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Squeezing light with Majorana fermions
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Coupling a semiconducting nanowire to a microwave cavity provides a powerful means to assess the presence
or absence of isolated Majorana fermions in the nanowire. These exotic bound states can cause a significant cavity
frequency shift but also a strong cavity nonlinearity leading, for instance, to light squeezing. The dependence of
these effects on the nanowire gate voltages gives direct signatures of the unique properties of Majorana fermions,
such as their self-adjoint character and their exponential confinement.
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I. INTRODUCTION

The observation of isolated Majorana fermions in hybrid
nanostructures is one of the major challenges in quantum
electronics. These elusive quasiparticles borrowed from high-
energy physics have the remarkable property of being their
own antiparticle.1 They are expected to appear as zero-energy
localized modes in various types of heterostructures.2 One
promising strategy is to use semiconducting nanowires with a
strong spin-orbit coupling, such as InAs and InSb nanowires,
placed in proximity with a superconductor and biased with a
magnetic field.3,4 Most of the recent experiments proposed and
carried out have focused on electrical transport which appears
as the most natural probe in electronic devices.3–6 While
signatures consistent with the existence of Majorana fermions
have been observed recently,7 it is now widely accepted that
alternative interpretations can explain most of the experimental
findings observed so far.8–14 One has therefore to do more than
the early transport experiments to demonstrate unambiguously
the existence of Majorana particles in condensed matter. Here,
we propose to use the tools of cavity quantum electrodynamics
to perform this task. Photonic cavities, or generally harmonic
oscillators, are extremely sensitive detectors which can be
used to probe fragile light-matter hybrid coherent states,15

nonclassical light, or even possibly gravitational waves.16 We
show here that a photonic cavity can also be used to detect
Majorana fermions and test their unique properties.

Recent technological progress has enabled the fabrication
of nanocircuits based, for instance, on InAs nanowires in-
side coplanar microwave cavities.17–19 On the theory side,
it has been suggested to couple nanowires to cavities to
produce Majorana polaritons20 or build qubit architectures.21

Here, we adopt a different perspective which is the direct
characterization of Majorana bound states (MBSs) through a
photonic cavity. We consider a nanowire with four well-defined
MBSs away from the nanowire topological transition. We
find that these MBSs can be strongly coupled to the cavity
when their spatial extension is large enough. When the four
MBSs are coupled to the cavity, this leads to a transverse
coupling scheme which induces a cavity frequency shift but
also strong nonlinearities in the cavity behavior, such as
light squeezing.22,23 Using electrostatic gates, it is possible
to reach a regime where only two MBSs remain coupled

to the cavity. In this case, the cavity frequency shift and
nonlinearity dissappear. This represents a direct signature of
the particle/antiparticle duality of MBSs. Indeed, the self-
adjoint character of MBSs forces a longitudinal coupling to
the cavity when only two MBSs are coupled to the cavity.
The evolution of the cavity frequency shift and nonlinearity
with the nanowire gate voltages furthermore enables an almost
direct observation of the exponential localization of MBSs.

This paper is organized as follows. In Sec. II, we present
the low-energy Hamiltonian model of the four Majorana
nanowire considered in this paper. In Sec. III, we discuss the
tunnel spectroscopy of this nanowire, through a normal-metal
contact placed close to one of the MBSs. In Sec. IV, we
discuss the coupling between the nanowire and a microwave
cavity. In Sec. V, we discuss the behavior of the microwave
cavity in the dispersive regime where the Majorana system
and the cavity are not resonant. In Sec. VI, we discuss
various simplifications used in our approach. Section VII
concludes. For clarity, we have postponed various technical
details and calculations to appendixes. Appendix A presents
a one-dimensional microscopic description of the nanowire,
used to obtain the parameters occurring in the low-energy
Hamiltonian of Sec. II and the coupling between the nanowire
and the cavity used in Sec. IV. Appendix B gives details
on the calculation of the nanowire conductance. Appendix
C discusses the behavior of the cavity in the classical regime,
i.e., when a large number of photons are present in the cavity.

