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Plasmons and their interaction with electrons in trilayer graphene

P. M. Krstajić,1,2 B. Van Duppen,2 and F. M. Peeters2

1Institute of Microelectronic Technologies and Single Crystals (IHTM), University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
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The interaction between electrons and plasmons in trilayer graphene is investigated within the Overhauser
approach resulting in the “plasmaron” quasiparticle. This interaction is cast into a field theoretical problem,
and its effect on the energy spectrum is calculated using improved Wigner-Brillouin perturbation theory. The
plasmaron spectrum is shifted with respect to the bare electron spectrum by �E(k) ∼ 150−200 meV for ABC
stacked trilayer graphene and for ABA trilayer graphene by �E(k) ∼ 30−150 meV [�E(k) ∼ 1−5 meV] for
the hyperbolic (linear) part of the spectrum. The shift in general increases with the electron concentration ne

and electron momentum. The dispersion of plasmarons is more pronounced in ABC stacked than in ABA stacked
trilayer graphene, because of the different energy band structure and their different plasmon dispersion.
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I. INTRODUCTION

Trilayer graphene as a novel material has attracted con-
siderable attention in recent years.1–5 Trilayer and few-layer
graphene are interesting because they possess different and
unique properties with respect to both single-layer graphene
and conventional semiconductors. For instance, bilayer6 and
certain types of trilayer graphene1 are shown to have an
electrically tunable band gap.7 This would make them good
candidates for application in electronic industry where the
control of the band gap is desirable to implement a chosen
logic. On the other hand, plasma excitations in graphene
structures8 and in general nanostructures made of graphene,
semiconductors and/or metals are the subject of current interest
of many researchers worldwide. The new emerging field
called plasmonics9 and nanoplasmonics is concerned with the
methods to confine plasmons and electromagnetic fields over
dimensions on the order of or smaller than its wavelength. For
instance, surface plasmons guided by graphene structures are
shown to exhibit low losses and being tunable by gating and
doping makes graphene an appropriate candidate to replace
metal plasmonic devices.8,10

In order to investigate the electron-plasmon interaction
in more detail, the concept of a new quasiparticle named
“plasmaron” was introduced that is, in fact, a bound state
of a charge carrier with plasmons. Coulomb interaction and
plasmarons in both single-layer graphene11–15 and bilayer
graphene16,17 have been studied intensively. One of the
reasons is that it was found experimentally that, in monolayer
graphene,14 the accepted view of a linear (Dirac-like) spectrum
does not provide a sufficiently detailed picture of the charge
carrying excitations in this material. The motivation behind
the interest in this kind of study is that studying the physics
of the interaction between electrons and plasmons may lead to
the realization of plasmonic devices that merge photonics and
electronics. The interest in similar phenomena in few-layer
graphene is equally high.

Coulomb interaction and electronic screening was probed
in bilayer and multilayer graphene using angle-resolved
photoemission spectroscopy (ARPES) in Ref. 18. Further
plasmon dispersion was studied in multilayer graphene using
high-resolution electron energy-loss spectroscopy in Ref. 19.

Recently, plasmarons and the quantum spectral function in
bilayer graphene was investigated in Ref. 17 theoretically,
where the onset of a broad plasmaron peak away from the
Fermi surface was predicted. While the energy dispersion
in graphene is linear in momentum, in trilayer graphene it
can be cubic, hyperbolic, and/or linear depending on the
stacking order. The advantage of multilayer graphene over
usual semiconductors is that its charge carrier density can be
controlled by the application of a gate voltage over orders of
magnitude and the charge carrier type can be changed from
electrons to holes. Furthermore, the band gap can be tuned to
meet specific demands for device design.

In this work, we use second-order perturbation theory in
order to take into account the electron-plasmon interaction
which is cast into a field theoretical problem. In this way, one
is able to calculate the correction to the band structure, which
comes as a consequence of the interaction of charge carriers
with plasmons. The interaction is treated using the Overhauser
approach20,21 here applied to the two-dimensional electron gas
in trilayer graphene.

The paper is organized as follows. In Sec. II we present the
theoretical model and derive the relevant expressions for the
interaction and the coupling between electrons and plasmons
in trilayer graphene. In the subsequent section, Sec. III, the
numerical calculations of the energy correction due to the
interaction with plasmons are presented as a function of
electron momentum and for various doping levels, i.e., charge
carrier density. Both stacking orders ABC and ABA were
considered. The influence of the doping level is analyzed and
discussed. Finally, we summarize our results and present the
conclusions in Sec. IV.

