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Transport properties of double quantum dots with electron-phonon coupling
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We study transport through a double quantum dot system in which each quantum dot is coupled to a phonon
mode. Such a system can be realized, e.g., using a suspended carbon nanotube. We find that the interplay between
strong electron-phonon coupling and interdot tunneling can lead to a negative differential conductance at bias
voltages exceeding the phonon frequency. Various transport properties are discussed, and we explain the physics
of the occurrence of negative differential conductance in this system.
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I. INTRODUCTION

Over the past decades, it has become clear that quantum
dot systems are ideally suited for a detailed study of electronic
transport phenomena in mesoscopic physics. Notable transport
features through single quantum dots include the Coulomb
blockade effect,1–4 the Kondo effect,5–7 and the spin blockade
effect.8 Double quantum dots9 are a natural extension. They
consist of two quantum dots connected either in parallel or in
series. One of the most interesting effects found in double dots
with strong electronic interactions is a negative differential
conductance if the tunnel couplings to both dots are different.10

The small size of a quantum dot gives rise to a quantization
of its energy levels. As a consequence, transport through
quantum dots at finite bias voltages usually occurs via one
or several localized electronic levels in the bias window, and
current and noise measurements can be used as experimental
probes of this level structure. The Coulomb repulsion on the
dot also has a strong impact on its transport properties because
it limits the number of electrons occupying the dot. This
Coulomb blockade phenomenon has been observed in many
experiments on different length scales.

The electronic level structure of a quantum dot depends
sensitively on its shape. Therefore vibrational modes of the dot
give rise to interactions between electrons and phonons. The
effect of electron-phonon interactions on transport properties
in quantum dot systems have been studied theoretically11–25

and have been observed in numerous experiments on different
systems. Electron transport in molecular wire junctions26 can
be studied using STM techniques or mechanically controlled
break junctions. Single atoms or molecules connected to
two contacts can be prepared and measured as quantum
dots. Experiments have been performed, for instance, on H2

molecules27 and on other more complicated molecules.28,29

Similar effects at other energy scales were observed in
experiments on suspended carbon nanotubes30–35 or in exper-
iments on buckyballs.36,37 Even larger systems, e.g., quantum
shuttles,38 also fall under the same paradigm. Such nano-
electromechanical systems39 make it possible to study the
influence of phonons on transport through the device in a very
controllable way. Recently, it has been demonstrated that it is
possible to tailor the interaction between localized electronic
degrees of freedom and the mechanical degree of freedom of
a suspended carbon nanotube in a very controlled way.40

In this paper, we study transport through a double quantum
dot system influenced by the presence of phonons on each dot.
Naively, one expects the current through the double dot system
to increase with the applied bias voltage. However, as we
show below, a negative differential conductance can arise for
sufficiently strong electron-phonon coupling, i.e., the current
can decrease when the bias voltage is increased. Moreover, this
negative differential conductance occurs even if the system is
symmetric.

The article is organized as follows. In Sec. II, we propose
the model and discuss a possible realization of it. We
furthermore summarize our key results. We formally introduce
the Hamiltonian of the underlying model in Sec. III. In Sec. IV,
we use a Born-Markov master equation approach to determine
the rate equations which can be used to calculate the current
and differential conductance. We present and discuss the
results of the current and differential conductance in Sec. V.
Finally, we summarize in Sec. VI.

II. MODEL AND KEY RESULTS

We investigate transport through a double quantum dot
setup, in which the energy of each electronic level depends
linearly on the displacement of one phonon mode. Such a
system can be realized, e.g., using carbon nanotube (CNT)
setups, where the central part of the CNT is supported,
whereas the two lateral parts are suspended, see Fig. 1. The
suspended sections of the CNT serve as quantum dots41 with
large charging energies, and are free to oscillate. Using a gate
voltage, the central part is tuned to an insulating regime, so
transport can only occur if an electron from the left section of
the CNT tunnels into the right section. CNTs are especially
favorable for this kind of setup because of (i) their high Q

factors and stiffness,42,43 (ii) high vibrational frequencies
in the range of 4–11 GHz,44 and (iii) large electron-phonon
coupling.35 Note, however, that the model we consider is
fairly generic, and we expect that it can be realized also using
alternative molecular quantum dot or nanoelectromechanical
systems.