II. LOW-ENERGY HAMILTONIAN MODEL OF
THE FOUR MAJORANA NANOWIRES

We consider a single-channel nanowire subject to a Zeeman
splitting Ez and an effective gap � induced by a supercon-
ducting contact [Fig. 1(a)]. The nanowire presents a strong
Rashba spin-orbit coupling with a characteristic speed αso.
The chemical potential μ in the nanowire can be tuned locally
by using electrostatic gates. The details of the model are given
in Appendix A. For brevity, in this section, we discuss only
the main features of the model which lead us to the effective
low-energy Hamiltonian used in the main text [Eqs. (1) and
(2)]. We note μc = √

E2
z − �2, the chemical potential below

which the wire is in a topological phase.3,4 The wire has two
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FIG. 1. (Color online) (a) Scheme our our setup. The microwave
cavity is made from the various superconducting contacts in purple.
The nanowire (yellow) is placed between the center and ground
conductors of the cavity. It is tunnel contacted to a grounded
superconducting contact (purple) and capacitively contacted to three
gate electrodes with voltage V0 (blue) and two gate electrodes
with voltage V1 (pink) used to impose chemical potentials μ0 and
μ1 in different sections of the nanowire. A normal-metal contact
(gray) with bias voltage V is tunnel contacted to the nanowire to
perform a conductance spectroscopy. (b) Chemical potential (left
axis) and schematic quasiparticle density probability (right axis)
in the nanowire versus coordinate z. Four MBSs appear at the
boundaries between the topological (μ = μ1) and nontopological
(μ = μ0) sections of the nanowire. In a finite length system, the
MBS wave functions overlap.

topological regions μ = μ1 < μc with length LT surrounded
by three nontopological regions μ = μ0 > μc, with LNT the
length of the central nontopological region [Fig. 1(b)]. MBSs
appear in the nanowire at the interfaces between topological
and nontopological phases, for coordinates z � zi with i ∈
{1,2,3,4}, z1 = 0, z2 = LT , z3 = LT + LNT, and z4 = LNT +
2LT . In the topological phases, the wave function correspond-
ing to MBS i decays exponentially away from z = zi with
the characteristic vector km(μ1) = (� −

√
E2

z − μ2
1)/h̄αso <

0 (see Appendix A for details). In the nontopological phases,
the decay of the MBSs is set by the two characteristic vectors
kp/m(μ0) = (� ±

√
E2

z − μ2
0)/h̄αso > 0. The difference in the

number of characteristic vectors from the topological to the
nontopological phases is fundamentally related to the existence
of the topological phase transition in the nanowire. Away
from the topological transition, one can introduce a Majorana
fermionic operator γi such that γ †

i = γi and γ 2
i = 1

2 to describe
MBS i.

In a real system, due to the finite values of LT and LNT,
the different MBSs overlap. The resulting coupling can be
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FIG. 2. (Color online) (a) Conductance GN between the normal-
metal contact and the ground versus the bias voltage V and the
chemical potential μ1. (b) Coupling energies ε and ε̃ (full and
dotted black lines), transverse coupling γ t

e (pink dashed line),
dispersive shift χ of the cavity frequency (blue line with open
circles), and Kerr nonlinearity K (red line with full circles) ver-
sus μ1. In this figure, we have used � = 500 μeV, Ez/� = 2,
μ0/� = 1.9, αso ∼ 8.104 m s−1, LT = LNT = 1000 nm, αcVrms =
4 μV, ωcav/2π = 8GHz, 	 = 2 μeV, T = 10 mK, and Gk = e2/h.
The topological transition is located well outside the μ1 range
considered here since μc/� = 1.73.