II. THEORETICAL MODEL

A. ABC stacked trilayer graphene

If the relevant energies of interest in trilayer graphene are
smaller than the interlayer hopping parameter γ1, one may
use the low-energy limit. In this limit, the problem can be
reduced to the effective two-band model and the corresponding
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Hamiltonian reads22

HABC = (h̄vF )3

γ 2
1

[
0 (kx − iky)3

(kx + iky)3 0

]
, (1)

where vF is the Fermi velocity. The eigenvalues of Eq. (1) are
known and read

E
(0)
l = l

(h̄vF )3

γ 2
1

k3, (2)

where l = ±1. Structures made of graphene may exhibit
and support quanta of collective charge excitations of the
electron gas, i.e., plasmons, as a result of the restoring force
of the long-range Coulomb interaction. Contrary to the case
of conventional two-dimensional electron gas, the “Dirac
plasma” is manifestly of quantum nature.23 For example, in
single-layer graphene the plasma frequency is proportional
to 1/

√
h̄ and does not have a classical limit independent of

the Planck constant. The dynamic dielectric function within
random phase approximation (RPA) is given by

ε(q,ω) = 1 − 2πe2

κq
�(q,ω), (3)

where κ = (1 + κs)/2 is the dielectric constant of the material
and is related to the one of the substrate. Here �(q,ω) is the
free-particle polarizability and is given by

�(q,ω) = gd

	

∑
ll′k

f l
k − f l′

k+q

h̄ω + El
k − El′

k+q

Fll′(k,k + q), (4)

where gd is the degeneracy factor, f l
k is the Fermi-Dirac

distribution, and 	 is the volume of the system. Here Fll′ is the
overlap between the states having momentums k and k + q.
In the long wavelength limit q → 0 (i.e., q � ω/vF ) one may
expand the denominator24 and then keep the first term of the
Taylor series for both the difference in the Fermi functions and
the energies (Ek − Ek+q). Further, the overlap integral Fll′ is
close to unity since the angle between k and k + q is almost
zero. Finally, for the zero-temperature case, the difference of
the Fermi functions will yield the factor δ(k − kF ). This leads
to an approximate relation for the polarizability:

�(q,ω) ≈ gdkF

4π

q2

(h̄ω)2

∂Ek

∂k

∣∣∣∣
k=kF

. (5)

Taking into account the energy-momentum relation, Eq. (2),
and upon inserting Eq. (5) into Eq. (3), one arrives at the
plasmon dispersion relation

ωq =
(

3gdh̄(vF kF )3e2

2γ 2
1 κ

) 1
2 √

q. (6)

The Fermi wavevector can be calculated from the known
relation kF = √

πne, which holds for all 2D systems with
isotropic energy dispersion.

The excitations of the electron gas can be represented by a
scalar field previously described by Overhauser20 for the 3D
electron gas but here modified for the 2D electron gas. The
corrections to the electron spectrum are calculated in a similar
way as for the polaron problem, with the difference being that
a test charge interacts with plasmons. The interaction of an

electron with plasmons was treated in our earlier work,25 and
the interaction term of the Hamiltonian is given by

Hint =
∑

q

Vq√
	

exp(iq · r)(aq + a
†
−q), (7)

where aq and a
†
q are electron annihilation and creation

operators, respectively. Here the electron-plasmon interaction
matrix element is26

Vq = 2πe2

√
	κq

λq. (8)

The value of Vq is determined using the f -sum rule applied
to the case of interest. The derivation of the f -sum rule goes
as follows. First, we note that the expectation value of the
double commutator 〈0|[n−q,[nq,H ]]|0〉 can be evaluated in
two different ways.27 Here nq is the electron density operator,

nq =
∑

λq(aqe
iq·r + a†

qe
−iq·r). (9)

Then, it is known that the relation 〈n|C|m〉 = (En −
Em)〈n|A|m〉 holds for any commutator with the Hamiltonian,
C = [H,A]. Second, it can easily be proven that

〈0|[n−q,[nq,H ]]|0〉 = 2
∑

n

h̄ωn0|〈n|nq|0〉|2, (10)

where h̄ωn0 = En − E0. Then, the explicit evaluation of the
double commutator yields

∑
n

h̄ωn0|〈n|nq|0〉|2 = N
(h̄vF )3q3

γ 2
1

. (11)