The large charging energy and the weak coupling to the
metallic contacts allow us to use a rate equation approach, and
to take into account only sequential tunneling processes. As we
show below, this is the regime in which a negative differential

195425-11098-0121/2013/88(19)/195425(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.195425


WALTER, TRAUZETTEL, AND SCHMIDT PHYSICAL REVIEW B 88, 195425 (2013)

FIG. 1. (Color online) A carbon nanotube is suspended between
two metallic leads (blue) held at chemical potentials μL and μR .
The additional support in the center separates the nanotube into two
regions; each free to oscillate. Tunnel barriers are depicted in gray.
The orange spheres denote quantum dots that form on each suspended
part of the nanotube.

conductance in the double dot setup can be observed. We find
that for fixed interdot tunneling and at bias voltages on the
order of the phonon frequency, the current is suppressed when
increasing the electron-phonon coupling. Furthermore, we find
that for large electron-phonon coupling and relatively weak
interdot coupling, the current decreases when increasing the
bias voltage, leading to a negative differential conductance.
This negative differential conductance disappears when the
interdot coupling is increased. We conclude that there is an
interesting interplay between electron-phonon coupling and
the interdot coupling which in certain cases leads to a negative
differential conductance.

III. HAMILTONIAN

Figure 2 shows a schematic diagram of the setup we
consider in the following: each of the two dots contains a
single electronic level in the bias window, which is coupled to
one phonon mode. Two normal-metal leads, held at chemical
potentials μL and μR (i.e. the bias voltage is V = μL − μR)
are attached to the double quantum dot to drive a current
through the system. The total Hamiltonian describing this
model is given by (α = {L,R})

H =
∑

α

[
H

(α)
lead + H

(α)
dot + H (α)

osc + H
(α)
osc−dot

]

+Hdd + Htun, (1)

FIG. 2. (Color online) Schematic picture of the setup described
by the Hamiltonian (1). Two quantum dots with onsite energies
ξL and ξR are coupled to each other with a tunneling amplitude
tD , and to electron reservoirs on the left and right with tunneling
amplitudes tL and tR , respectively. The electron reservoirs are
normal-metal leads with chemical potentials μL and μR , respectively.
A phonon mode with frequency �L (�R) is coupled to the left (right)
dot.

where the different parts are

H
(α)
lead =

∑
k

εkψ
†
αkψαk, H

(α)
dot = ξαd†

αdα,

H (α)
osc = p̂2

α

2mα

+ 1

2
mα�2

αx̂2
α, H

(α)
osc−dot = λαx̂αd†

αdα,

Hdd = tDd
†
LdR + tDd

†
RdL, Htun =

∑
α,k

tαψ
†
αkdα + H.c.

Here, H
(α)
lead describes the normal-metal leads using electron

creation and annihilation operators, ψ†
αk and ψαk , respectively,

for electrons with wave vector k in lead α. The dot Hamiltonian
H

(α)
dot describes a single electronic orbital at energy ξα , where

d†
α (dα) creates (annihilates) an electron on dot α. The phonons,

which couple to the dots, are described by the harmonic
oscillator Hamiltonian H (α)

osc . The electron-phonon coupling
is given by the Hamiltonian H

(α)
osc−dot, where λα denotes the

coupling strength of the phonon mode to the occupation
number of dot α. The interdot coupling is given by Hdd

with tunneling amplitude tD . Finally, Htun couples each dot
to its adjacent normal-metal lead with an energy-independent
tunneling amplitude tα .

We assume spin-independent transport and large intra- and
interdot Coulomb repulsion, such that the double dot works
as a single electron transistor, i.e., only one spinless electron
can occupy the double dot system at any given time. Therefore
the corresponding Hilbert space of the electronic double dot
system is spanned by the three states:

|0,0〉 ≡ |0〉, |1,0〉 ≡ |L〉, |0,1〉 ≡ |R〉, (2)

where |nL,nR〉 denotes a state with nL (nR) electrons on the
left (right) dot.