described with the low-energy Hamiltonian

Hwire = 2iε(γ1γ2 + γ3γ4) + 2iε̃γ2γ3 (1)

with ε � λεe
km(μ1)LT and ε̃ � λε̃e

−km(μ0)LNT . Note that ε and ε̃

are purely real because the Majorana operators are self-adjoint
and H must be Hermitian. The coefficients λε and λε̃ depend
on μ0, μ1, Ez, and � (see Appendix A 5). Importantly, the
coupling energies ε and ε̃ depend exponentially on LT and
LNT, as a direct consequence from the exponentially localized
nature of MBSs. Furthermore, the vectors km(μ1) and km(μ0)
vanish for μ1 = μc and μ0 = μc, respectively, or in other
terms the spatial extension of the MBSs increases when one
approaches the topological transition. In this limit, large values
of ε and ε̃ can be obtained. However, it should be noted that
the use of Eq. (1) is justified provided the nanowire is operated
far enough from the topological transition. We have checked
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FIG. 3. (Color online) Schematic representation of the current
flow in the nanocircuit depending on the value of μ1. Panel (a)
corresponds to μ0 and μ1 close to μc so that ε and ε̃ are finite and the
four MBSs are coupled together. In this regime, the current flows from
the superconducting contact (purple) to the normal-metal contact
(gray) through the four Majorana bound states. Panel (b) corresponds
to a value of μ1 far below μc so that the coupling ε between MBS
1 and other MBSs vanishes. In this case, the current flows from the
superconducting contact to the normal-metal contact through MBS 1
only.

that this is the case for the parameters used in Figs. 2 and 5.
This point will be discussed in more details in Sec. VI.

III. TUNNEL SPECTROSCOPY OF THE NANOWIRE

The simplest idea to probe MBSs is to perform a tunnel
spectroscopy of the nanowire by placing a normal-metal
contact biased with a voltage V on the nanowire, close to
MBS 1, for instance [Fig. 1(a)]. A current can flow between
the normal-metal contact and the ground, through the MBSs,
and the grounded superconducting contact shown in Fig. 1(a),
which is tunnel coupled to the nanowire. To describe the main
properties of the conductance GN between the normal-metal
contact and the ground, it is sufficient to assume an energy-
independent tunnel rate 	 between MBS 1 and the contact.
The details of the calculation are presented in Appendix B.
Figure 2(a) shows GN as a function of μ1 and V , for realistic
parameters (see legend of Fig. 2). For μ0 and μ1 relatively
close to μc, ε and ε̃ can be comparable or larger than 	 and
the temperature scale kBT . Hence, four conductance peaks
appear at voltages corresponding to the eigenenergies (±h̄ωe ±
h̄ωo)/2 of Hwire, with h̄ωe = 2

√
4ε2 + ε̃2 and h̄ωo = 2̃ε. In this

regime, the current flows through the four MBSs which are
coupled together, as represented in Fig. 3(a). As μ1 decreases,
the coupling between MBS 1 and the other MBSs disappear
(ε → 0), so that there remains only a zero-energy conductance
peak which is due to transport through MBS 1, as represented
in Fig. 3(b). Similar features can be caused by other effects
such as weak antilocalization, Andreev resonances, or a Kondo
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FIG. 4. (Color online) Schematic representation of the coupling
mechanism between MBSs and cavity photons. (a) When μ0 and
μ1 are close to the critical potential μc, cavity photons modify
the coupling between all consecutive MBSs. This yields a coupling
between the nanowire and the cavity with a transverse component in
the MBSs even charge sector, represented here on a Bloch sphere.
(b) When μ1 is far below μc, only MBSs 2 and 3 remain coupled by
cavity photons. In this case, one can only have a longitudinal coupling
in the nanowire even charge sector, as a direct consequence of the
self-adjoint character of Majorana fermion operators.

effect.8–13 It is therefore important to search for other ways
to probe MBSs more specifically. We show in the following
that coupling the nanowire to a photonic cavity can give
direct signatures of the self-adjoint character of MBSs and
their exponential confinement. In the rest of the paper, we
omit the explicit description of the normal-metal contact. The
Majorana system could be affected by decoherence, due to
the normal-metal contact or background charge fluctuators
in the vicinity of the nanowire, for instance. However, the
detection scheme we present below is to a great extent immune
to decoherence because it leaves the Majorana system in its
ground state (we use h̄ωe/o � kBT ).