Within the plasmon-pole approximation there is only one
collective excitation for each wave vector q, so that one can
put ωn0 = ω′

q and taking into account Eq. (9), the sum rule
reduces to

h̄ω′
qλ

2
q = N

(h̄vF )3q3

γ 2
1

. (12)

Here the quantity λ′
q =

√
(h̄vF )3q3/(γ 2

1 h̄ω′
q) serves as a small

dimensionless parameter in the electron-plasmon interaction
and takes the value of about or less than 0.5. On inserting
Eq. (12) in Eq. (8), one arrives at the following expression for
the interaction matrix element:

Vq = 2πe2

κγ1

√
(h̄vF )3qne

h̄ω′
q

, (13)

where ne = N/	 is the electron concentration. Note that
ω′

q is not the bare plasmon frequency but is modified by
the polarization of the electron gas. In order to investigate
electron-plasmon interaction, one should consider a test charge
interacting with the plasmon modes. But this test charge
introduces a change in energy as a result of its interaction with
the dielectric. In order to determine the value of the plasmon
frequency one needs the electron dielectric function. It can
be shown that the static dielectric function within the random
phase approximation can be approximated by the following
relation:28

ε(q) = 1 + qs

q
, (14)
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where qs is the screening wavevector29 and given by qs =
2πe2/κD0 where D0 is the density of states of the ABC stacked
trilayer graphene,

D0 = 2

3

(
gd

4π

)3/2
γ 2

1

(h̄vF )3

1√
ne

. (15)

Here gd is the degeneracy factor that takes into account both
spin and valley degrees of freedom. Then, the actual plasmon
frequency is given by21

ω′2
q = ω2

q
ε(q)

ε(q) − 1
. (16)

Now, using second-order perturbation theory, the correction
to the energy spectrum is given by

�E0(k) = −P
1

	

∑
q

|Vq|2
h̄ωq + E0(k − q) − E0(k)

, (17)

where P (·) stands for the principal value. Here, the cut-off
value for the momentum q was taken to be qc = 1/a0,
where a0 is the lattice constant. This formula correspond
to nondegenerate Rayleigh-Schrödinger perturbation theory
(RSPT). For certain values of the plasmon wavevector q
a degeneracy occurs when E0(k) = h̄ωq + E0(k − q), and
one should employ improved Wigner Brillouin perturbation
theory26 (IWBPT). The main idea behind this method is
to ensure enhanced convergence when the denominator in
Eq. (17) approaches zero, which is realized by adding the
term �(k) = �E(k) − �E0(k) (�E0(k) is evaluated within
RSPT):

�E(k) = −P
∑

q

|Vq|2
h̄ωq + E0(k − q) − E0(k) − �(k)

. (18)

This equation has to be solved self-consistently as �E

appears on both sides of the equation. Because of the
isotropic nature of the spectrum, we have E(k) = E(k). In
the next section the value of �E(k) (within IWBPT) will
be calculated numerically for concrete values of the doping
level, permittivity, and other material parameters. As has been
pointed out elsewhere13 the plasmon excitation in graphene
of the Dirac sea remains pretty much well defined even
when it penetrates the interband particle-hole continuum. This
is the consequence of the fact that the transitions near the
bottom of the interband particle-hole continuum have almost
parallel wavevectors k and k + q. Thus, those transitions carry
negligible charge-fluctuation weight. A similar conclusion
holds for trilayer graphene. In practice, the damping can be
important for very large momentum q, but then the contribution
to the energy shift, i.e., to the integral in Eq. (18), is
small.

B. ABA stacked trilayer graphene

In this case multilayer graphene is stacked in the Bernal
type where the sites in the first and the third layer coincide.
This kind of stacking is more common and can be realized by
exfoliating natural graphite because it has virtually the same
crystalline structure.30 The effective Hamiltonian obtained
by a tight-binding model and taking into account only

nearest-neighbor interaction is3,31

HABA = h̄vF

⎡
⎢⎣

σ · k + δ′I2 τ 0

τ † σ · k τ †

0 τ σ · k − δ′I2

⎤
⎥⎦ , (19)

where I2 is the 2 × 2 unit matrix and δ′ = δ/(h̄vF ) is
the externally induced interlayer potential difference. The
Hamiltonian is written in the basis of orbital eigenfunctions