The electron-phonon coupling λL,R can be strong, e.g., in an
experimental realization employing CNTs. In order to treat it
exactly, we use a polaron (Lang-Firsov) transformation which
eliminates the electron-phonon coupling term in Eq. (1).45

Using the unitary transformation

S =
∑

α

e−i�αp̂αnα ,

where �α = λα/mα�2
α and nα = d†

αdα , the transformed
Hamiltonian H̃ reads

H̃ = SHS† =
∑

α

H
(α)
lead + H̃

(α)
dot + H (α)

osc + H̃dd + H̃tun,

where

H̃
(α)
dot = ξ̃αd†

αdα,

H̃dd = tDd
†
LX

†
LXRdR + tDd

†
RX

†
RXLdL,

H̃tun =
∑
α,k

tαψ
†
αkdαXα + H.c.

As a consequence of the electron-phonon coupling, the level
energies are renormalized, ξ̃α = ξα − �αλα/2, and the polaron
operator Xα = eip̂α�α emerges in the electron tunneling Hamil-
tonian. The complicated structure of the polaron operator
makes an exact solution impossible. Therefore we shall use
a perturbative approach in the dot-lead tunnel amplitudes tL,R

and the interdot tunnel amplitude tD .
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IV. BORN-MARKOV MASTER EQUATION

To calculate transport properties of the double dot system
for arbitrary electron-phonon coupling, we employ a Born-
Markov master equation approach. We separate the full Hilbert
space into system and bath degrees of freedom, where the
system contains the double dot, whereas the lead electrons as
well as the phonons form the bath. The Markov approximation
consists in assuming that the bath is in thermal equilibrium at
all times. The full density matrix can therefore be approxi-
mated as ρtot(t) ≈ ρdots(t) ⊗ ρph ⊗ ρleads. Moreover, we treat
the tunneling to second order (Born approximation). This also
implies that we neglect backaction effects by tunneling on the
electrons in the leads and on the phonons. Tracing out the bath
degrees of freedom, we arrive at a master equation for the
double dot density matrix (we set h̄ = 1),

d

dt
ρdots(t) = −iTrph

[∑
α

H̃
(α)
dot + H̃dd,ρdots(t)

]

−
∫ ∞

0
dt ′TrphTrleads{[H̃tun,[H̃tun(−t ′),ρdots(t)

⊗ ρph ⊗ ρleads]]}. (3)

We included the interdot tunneling term H̃dd in the system
part, i.e., it appears in the term describing the coherent time
evolution in Eq. (3). However, we excluded the effect of H̃dd

on the time-evolution of H̃tun(−t ′),46 i.e., the time evolution
of H̃tun(−t ′) is in the interaction picture with respect to
the unperturbed Hamiltonian H0 = ∑

α H
(α)
lead + H̃

(α)
dot + H (α)

osc .
The latter approximation is justified in the limit tD �
tα � max(eV,kBTel). Therefore we also treat tD as a small
perturbation.

A. Rate equations and current through the system

In the weak tunneling limit that we consider, the tunneling
rate from the leads to the dots and vice versa is much
smaller than the phonon energy �α . In the stationary case,
the occupation probabilities p0, pL, and pR of the three basis
states (2) satisfy the following rate equations:

0 = −(W0L + W0R)p0 + WL0pL + WR0pR, (4)

0 = W0Lp0 − (WL0pL + WLR)pL + WRLpR, (5)

0 = W0Rp0 + WLRpL − (WR0 + WRL)pR, (6)

where Wαβ denotes the rate for tunneling from state α to β

(α,β ∈ {0,L,R}). Using Eqs. (4)–(6) and the normalization
condition p0 + pL + pR = 1, we can solve for the occupation
probabilities p0, pL, and pR and calculate the stationary
current

I = −e
(
p0W0R − pRWR0

)
.

