summing over the modes,28 the disc conductance is
equal to

G = g0

∑
m

Tm(Ẽ0 →0,θ,τ ) =
∞∑

j=0

Gj cos

(
2πjX
L

)
, (29)

where g0 = 4e2/h is the quantum conductance and the Fourier
amplitudes are

G0 = 2g0

L , Gj = 4π2(−)j jg0

L2 sinh(π2j/L)
(j >0), (30)

in which the effect of strain appears in the conductance through
L and X . Importantly, we can learn from this equation, which
is our main analytic expression, that the oscillation amplitudes
are independent of the applied uniaxial strain whereas the
oscillation periods are strongly affected by the direction and
value of strain.
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Since the pseudomagnetic field differs in sign in the two
valleys, the conductance of an electron is therefore different
in each valley, which causes manifestation of the valley
polarization of the longitudinal conductance in the Corbino
geometry:

P = GK − GK ′

GK + GK ′
. (31)

In a standard ribbon system the valley polarization, due to
the strong intervalley scattering at the edges, is suppressed
by the pseudomagnetic field18 and the finite size effect,32

whereas in the Corbino geometry, this effect is irrelevant,
due to the absence of the edges. Furthermore, in spite of
the standard valley Hall polarization which comes from the
opposite responses of the different valleys in the Hall system,
σK

xy − σK ′
xy , it is proportional to σK

xx − σK ′
xx in the Corbino case.

III. NUMERICAL RESULTS

In this section, we present our obtained numerical results
for the magnetotransport of a strained graphene in the Corbino
gating in the presence of an external perpendicular magnetic
field. Using the Landauer-Büttiker method, the conductance
of the Corbino disc in deformed graphene geometry with a
uniaxial and an inhomogeneous strain based on Eqs. (19),
(20), (21), and (25) is calculated and the results are compared
with those results for an unperturbed disc. A valley polarized
regime, caused by inhomogeneous strain, is observed as well.
We therefore provide the corresponding valley polarization
results based on Eq. (31). In all figures we assume t0 = 2.7 eV,
r1 = 10 nm as the nearest neighbor hopping integral and the
inner lead radius, respectively.

As was previously shown,26 quantization steps in the
conductance which were first observed in graphene strips
are absent in the Corbino disc. Moreover, the conductance
shows a weak oscillation rather than a linear dependence of
the doping rate, as a consequence of the lack of the back
scattering in comparison with 2DEG systems. In the presence
of the magnetic field the linear dispersion of graphene changes
to the flat bands regime of the Landau levels with a wide gaps
among them. In this case, we find ballistic pseudodiffusive and
field suppressed regimes45 in the phase space of the size and the
magnetic field strength.46 In the case of 2l2

BkF/(r2 − r1) < 1,
in which lB and kF are magnetic length and the Fermi wave
vector, respectively, the system is no longer in a ballistic
regime and it displays a crossover from the pseudodiffusive
regime, close to the Landau levels, to the field suppressed
regime when one stands far from the Landau levels. Consistent
with previous works the results are shown in Fig. 2 for different
sizes of the system. We should notice that this oscillation
in the conductance as a function of magnetic flux is due
to the Fabry-Perot interference which is very similar to the
quantum interference observed in a two-barrier system for
nonrelativistic carriers.27 However, the moderate oscillation in
the graphene case is due to Klein tunneling mechanism for its
massless Dirac particles. This effect has been also addressed
by some previous theoretical studies.29,30

It is clear that the size of the system has a dramatic effect
on the conductance and a stronger field suppression appears
in a larger Corbino which can be helpful to generate the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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e2
/h

)

FIG. 2. (Color online) Conductance as a function of doping for
diverse radius ratios and B = 2 T. Pseudodiffusive, field suppressed
and ballistic regimes are clearly observed. For the small radius ratio,
the magnetic field cannot localize the particle; consequently the
system is in a ballistic phase. By increasing the size of the scattering
region, the field suppression region increases. Inset: Illustration of
the size dependence of the Corbino oscillations for Ẽ0r1 = 10−4 and
φ0 = 2(h/e)ln(r2/r1) (Ref. 28).