IV. COUPLING BETWEEN THE NANOWIRE AND A
MICROWAVE CAVITY

We assume that the nanowire is placed between the
center and ground conductors of a coplanar waveguide
cavity [Fig. 1(a)]. We take into account a single mode of
the cavity, corresponding to a photon creation operator a†.
There exists a capacitive coupling between the nanowire and
the cavity, which is currently observed in experiments.17–19

More precisely, the nanowire chemical potential is shifted by
μac = eαcVrms(a + a†), with Vrms the rms value of the cavity
vacuum voltage fluctuations and αc a capacitive ratio. This
leads to the system Hamiltonian

H = Hwire + hint(a + a†) + h̄ωcava
†a (2)

with hint = 2iβ(γ1γ2 + γ3γ4) + 2iβ̃γ2γ3, β � λβ(LT /lc)ε,
β̃ � λβ̃(LNT/lc )̃ε, and lc = h̄αso/eαcVrms. Note that β and

β̃ are purely real, due again to γ
†
i = γi . The coefficients

λβ and λβ̃ depend on μ0(1) and Ez (see Appendix A 5).
The term in hint is caused by the potential shift μac. Due
to hint, cavity photons modify the coupling between MBSs,
as represented schematically in Fig. 4. Remarkably, hint has
a form similar to Hwire, with coefficients β and β̃ containing
the same exponential dependence on LT and LNT as ε and ε̃,
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because μac is spatially constant along the nanowire. Hence,
the amplitude of hint directly depends on the MBSs exponential
overlaps.

One can reveal important properties of MBSs by varying
μ1, with μ0 constant. Let us assume that μ0 is relatively close to
μc so that ε̃ and β̃ can be considered as finite. When μ1 is also
close to μc, ε and β are finite, and in general βε̃ �= β̃ε, so that
hint and Hwire are not proportional. This enables the existence
of a transverse coupling between the Majorana system and
the cavity, i.e., the cavity photons can induce changes in the
state of the Majorana system, as we will see in more details
below. In contrast, for μ1 far below μc, ε and β vanish because
MBSs are strongly localized in the topological phases. This
means that MBSs 2 and 3 remain coupled together and they are
also coupled to the cavity, but MBSs 1 and 4 become isolated
and thus irrelevant for the cavity [Fig. 4(b)]. In this limit, H

takes the form of the Hamiltonian of a single pair of coupled
Majorana fermions, i.e.,

H ′ � 2iε̃γ2γ3 + 2iβ̃γ2γ3(a + a†). (3)

Note that the eigenvalues of H ′ have a twofold degeneracy due
to the existence of the isolated MBSs 1 and 4. Both terms in
the Hamiltonian (3) have the same structure or, in other terms,
hint and Hwire are proportional, due to constraints imposed
by the self-adjoint character of Majorana fermions. Indeed,
a quadratic Hamiltonian involving only MBSs 2 and 3 must
necessarily be proportional to iγ2γ3 since the terms γ

†
2 γ2 and

γ
†
3 γ3 are proportional to the identity and therefore inoperant

for self-adjoint fermions. As a result, the coupling between the
cavity and the Majorana system becomes purely longitudinal,
as discussed in more details below.

To discuss more precisely the structure of the coupling
between the nanowire and the cavity, it is convenient to
reexpress H in terms of ordinary fermionic operators. One
possibility is to use the two fermions c

†
L = (γ1 − iγ2)/

√
2

and c
†
R = (γ3 − iγ4)/

√
2. A second possibility is to use c

†
m =

(γ2 − iγ3)/
√

2 and c
†
e = (γ1 − iγ4)/

√
2. Depending on the

cases, it is more convenient to use the first or the second
possibility. We also define the occupation numbers nf = c

†
f cf ,

for f ∈ {L,R,e,m}. In the discussion following, we recover
the fact that in a closed system made of several Majorana
bound states, the parity of the total number of fermions
is conserved.2 Note that in our system, the total fermions
numbers Ntot = nL + nR or N ′

tot = ne + nm are not equivalent
since they do not commute, but their parity P = −4γ1γ2γ3γ4

is the same.
For μ1 far below μc, it is convenient to use the basis of the

fermions e and m to reexpress the Hamiltonian as

H ′ = [̃ε + β̃(a + a†)](2nm − 1) + h̄ωcava
†a. (4)

One can note that c
†
e and ce do not occur in H ′, therefore, the

e fermionic degree of freedom can be disregarded. Moreover,
one has [H,nm] = 0, which means that the number of fermions
of type m (or equivalently the parity of nm) is a conserved
quantity, as expected for an (effective) system of two Majorana
bound states. Hence, the coupling to the cavity can not change
nm or, in other terms, it can not affect the state of the Majorana
fermions. This means that in this limit, the coupling between

the nanowire and the cavity can only be longitudinal as already
mentioned above.