Because of current conservation, it is enough to consider the
current from the right dot to the right lead. The transition rates
Wαβ are obtained from the master equation (3).

B. Equation of motion for the density matrix

We obtain the rates and the current from the matrix elements
〈α|ρdots(t)|β〉 = ραβ(t) of Eq. (3). The differential equations
for matrix elements are

ρ̇00 = −(W0L + W0R)ρ00 + WL0ρLL + WR0ρRR, (7)

ρ̇LL = −itD(MLRρRL − MRLρLR) − (W0R + WL0)ρLL

+W0Lρ00, (8)

ρ̇RR = −itD(MRLρLR − MLRρRL) − (W0L + WR0)ρRR

+W0Rρ00, (9)

ρ̇LR = −itDMLR(ρRR − ρLL) − i(ξ̃L − ξ̃R)ρLR − WρLR/2,

(10)

ρ̇RL = itDMRL(ρRR − ρLL) + i(ξ̃L − ξ̃R)ρRL − WρRL/2,

(11)

with W = W0R + WR0 + W0L + WL0. The tunneling rates are
given by

W0α =
∫ ∞

−∞

dω

2π
αfα(ξ̃α + ω)F<

α (ω),

Wα0 =
∫ ∞

−∞

dω

2π
α[1 − fα(ξ̃α + ω)]F>

α (ω),

where the tunneling-induced level broadening is α = 2πραt2
α

with ρα being the constant density of states in lead α and
fα(x) = [eβel(x−μα ) + 1]−1 is the Fermi distribution function.
Here, μα is the chemical potential of lead α and βel denotes
the inverse temperature of the lead electrons. Note that we set
kB = 1.

In the steady state (ρ̇αβ = 0), the system given by Eqs. (7)–
(11) can be solved easily. The solution to the off-diagonal
matrix elements in the steady state is given by

ρLR = − tDMLR

[ξ̃L − ξ̃R] − iW/2
(ρRR − ρLL),

ρRL = − tDMRL

[ξ̃L − ξ̃R] + iW/2
(ρRR − ρLL),

which we use to write

0 = −(W0L + W0R)ρ00 + WL0ρLL + WR0ρRR, (12)

0 = t2
DV(ρRR − ρLL) − WL0ρLL + W0Lρ00, (13)

0 = t2
DV(ρLL − ρRR) − WR0ρRR + W0Rρ00, (14)

where we defined

V = WMLRMRL

W2/4 + (ξ̃L − ξ̃R)2
. (15)

The stationary current can then obtained by

I = −e
t2
DV(W0LWR0 − W0RWL0)

t2
DV(2W0L + 2W0R + WL0 + WR0) + W0RWL0 + W0LWR0 + WL0WR0

.
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The equation for the current nicely shows one major difference
to the case of a single quantum dot coupled to a single
bosonic mode, viz. nonvanishing off-diagonal density-matrix
elements. This allows coherent tunneling between the two dots.
In Ref. 47, it was shown that in a double dot setup with a single
bosonic mode such coherent tunneling can lead to cooling of
the bosonic mode.

The influence of the phonons on the transport is due to
Mαβ and F

≶
α (ω), which are bosonic correlation functions.

The function F<
α (t) is given by F<

α (t) = Trph[ρphXα(t)X†
α] =

〈Xα(t)X†
α〉. The Fourier transform is defined as F<

α (ω) =∫
dteiωtF<

α (t). The greater function can be obtained from the
lesser function by the relation F>

α (ω) = F<
α (−ω). Since, in the

derivation of the Born-Markov master equation, we assume
equilibrated phonons, the expectation value of the bosonic
correlation functions is taken with respect to a thermal density
matrix. In this case, the Fourier transform of F<

α (t) can be
calculated exactly,45

F<
α (ω) =

∞∑
n=−∞

In

[
gα

sinh(βbos�α/2)

]
exp

(
n
βbos�α

2

)