valley polarized current as we will discuss later. Formation
of the Landau levels restricts the conduction into the Landau
channels whose energies are proportional to

√
nB. It is then

trivial that as a consequence of the increase in the magnetic flux
piercing the disc area, the number of the channels contributing
to the conduction reduces till all Landau levels (except zero
level) stand beyond the doping rate of the disc area. As a
result of the Corbino geometry an oscillating behavior in the
conductance for different sizes shows up as is illustrated in the
inset of Fig. 2. The increase in the size of the Corbino disc
modifies the oscillation period and the amplitude as indicated
in the inset.

Now, we investigate the effect of the uniaxial strain on
the oscillating nature of the conductance as a function of
the magnetic flux along the x and y directions which is
demonstrated in Fig. 3(a) and Fig. 3(b), respectively. Due to the
anisotropic dispersion of the uniaxially strained graphene, the
charge velocities along the x and y directions differ from each
other. This is why one witnesses earlier charge confinement in
the x direction and a delay in the y direction rather than the
case without the application of the uniaxial strain. A delightful
point is that the uniaxial strain does not change the oscillation
amplitude but its period, which is better manifested in the
figures. In Fig. 3(c) the conductance as a function of strain
is brought, in which a nontrivial oscillation is clear with a
sharp decay along the x direction. These analysis are in good
agreement with the asymptotic expressions of the conductance
given by Eq. (30).

Figure 4 indicates the strain dependence of the conductance
as a function of doping in the x and the y directions, from
which one can find a strong modulation of the field suppression
region and the position and height of the peak in conductance.
In the uniaxially strained graphene, the conductance in the
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FIG. 3. (Color online) Conductance oscillations for different
magnitudes of the uniaxial strain. (a) and (b) Strain tuning effect
on the period of the oscillations along the x and the y directions
are shown, respectively, for the Ẽ0r1 = 10−4. (c) demonstrates a
nontrivial oscillation in the conductance as a function of strain for
Ẽ0r1 = 10−6, r2 = 10r1, and φ/φ0 = 3.

valleys (shifted Dirac points) is the same despite the fact that
the time reversal symmetry is broken due to the nonzero
perpendicular magnetic field. There is no valley polarized
current which is inconsistent with the the valley polarized
conductance in the uniaxially strained graphene strip.35,47

However one can generate the valley polarized bulk current
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FIG. 4. (Color online) Conductance as a function of doping for
different values of strain: (a) and (b) correspond to the x and the y

directions, respectively where strain makes a shift in the position of
the resonances. φ = 3φ0, r2 = 10r1, and Ael = 0.

introducing an inhomogeneous strain which induces a constant
pseudomagnetic field (Bel) with opposite sign in the two
valleys, in such a way that electrons in the valleys feel different
total magnetic fields, B ± Bel . We consider Bel = λB in which
λ depends on a homogeneous and inhomogeneous strain.

We showed in Fig. 3 that the period of this oscillation
can be controlled by using uniaxial elastic deformation,
while the amplitude of oscillation does not change. We also
investigate the effect of the inhomogeneous strain, which
creates a constant pseudomagnetic field, on the amplitude
of the oscillation. The conductance as a function of real
magnetic flux piercing the middle area for different values
of pseudomagnetic flux in zero doped Corbino is shown
in Fig. 5(a) which is calculated by Eq. (28). It is clear
that although at φel = φ0/6, where φ0 = 2(h/e)ln(r2/r1),
the period of the oscillation does not change; however, the
amplitude of the oscillation reduces to its magnitude in the
case of zero pseudomagnetic flux. Moreover, for the case of
φel = φ0/4 the second harmonic demonstrates a much bigger
contribution to the conductance since the first one vanishes.
These results can be easily understood considering only the
first term of the expansion in Eq. (29), G = GK + GK ′ ≈
2G0 + 2G1 cos(2πφel/φ0) cos(2πφ/φ0), which means that
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FIG. 5. (Color online) (a) Conductance as a function of real
magnetic flux piercing the middle area for different values of
pseudomagnetic flux in zero doped Corbino. The amplitude of the
first harmonic oscillation depends on the value of the pseudomagnetic
flux and vanishes at φel = φ0/4 due to the destructive interference
of electrons at two valleys. (b) Conductance and (c) polarization
as a function of doping where the uniaxial strain is zero and an
inhomogeneous strain is only applied. (b) indicates the difference
between the conductance in the two valleys for the case λ = 1 which
causes BK = 2B and BK ′ = 0. B = 1 T and r2 = 10r1. Inset: Field
suppression disappears due to the zero field strength.
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FIG. 6. (Color online) Valley polarization as a function of the
doping for (a) diverse directions and for (b) different λ magnitudes.
(a) illustrates an anisotropic polarization along the x and the y