� = [
ψα1 ,ψβ1 ,ψα2 ,ψβ2 ,ψα3 ,ψβ3

]T
, (20)

where the indices correspond to the different sublattices (A
or B) of the three layers. When the external potential is
zero, δ = 0, the two blocks in the Hamiltonian correspond
to a superimposed linear spectrum (monolayer like) and a
hyperbolic one (bilayer like) near the Dirac point. Then,
electrons in ABA stacked TLG may propagate through two
different modes, one monolayer-like and the other bilayer-like
mode. The scattering between the two modes is not allowed
as long as the mirror symmetry of the three layers remains
conserved. As for the plasmons in trilayer graphene, one can
envisage that the system in question is composed of monolayer
and bilayer graphene and the dielectric function can then be
written in the 2 × 2 matrix form

ε(q,ω) = det|I2 − v̂(q) · �̂(q)|, (21)

where

vij (q) = 2πe2

q
e−|i−j |qd . (22)

Here d is the interlayer distance d = 3.42 Å, while �11 and
�22 are the polarizability of single and bilayer graphene,
respectively. Here we assume that to leading order there is
no direct coupling between the two modes so that �12 =
�21 = 0. Upon inserting �11(q,ω) = C1q

2/ω2 for single
layer and �22(q,ω) = C2q

2/ω2 for bilayer in Eq. (21), one
can find the plasmon modes by determining the zeros of
the dielectric function ε(q,ω). Here C1 = gdEF /(4πh̄2) and
C2 = 2gdEF /(4πh̄2). This leads to a biquadratic equation with
respect to ω,

ω4 − (C1 + C2)
2πe2q

κ
ω2 + C1C2

2πe2q2

κ
(1 − e−2qd ) = 0.

(23)

However, in practice qd � 1 and exp(−2qd) ≈ 1 − 2qd,
which yields the following expressions for the two plasmon
modes, one optical like

ωop =
√

3e2gdEF

2h̄2κ
q, (24a)

and one acoustical like

ωac =
√

8πe2

κ
d

gdEF

h̄
q. (24b)

The first mode has a square-root dependence on the
wavevector q and the second one is linear in q.
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FIG. 1. The correction to the energy, �E(k), vs. electron mo-
mentum k, in ABC stacked trilayer graphene for three values of
the doping level ne = 3 × 1012 cm−2 (solid curve), 5 × 1012 cm−2

(dashed curve), and 1013 cm−2 (dotted curve).

III. NUMERICAL RESULTS

We will present numerical calculations for doped trilayer
graphene, with varying electron concentration.

A. ABC stacked trilayer graphene

First, we give results for ABC stacked trilayer graphene,
having cubic energy dispersion in the low-energy limit.
Figure 1 shows the results for the energy correction �E(k) for
three values of the electron concentration: ne = 3 × 1012 cm−2

(solid curve), 5 × 1012 cm−2 (dashed curve), and 1013 cm−2

(dotted curve). The value of background dielectric constant
was κs = 3.8 that corresponds to SiO2,32 and this value is
approximately the same for hexagonal boron nitride (h-BN)
substrate.33 As can be seen, the shift increases with the electron
momentum, and this dependence is more pronounced for lower
electron concentrations. The increase with k is more rapid
than in the case of single-layer graphene.34 Note that the
explicit dependence on the concentration is Vq ∝ √

ne similar
monolayer graphene, but the interaction matrix element is also
related to the doping level through the plasmon frequency.
The latter in single-layer graphene is mainly proportional to
n

1/4
e , while in trilayer graphene it has a more complicated

dependence, which depends also on the stacking order. Further,
the effective plasmon frequency is modulated through the
polarization of the surrounding electron gas, which depends
on the density of states. On the other hand, the coupling
parameter is a function of the carrier density rs = f (ne) (while
in single-layer graphene it is independent of ne).

In contrast to the case of polarons in conventional semicon-
ductors, here it is not straightforward to derive any approximate
analytical relation for �E(k) at small k. This is due to the
fact that plasmons here have a more complicated dispersion
relation, and the fact that the interaction strength Vq depends
on q in a nontrivial manner. Thus, we will treat Eq. (17)
numerically and one may write for small k

�E(k) = �E(0) + αk3 + βk6. (25)

We fitted Eq. (25) to our numerical results within the range
0 < k < 0.4 nm−1. For instance, for ne = 3 × 1012 cm−2, the

FIG. 2. Energy band structure of ABC stacked trilayer graphene
for electron concentration ne = 1013 cm−2, and for κs = 3.8. The
dashed curves is for the case of zero electron-plasmon interaction,
i.e., ne = 0.

fitting parameters are α = −1.98 × 10−22 eVcm and β =
−5.86 × 10−42 eVcm2.