× exp

[
−gα coth

(
βbos�α

2

)]
2πδ(ω − n�α),

where In is the modified Bessel function of first kind, gα =
�2

αmα�α/2 = �2
α/(2�α0), and �α0 = √

1/mα�α . Here, βbos

is the inverse temperature of the phonon. The correlation
function Mαβ is time independent and given by Mαβ =
Trph(ρphX

†
αXβ) = 〈X†

αXβ〉. For equilibrated phonons, we have

Mαβ = (1 − e−βbos�α )e−gα/2(1 − e−βbos�β )e−gβ/2

×
∞∑

n=0

e−βbos�αnLn(gα)
∞∑

m=0

e−βbos�βmLm(gβ),

where Ln are Laguerre polynomials.

V. CURRENT AND DIFFERENTIAL CONDUCTANCE

In the following, we study the current and the differential
conductance through the double dot system. From now on
we assume, for simplicity, that both phonons have the same
frequency �L = �R = �. However, our main results are not
qualitatively affected by this assumption. A symmetric bias
voltage is applied such that μL = V/2 and μR = −V/2.
If not stated otherwise, we choose βel = βbos = 10 � for
the electronic and bosonic temperatures, respectively. This
corresponds to low temperatures for electrons in the leads
as well as low temperatures for the phonons. Put differently,
βbos = 10 � means a low effective occupation number of
the phonon modes neff ≈ 0. As a consequence, the phonons
can only absorb energy which is emitted by the tunneling
electron (and not emit energy to the electrons). The coupling
to the phonon modes opens additional transport channels.
In particular, a tunneling electron can now emit a phonon
during the tunnel process (the absorption process is suppressed
because of neff ≈ 0). This emission process leads to additional
steps in the I (V ) curve or equivalently to additional resonances
in the differential conductance dI/dV .

0 2 4 6 8
0.00

0.01
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0.03

0.04

0.05

0.06

V

I

g 2.0
g 1.6
g 1.2
g 0.8
g 0.4
g 0
ΞR 1
ΞL 1

tD 0.2

FIG. 3. (Color online) Current I through the double dot system
as a function of bias voltage V for different values of electron-phonon
coupling g and symmetric level energies ξ̃L = ξ̃R . The current
decreases with increasing electron-phonon coupling. For a fixed
(nonzero) value of the electron-phonon coupling, the current also
decreases (in some regions) with increasing bias voltage. Parameters
are given in the legend. Here and in the following figures, energies
are in units of �. Hence, the bias voltage V is shown in units of �/e

and the current I in units of (e/h)�.

A. Results

In Figs. 3–6, we present our results on the current through
and the differential conductance of the double quantum dot
system. In the following, we chose, again for simplicity, a
symmetric electron-phonon coupling gL = gR = g.

In Fig. 3, we show the current through the double dot
system as a function of bias voltage V for different values
of the electron-phonon coupling g and for aligned left and
right electronic levels (ξ̃L = ξ̃R). First, we see that for fixed
bias voltage, the current decreases towards stronger electron-
phonon coupling. Furthermore, for a fixed electron-phonon
coupling, the current beyond a certain bias voltage also
decreases upon increasing the bias voltage. This leads to a
negative differential conductance, which can be seen in more
detail in Fig. 4. The steps in the current (peaks in the differential
conductance) appear whenever an electron can emit a phonon
while tunneling. The current obeys the symmetry I (V ) =
−I (−V ) due to our symmetric choice of parameters.

0 2 4 6 8

0.00

0.02

0.04

0.06

0.08

V

dI
dV

g 2.0
g 1.6
g 1.2
g 0.8
g 0.4
g 0
ΞR 1
ΞL 1

tD 0.2

FIG. 4. (Color online) Differential conductance dI/dV for the
same parameters as in Fig. 3. We clearly see the negative differential
conductance.

195425-4



TRANSPORT PROPERTIES OF DOUBLE QUANTUM DOTS . . . PHYSICAL REVIEW B 88, 195425 (2013)
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FIG. 5. (Color online) Current I through the double dot system as
a function of bias voltage V for different electron-phonon couplings
g and an asymmetric choice of level energies ξ̃L �= ξ̃R . In comparison
to Fig. 3, the current for a fixed electron-phonon coupling is now
increasing with the bias. All parameters are given in the legend.