When μ0 and μ1 are both close enough to μc, it is
more convenient to use the basis of fermions L and R. We
define (0,0) = |0〉, (1,0) = c

†
L |0〉, (0,1) = c

†
R |0〉, and (1,1) =

c
†
Lc

†
R |0〉. Since ε, β, ε̃, and β̃ are finite, we have a fully effective

four-Majorana system whose Hamiltonian writes

H = 2(ε + β(a + a†))(nL + nR − 1)

+ (̃ε + β̃(a + a†))(c†LcR − cLc
†
R + c

†
Lc

†
R − cLcR)

+ h̄ωcava
†a. (5)

One can check from this equation that the parity of Ntot =
nL + nR is conserved as expected. However, since we have
now two fermionic degrees of freedom fully involved in the
Hamiltonian, we have to consider the two parity subspaces
Ee = {(0,0),(1,1)} and Eo = {(0,1),(1,0)}, each with a dimen-
sion 2. The conservation of the total fermion parity forbids
transitions between Ee and Eo, as can be checked from the
structure of Eq. (5). However, nothing forbids the cavity to
induce transitions inside each of the parity subspaces, as shown
by the structure of the term in β̃. Therefore, when the four
Majorana states are effective, a transverse coupling between
the nanowire and the cavity is possible.

To push further our analysis, it is convenient to intro-
duce effective spin operators −→σ e = {σe,X,σe,Z} and −→σ o =
{σo,X,σo,Z} operating in the subspaces Ee and Eo, re-
spectively, i.e., σe,z = 1 − c

†
LcL − c

†
RcR , σe,x = c

†
Lc

†
R − cLcR ,

σo,z = c
†
LcL − c

†
RcR , and σo,x = (c†LcR − cLc

†
R). For conve-

nience, we rotate the spin operators as σ̃e,z = (−2εσe,z −
ε̃σe,x)/

√
4ε2 + ε̃2, σ̃e,x = (−ε̃σe,z + 2εσe,x)/

√
4ε2 + ε̃2, and

σ̃o,z = −σo,x . We finally obtain

Hwire = (h̄ωeσ̃e,z + h̄ωoσ̃o,z)/2 (6)

and

hint = γ t
e σ̃e,x + γ l

e σ̃e,z + γ l
oσ̃o,z (7)

with

γ l
o = β̃, (8)

γ l
e = (4βε + β̃ε̃)/

√
4ε2 + ε̃2, (9)

and

γ t
e = 2(βε̃ − β̃ε)(

√
4ε2 + ε̃2 − 2ε)√

32ε4 + 12ε 2̃ε2 + ε̃4 − 4ε(4ε2 + ε̃2)3/2
. (10)

These expressions show that the cavity couples longitudinally
to the odd charge sector, whereas the coupling to the even
charge sector can have a transverse component γ t

e because
βε̃ �= β̃ε in general [Fig. 4(a)]. The absence of transverse
coupling in the odd charge sector is a consequence of the
particular symmetries that we have assumed in our system, as
will be discussed in Sec. VI. For μ1 far below μc, ε and β

vanish, thus H ′ � ∑
j∈{e,o}Hj with

Hj = h̄ωj

2
σ̃j,z + γ l

j (a + a†)σ̃j,z. (11)

Both terms in the expression (11) have the same structure in the
effective spin space. Thus, we recover again the fact that the

195415-4



SQUEEZING LIGHT WITH MAJORANA FERMIONS PHYSICAL REVIEW B 88, 195415 (2013)

coupling between the Majorana system and the cavity becomes
purely longitudinal for μ1 far below μc. The cancellation of
the transverse coupling between the nanowire and the cavity
is fundamentally related to the self-adjoint character of MBSs
which imposes the forms (3), or equivalently (4) or (11) in the
case of a two-Majorana system.