directions, produced by the uniaxial and inhomogeneous strain.
(b) shows how the polarization persists even in the case in which
the pseudomagnetic field is not exactly equal to the real magnetic
field. Note that r2 = 10r1.

the first harmonic vanishes at φel = φ0/4 due to the destructive
interference of electrons at two valleys.

We find, as a result of Bel = τB at two valleys and ε = 0,
two different features for the conductance as indicated in
Fig. 5(b). In the absence of the intervalley scattering, electrons
in the K point have to obey localized states which are
originated from the Landau levels, but at the K ′ point charges
do not feel any magnetic field localization so that total current
in the field suppression region at the K point is valley polarized.
In other words, the valley filtering is mostly based on the orbital
aspect of the wave function where the electrons in two valleys
have two different magnetic lengths. In Fig. 5(c) the valley
polarization versus doping rate is shown in different sizes and
it is clear that there is a wide energy interval in which P = 1.
This interval increases with increasing Corbino disc size. Note
that in the field suppression regime at the K point, the total
conductance (GK + GK ′ ) comes from the contribution of the
electrons at the K ′ point which are no longer localized by
the magnetic field. This simple picture is practical due to the
edgeless structure of the Corbino geometry.

195426-7



Z. KHATIBI, H. ROSTAMI, AND REZA ASGARI PHYSICAL REVIEW B 88, 195426 (2013)

Moreover, the polarization is tunable by applying a uni-
axial strain which is indicated in Fig. 6(a). Producing the
pseudomagnetic field which is exactly equal to the real one
needs a fine tuning process which experimentally would be
difficult. We therefore assume the λ is not unity and the result
is demonstrated in Fig. 6(b) which shows the persistence of
the polarization in this case. As the numerical results show,
our physical conclusions regarding the valley polarization are
applicable in the inhomogeneous strain.

IV. CONCLUSION

We have calculated the magnetotransport of a strained
graphene in a Corbino geometry. We have shown that, using
strains both inhomogeneous and uniaxial in the absence of the
edge scattering, the conductance is suppressed in one valley in
such a way that the bulk conductance becomes valley polarized
in a desired direction, whereas the valleys take part in the
conduction in the cross direction. We have investigated the
effect of strain on the oscillating nature of the conductance of
the system by carrying out an accurate analytic and numeric
study. We have found that the oscillating period depends on the
value and the sign of the uniaxial strain and also its amplitude

can be manipulated by the induced pseudomagnetic flux which
originates from inhomogeneous strain. By applying a real
magnetic field on the strained Corbino system, we have shown
that in the absence of the intervalley scattering, electrons in
one valley have to obey localized states which originate from
the Landau levels but at the other Dirac point charges do not
feel any magnetic field localization; therefore total current is
valley polarized in the field suppression region at one valley.
Furthermore, we have obtained the valley polarization by
applying an inhomogeneous and uniaxial strain on the Corbino
disc and its dependence on the size, the value of the uniaxial
strain, and also the directions of the Corbino deformation. The
size dependence of the system has a dramatic effect on the
conductance and we have shown that stronger field suppression
appears in a larger Corbino which can be helpful to generate
the valley polarized current. Our analysis can be generalized
for a bilayer graphene in a Corbino geometry.
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