Figure 5 shows I (V ) for different electron-phonon cou-
plings g in the case of asymmetric level energies ξ̃L − ξ̃R ≈ �.
This asymmetry can, for instance, be induced by tuning the dot
level energies ξ̃α with a gate voltage. Due to the asymmetry
in the setup, the current is then no longer an antisymmetric
function of voltage, I (V ) �= −I (−V ). As before, a stronger
electron-phonon coupling leads to a decrease of the current.
However, the current for fixed electron-phonon coupling now
always increases with the bias voltage. Therefore introducing
an asymmetry in the setup causes the negative differential
conductance to disappear, see Figs. 5 and 6. For the differential
conductance to become positive, the introduced asymmetry
has to be of the order ξ̃L − ξ̃R ≈ �, see the next section for an
explanation why.

Figures 3–6 are the first main result of our article, showing
that electron-phonon coupling in a double quantum dot can
lead to a negative differential conductance, and that this effect
can be influenced by adjusting the level energies. A different
way to remove the negative differential conductance is to
increase the interdot tunneling tD , which leads to an increased
tunneling rate between the dots. We discuss the nature and ori-
gin of the negative differential conductance in the next section.
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dI
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g 1.2
g 0.8
g 0.4
g 0
ΞR 2
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tD 0.2

FIG. 6. (Color online) Here, we show the differential conductance
for the same parameters as in Fig. 5. We clearly see the absence of a
negative differential conductance.

B. Origin of the negative differential conductance

In the absence of electron-phonon coupling, the tunneling-
induced width of the dot levels allows for transport through
the double quantum dot even in an off-resonant situation. The
tunneling rate between the left and right dot can be associated
with V . According to Eq. (15),

V(g = 0) = L + R

(L + R)2/4 + (ξ̃L − ξ̃R)2
.

This can be interpreted as the density of states of the left dot at
the energy of the right one. V(g = 0) depends only on α and
the energy difference of the levels. If the levels are aligned,
ξ̃L = ξ̃R , V reaches its maximum and so does the current. On
the other hand, V and the current, both decrease if the energy
difference of the levels ξ̃L − ξ̃R is nonzero. Therefore, without
phonons, the differential conductance (the peak height and
width) is predominantly described by the tunneling-induced
level broadening α and the level energies.

In the case of nonzero electron-phonon coupling, the
situation is very different. Most importantly, due to the
presence of phonons, V depends on the bias voltage. We also
know from Figs. 4 and 6 that we have to distinguish the cases
ξ̃L = ξ̃R and ξ̃L �= ξ̃R . First, for aligned levels ξ̃L = ξ̃R we
obtain

V(ξ̃L = ξ̃R) = 4
MLRMRL

W .

The bias voltage only enters in W , which increases whenever
the bias voltage reaches a phonon sideband. Therefore, V
decreases at these thresholds, see Fig. 7. If we interpret V
again as a density of states, this decrease indicates that due to
the phonons fewer states are available for transport. Second,
in the case of a finite energy difference of the levels of order
ξ̃L − ξ̃R ≈ �, the rate becomes approximately

V(ξ̃L − ξ̃R ≈ �) ∼ WMLRMRL .

In this case, the rate V increases with the bias voltage at each
phonon sideband. In Fig. 7, we show V as a function of the bias
voltage for the two cases discussed above. To summarize, this

5 0 5

0.2

0.3

0.4

0.5

0.6

V

ΞL 1 ΞR 2

ΞL 1 ΞR 1

g 0.8

FIG. 7. (Color online) The function V as a function of V for
ξ̃L = ξ̃R = 1 (black) and ξ̃L = 1, ξ̃R = 2 (blue). For ξ̃L = ξ̃R = 1, V
decreases at every phonon sideband in contrast to the case ξ̃L = 1,
ξ̃R = 2. In this case at every phonon sideband (the first one being at
V ≈ 4) V increases. (Note the blue curve is shifted to the left due to
the asymmetry in the setup.)
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explains the occurrence of negative differential conductance at
large electron-phonon coupling, and why it disappears when
the interdot tunneling is increased.