In conclusion, one can reveal important properties of MBSs
by varying μ1, with μ0 constant. The vanishing of γ t

e for μ1 far
below μc in spite of the fact that ε̃ and β̃ remain finite represents
a strong signature of the self-adjoint character of MBSs. In
addition, probing the dependence of γ t

e on μ1 could reveal
the exponential confinement of MBSs since for μ1 sufficiently
below μc, γ t

e � 4(βε̃ − β̃ε)/̃ε scales with ekm(μ1)LT . Also, note
that, in principle, for μ0 and μ1 close enough to μc, γ t

e can be
large due to the large spatial extension of MBSs [see Fig. 2(b)].
To test these properties, it is important to have an experimental
access to γ t

e . We show in the following that this is feasible due
to the strong effects of γ t

e on the cavity dynamics.

V. BEHAVIOR OF THE MICROWAVE CAVITY IN THE
DISPERSIVE REGIME

In the dispersive (i.e., nonresonant) regime, the transverse
coupling γ t

e between the effective spin −→̃
σ e and the cavity

allows for fast high-order processes in which the population
of the effective spin is changed virtually. This effect can be
described by using an adiabatic elimination followed by a
projection on the nanowire ground state.24 This yields an
effective cavity Hamiltonian

Hadiab = h̄ωcava
†a + χa†a + K(a†)2a2 + o

(
γ 6

e

)
(12)

with ωcav the cavity frequency,

χ = (
2
(
γ t

e

)2
ωe/

(
ω2

cav − ω2
e

)) + o
(
γ 4

e

)
, (13)

K = d−1(γ t
e

)2(
γ l

e

)2
ωe

(
8ω4

cav + 20ω4
e − 28ω2

eω
2
cav

)
+ d−1

(
γ t

e

)4
ωe

(
8ω4

cav − 6ω4
e + 22ω2

eω
2
cav

) + o
(
γ 6

e

)
,

(14)

and d = (ω2
e − ω2

cav)3(4ω2
cav − ω2

e ). The transverse coupling
γ t

e causes a cavity frequency shift χ and a nonlinear term
proportional to K , similar to the Kerr term widely used in
nonlinear optics. Figure 2(b) illustrates that ε, γ t

e , χ , and K

quickly vanish when μ1 goes far below μc. In this limit, χ

and K both scale with (γ t
e )2 because due to γ t

e � γ l
e ∼ β̃, the

first contribution in Eq. (14) dominates K . For the realistic
parameters used in this figure, χ varies from about 14 to
9 × 10−4 MHz. In practice, χ can be measured
straightforwardly by measuring the response of the cavity
to an input signal with a small power, for values down
to −10−3 MHz at least. The upper value χ � 14 MHz is
comparable to what has been obtained with strongly coherent
two-level systems slightly off resonant with a microwave
cavity.25 Having a significant Kerr nonlinearity is more specific
to the ultrastrong spin/cavity coupling regime, which we obtain
in our system because MBSs have a large spatial extension near
the topological transition. In Fig. 2(b), the Kerr constant K

varies from −0.31 to −10−6 MHz. The value K = −0.31 MHz
is comparable to nonlinearities obtained recently with
microwave resonators coupled to Josephson junctions.22,23

However, it is important to notice that our χ and K terms have
an approximate exponential dependence on μ1 due to the factor
ekm(μ1)LT appearing in γ t

e , which is very specific to MBSs.
Figure 5 illustrates how to measure K by probing the

response of the cavity to an input microwave signal. We note
γin/out the photonic coupling rate between the input/output
port and the cavity, and γ the total decoherence rate of
cavity photons. If K is small, it can be revealed by applying
to the cavity a steady signal which drives the resonator
into a semiclassical regime22 (see details in Appendix C).
The semiclassical response of the cavity to a forward and
backward sweep of ωRF becomes hysteretic for a critical
power P c