Figure 2 shows the energy band structure of ABC stacked
trilayer graphene at electron concentration ne = 1013 cm−2

(EF = 0.35 eV) within the cubic approximation. The dashed
curve corresponds to unperturbed values in the absence of
electron-plasmon interaction.

In Fig. 3 we present the result for the energy correc-
tion �E(0) at k = 0, versus the electron concentration ne

in ABC trilayer graphene. The solid curve corresponds to
trilayer graphene on SiO2 (κs = 3.8), while the dashed curve
corresponds to free-standing graphene (κs = 1). It can be
seen that the absolute value of �E(0) increases with the
electron concentration. This is mainly due to the dependence
of the matrix element Vq on the electron concentration ne

[see Eqs. (13) and (16)]. This relation is complicated since
the plasmon frequency is modified through the polarization of
the electron gas. On the other hand, the values for the case
of free-standing graphene are considerably higher because the
effective dielectric constant is smaller and thus the interaction
matrix element Vq is larger. We found that the obtained
results for the energy shift on the concentration can be fitted

FIG. 3. The correction to the energy �E(0) for k = 0 in ABC
stacked trilayer graphene, vs. the electron concentration ne, for κs =
3.8 (solid curve) and κs = 1 (dashed curve).
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(solid curve) (for 0 < ne < 1013 cm−2) to �E(0) = anα
e /(1 +

bn
γ
e ), where α = 0.55, γ = 0.52 and a = −6.14 × 10−8, b =

6.44 × 10−5, and for the dashed curve α = 0.6, γ = 0.48 and
a = −5.78 × 10−8, b = 2.76 × 10−6 [ne is expressed in cm−2

and �E(0) in eV].

B. ABA stacked trilayer graphene

Next, we consider the case of ABA stacked trilayer
graphene. As has already been mentioned, this kind of stacking
is an arrangement where the sites in the first and the third
layer coincide. Since the spectrum consists of a hyperbolic
and a linear part, we will consider them separately. Figure 4
shows the correction to the energy �E(k) for three values of
the electron concentration ne = 3 × 1012 cm−2 (solid curve),
5 × 1012 cm−2 (dashed curve), and 1013 cm−2 (dotted curve).
The background dielectric constant was taken that of SiO2,
κs = 3.8. The top and the bottom panel correspond to the
hyperbolic and linear part of the energy spectrum, respectively.
The shift is larger for higher electron concentration as expected
and lies in the range 30−150 meV for the hyperbolic part
and 1−5 meV for the linear part of the energy spectrum. The
dispersion is less pronounced than in the case of ABC trilayer

FIG. 4. The correction to the energy, �E(k), vs. electron mo-
mentum k, in ABA stacked trilayer graphene for three values of
the electron concentration ne = 3 × 1012 cm−2 (solid curve), 5 ×
1012 cm−2 (dashed curve), and 1013 cm−2 (dotted curve). Dashed
curves correspond to free-standing graphene. The top (bottom) panel
corresponds to the hyperbolic (linear) part of the energy spectrum.

FIG. 5. Energy band structure of ABA stacked trilayer graphene
for electron concentration ne = 1013 cm−2, and κs = 3.8. Left panel
corresponds to the absence of electron-plasmon interaction, while the
right panel is for the case when electron-plasmon interaction is taken
into account.

graphene, which is the consequence of the different energy
band structure and plasmon dispersion. Note that in the case of
the energy correction to the linear part, the shape of curves have
different convexity than in the first case. The values of �E(k)
in Fig. 4(a) are lower than in the case of bilayer graphene25

for all three electron concentrations. The same holds true for
the linear part of the spectrum, Fig. 4(b), where the values
are considerably lower.34 One of the reasons is that the Fermi
energy is determined by the electron concentration in trilayer
structure as a whole, which is distributed over two bands and
has in general lower values.

Figure 5 shows the energy band structure of ABA stacked
trilayer graphene when the interaction between electrons
and plasmons are taken into account (right panel) and in
the absence of this interaction (left panel). The electron
concentration is taken to be ne = 1013 cm−2 (EF = 0.6 eV). It
consists of two groups of branches one belonging to the linear
part of the spectrum and the second to the hyperbolic part. The
linear part is barely shifted from the unperturbed part, since
the values of the energy shift are of order of several meV [see
Fig. 4(b)].