The negative differential conductance can be explained
physically as follows. If the bias voltage exceeds the phonon
frequency, tunnel processes become possible in which the
electron emits a (real) phonon when entering, say, the left
dot. As a consequence, its energy may be insufficient to tunnel
to the right dot, so transport is blocked. Ultimately, the electron
will escape again from the left dot, either by reabsorbing the
phonon or by co-tunneling directly to the right reservoir. This
short blockade of transport leads to a decrease of the total
current once the bias voltage exceeds the phonon frequency,
and hence to a negative differential conductance.

There is a stark contrast between the double dot setup with
phonons and a single-level quantum dot that couples to one
phonon mode. When phonons are involved in the transport
through a single quantum dot the so-called Franck-Condon
blockade17 arises. Then, in the sequential tunneling limit, the
differential conductance is positive and the current through
the single quantum dot is suppressed for low bias voltages
when increasing the electron-phonon coupling. Negative dif-
ferential conductance due to phonons in a single single-level
quantum dot is only possible due to higher order co-tunneling
processes18 or asymmetric coupling of the dot to the leads.19

C. Occupation probabilities

An investigation of the occupation probabilities of the dot
states further strengthens the explanation for the occurrence
of a negative differential conductance. Figure 8 shows the
occupation probabilities of the dot states, i.e., the diagonal
elements of the dot density matrix.

In Fig. 8(b), we see that without electron-phonon coupling
and ξ̃L = ξ̃R , the probability for having zero electrons in
the double dot (ρ00) decreases when the bias voltage V is
increased. Simultaneously, the probabilities ρLL and ρRR both
increase. As a consequence, the current through the system
increases until it saturates.

For nonzero electron-phonon coupling (g = 0.8) and ξ̃L =
ξ̃R , on the other hand, we recognize from Fig. 8(a) that at the
first phonon sideband, the occupation probability of the left
dot increases but the occupation probability of the right dot
decreases. This behavior suggests that the interdot transport
from the left to the right dot becomes suppressed at this bias
voltage threshold. Thus the current decreases when the bias
voltage is increased beyond the threshold voltage which is the
onset of a negative differential conductance.

In Fig. 8(c), ξ̃L �= ξ̃R and the other parameters are the same
as in Fig. 8(a). At the first phonon sideband the occupation
probability of the left dot increases (as before) and now
the occupation probability of the right dot also increases.
This behavior is qualitative similar to the one depicted in
Fig. 8(b) and therefore the differential conductance is purely
positive.

VI. SUMMARY

To summarize, we have investigated transport properties,
namely the current and the differential conductance, in a
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FIG. 8. (Color online) Diagonal elements of the density matrix
ρ00 (black), ρLL (blue), and ρRR (red). In b) g = 0 and level energies
are chosen symmetrically. In (a) and (c), g = 0.8 and level energies
are chosen symmetric and asymmetric, respectively. Here, tD = 0.4
and ξ̃L = 1.

double quantum dot setup in which a phonon mode is coupled
to each quantum dot. We have shown that the electron-phonon
coupling gives rise to a negative differential conductance
under certain conditions. Furthermore, we have argued that
the electron-phonon coupling leads to an interdot tunneling
rate that depends on the bias voltage and on the energy
difference between the dots, which we identified as the origin
of the occurrence of negative differential conductance. The
very generic model we used can readily be probed in nanoelec-
tromechanical systems. Experiments employing suspended
carbon nanotubes incorporate both, single localized levels and
phonon modes. In addition to that, strong electron-phonon
coupling, high Q factors, and high resonance frequencies
make carbon nanotubes perfect candidate devices to study
the occurrence of negative differential conductance in double-
quantum dot systems with electron-phonon coupling.
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