in = 4γp0
in/3

√
3 |K| which can be used to determine

|K|, with p0
in = h̄ωcavγ

2/2γin the single-photon input power26

[Fig. 5(a)]. Such a technique should allow one to observe
MBSs relatively far from the topological transition, by using a
high-input power which compensates for the smallness of K .
For the measurement of χ , one does not benefit from such an
advantage, hence, we believe that the measurement of K can
enable one to follow the behavior of MBSs on a wider range of
μ1. For the highest values of K , the classically defined critical
power P c

in is so small that the resonator is still in a quantum
regime at this power. In this case, one can directly observe
the cavity nonlinearity with a low-input power by performing
a tomographic measurement of the cavity Husimi Q function
Q(α) = Tr[ρcav(t) |α〉 〈α|] at a time �t after switching off
the input bias23 [Fig. 5(b)]. Here, ρcav(t) is the cavity
density matrix, |α〉 = e−|α|2/2∑

nα
n |n〉 /

√
n! denotes a cavity

coherent state, and |n〉 a cavity Fock state with n photons.
The K term can produce a strong photon amplitude squeezing
which can be calculated for h̄ωcav � kBT following Ref. 27 .

VI. DISCUSSION

Before concluding, we discuss various simplifications used
in the description of our results. First, we find that the nanowire
odd charge sector does not have a transverse coupling to the
cavity due to the symmetry between the two sections of the
nanowire separating MBSs 1 and 2 and separating MBSs 3
and 4. If these sections had different lengths or parameters,
a coupling to the odd charge sector would be possible, but
we expect qualitatively similar results in this case because
in the limit of μ1 far below μc, the self-adjoint character of
Majorana operators still imposes a system Hamiltonian of the
form (3) or, equivalently, (4) or (11), and the coupling between
MBSs 1 and 2 (3 and 4) should still depend exponentially on
LT . Second, with our nanowire model, a topological transition
also occurs for μ = −μc. Therefore, upon decreasing μ, the
absolute values of ε, β, γ t

e , χ , and K reach minima for μ ∼ 0,
and increase again when μ1 approaches −μc. We have not
discussed this limit because it gives results similar to μ → μc.

Note that the use of the low-energy Hamiltonian descrip-
tion, i.e., Eqs. (1) and (2), is justified provided the nanowire
is operated far enough from the topological transition. This is
essential to have large enough nanowire band gaps. These band
gaps can be defined as E

1(0)
b = {2�2 + μ2

1(0) + μ2
c − 2[(�2 +

μ2
1(0))(�

2 + μ2
c)]1/2}1/2 in the topological (nontopological)

sections of the nanowire. With the parameters range considered
in Figs. 2 and 4, one has E

1(0)
b > 35.6 GHz. In comparison,
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FIG. 5. (Color online) (a) Diagram of the cavity behavior de-
pending on the steady power Pin applied to its input port and the
nanowire potential μ1. For Pin > P crit

in , the behavior of the cavity
becomes hysteretic. Inset: modulus tcav of the cavity transmission
for a forward and backward sweep of ωRF, for Pin = P crit

in /4 (blue
dotted lines), Pin = P crit

in (full red lines), and Pin = 4P crit
in (green

dashed lines). (b) Cavity Husimi function Q(α) at points A, B, and
C of Fig. 4(a), at a time �t = 175 ns after switching off an input
power imposing a coherent cavity state |i〉. We have used the same
parameters as in Fig. 2, ρ = γ /2

√
γinγout and Qcav = h̄ωcav/2πγ =

10 000.

our hybridized Majorana bound states lie at frequencies
±ωe/2 ± ωo/2 which lie in the interval [−2.4 GHz, 2.4 GHz].
Therefore, these bound states are well separated from the
continuum of states which exists above the nanowire gaps.
With a typical cavity (ωcav = 8 GHz), it is thus not possible
to excite quasiparticle above these gaps. Operating the device
away from the topological transition also grants that possible
fluctuations of the nanowire potentials due to charge fluctuators
in the environment of the nanowire will not be harmful. For
the range of parameters considered in Figs. 2 and 4, one has
|μ0(1) − μc| > 84 μeV > eVch, with Vch � 10 μV the typical
amplitude for charge noise in semiconducting nanowires (see
Ref. 19). Charge noise is a low-frequency effect which should
mainly smooth the measured χ and K if one stays away from
the topological transition. This effect should not be dramatic
since we expect the exponential variation of χ and K to occur
on a wide μ1 potential scale.