Then in Fig. 6 we give the correction to the energy at zero
momentum but as a function of the electron concentration.
The top and the bottom panel correspond to the hyperbolic
and linear part of the energy spectrum, respectively. The
solid curves correspond to trilayer graphene on SiO2 substrate
while the dashed curves correspond to free-standing graphene.
The energy correction �E(0) increases with the electron
concentration and exhibits almost a linear dependence for the
hyperbolic part. The values for free-standing graphene are
larger in absolute sense since then the interaction matrix ele-
ment Vq is larger. The value of �E(0) can be fitted (solid curve)
to �E(0) = c1ne + c2n

2
e , where c1 = −1.19 × 10−14 eVcm2

and c2 = −1.99 × 10−28 eVcm4 for the hyperbolic part, while
for the linear part �E(0) = c1ne + c2n

2
e , where c1 = −2.72 ×

10−16 eVcm2 and c2 = −1.38 × 10−29 eVcm4. The dashed
curves can be fitted with the following coefficients: c1 =
−3.27 × 10−14 eVcm2 and c2 = −8.0 × 10−28 eVcm4 (lin-
ear part) and c1 = −7.58 × 10−16 eVcm2 and c2 = −4.19 ×
10−29 eVcm4 (hyperbolic part). Note that values of the energy
shift are smaller than in cases of single monolayer34 and bilayer
graphene,25 since the Fermi energy has lower values as the
electron concentration is distributed over the two bands.
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FIG. 6. The correction to the energy, �E(0), for zero momentum
k = 0 vs. electron concentration ne in ABA stacked trilayer graphene.
Dashed curves correspond to free-standing graphene and the solid
curve to graphene on SiO2. The top (bottom) panel corresponds to
the hyperbolic (linear) part of the energy spectrum.

IV. CONCLUSION

In this work we investigated the interaction between an
electron and plasmons, i.e., the collective excitation of the elec-
tron gas, in trilayer graphene by employing a field-theoretical
approach. We considered both ABC and ABA stacking order,
which differ in both their energy spectrum and their plasmon
dispersion. The motivation behind the present study are the
increased interest in transport and optical properties of trilayer
graphene.4,5 The interaction between electrons and plasmons
is modeled by applying the Overhauser approach20 to the case
of interest. We evaluated the energy correction, that is the
shift in the energy spectrum as a result of this interaction.

Second-order perturbation theory was employed in order to
determine the energy of the plasmaron, which is a bound
state of an electron with a cloud of plasmons and serves as
a composite particle.

First we evaluated the correction to the energy as a result of
the interaction between electron and plasmons, for the cases
with ABC and ABA stacking order. The shift is appreciable
and lies in the range of 150−200 meV for ABC stacked
trilayer graphene. As for ABA stacked trilayer graphene, the
energy correction should be evaluated for the hyperbolic and
linear part of the spectrum and amounts to 30−150 meV and
1−5 meV, respectively, for graphene on SiO2 with its dielectric
constant being κs = 3.8. The shift, of course depends and rises
in absolute value with the electron concentration and electron
wavevector.

Further, we investigated the influence of the doping level
on the shift �E(0), and it is shown that it increases with ne

which is more pronounced than in the case of single layer
graphene.34 The difference with single layer graphene lies
in the actual dependence of the interaction strength Vq on
the electron concentration. The energy correction for ABC
and ABA stacking order (only the hyperbolic part) has the
same order of magnitude as recently calculated for bilayer
graphene.25

At the end we discuss available experimental data related to
the electronic structure of trilayer graphene. To our knowledge,
there exists currently only one experimental investigation35

of the electronic structure of trilayer and bilayer graphene
on Ru(0001) using selected-area angle-resolved photoelectron
spectroscopy (micro-ARPES). However, it was determined
in that work that there is a strong coupling between the
first graphene layer and the adjacent metal (Ru) that disrupts
the graphene bands near the Fermi energy. This perturbation
vanishes rapidly with the addition of subsequent graphene
sheets. Therefore, trilayer graphene on Ru behaves like free-
standing bilayer graphene. Consequently, the experimental
data of Ref. 35 are not related to our results. We hope that
new experimental data will emerge in literature in the near
future, so that one may test and verify the theoretical results
given in this work.
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