In more sophisticated models including disorder or several
channels, the occurrence of MBSs can be more complex (see,
e.g., Refs. 9, 10, and 28–30). Our setup precisely aims at testing
whether their exists regimes where the four-MBSs low-energy
description of Eqs. (1) and (2) remains valid. In this limit,
our findings are very robust since they only rely on the fact
that MBSs have a self-adjoint character and a gate-controlled
spatial extension. Interestingly, a double-quantum dot (DQD)
can also be coupled transversely to a microwave cavity,31

which leads to a cavity frequency shift, as confirmed by
recent experiments.18,19 When the double dot and the cavity
are coupled dispersively, and the two dot orbitals resonant,
the cavity frequency shift and the DQD conductance are
maximal. However, when the DQD orbital energies or interdot
hopping are varied to decrease the cavity frequency shift, this
also switches off the DQD conductance. In contrast, for the
system we consider here, the low-energy conductance peak
will persist in spite of the decrease of χ and K . Hence, it
can be useful to measure simultaneously the cavity response
and the nanosystem conductance to discard spurious effects
due to accidental quantum dots. Note that this does not make
our proposal more difficult to realize experimentally. Such
joint measurements are currently performed in experiments
combining nanocircuits and coplanar microwave cavities.
This is a recent but mature technology as can been seen in
Refs. 17–19.

VII. CONCLUSION

In conclusion, we have considered a semiconducting
nanowire device hosting four MBSs coupled to a microwave
cavity. This system shows a cavity frequency shift and a Kerr
photonic nonlinearity when the nanowire is close enough to
the topological transition. These effects disappear when the
nanowire gates are tuned such that only two MBSs remain
coupled to the cavity, due to the self-adjoint character of MBSs
which imposes strong constraints on the cavity/nanowire cou-
pling. Meanwhile, the low-energy conductance peak caused
by the MBSs persists, a behavior which should be difficult to
mimic with other systems. The gate dependencies of the cavity
frequency shift and of the Kerr nonlinearity should furthermore
reveal the exponential confinement of MBSs.
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APPENDIX A: ONE-DIMENSIONAL MICROSCOPIC
DESCRIPTION OF THE SEMICONDUCTING NANOWIRE

1. Initial one-dimensional Hamiltonian for the
semiconducting nanowire

We describe the electronic dynamics in the nanowire with
an effective one-dimensional Hamiltonian

H1D = ∫
dz[ �

†
↑(z) �

†
↓(z) ]H1D

[
�↑(z)
�↓(z)

]
(A1)

with

H1D(z) = − h̄2

2m

∂2

∂z2
+ Ezσz − μ(z) − μac

− ih̄(αxσy − αyσx)
∂

∂z
. (A2)

Here, �†
σ (z) creates an electron with spin σ at coordinate z. An

external magnetic field induces a Zeeman splitting Ez in the
nanowire. The chemical potential μ(z) can be controlled by
using electrostatic gates. The constants αx and αy account for
Rashba spin-orbit interactions corresponding to an effective
electric field which we express here in terms of a velocity
vector −→αso = αx

−→ux + αy
−→uy . The vector −→αso is expected to be

perpendicular to the nanowire.32 Such a model is suitable
provided the description of the nanowire can be reduced to the
lowest transverse channel.33 We describe the coupling between
the nanowire and the cavity by using a potential term

μac = eαcVrms(a + a†) (A3)

with Vrms the rms value of the cavity vacuum voltage
fluctuations and αc a dimensionless constant which depends on
the values of the different capacitances in the circuit. This type
of coupling between a nanoconductor and a cavity has been
observed experimentally.17–19 In recent experiments, αc ∼ 0.3
has been measured.17 Optimization of the microwave designs
could be used to increase this value.

2. Bogoliubov–de Gennes equations for the nanowire

One can describe the superconducting proximity effect
inside the nanowire by using

HBCS = H1D +
∫

dz[��
†
↑(z)�†

↓(z) + �∗�↓(z)�↑(z)]

(A4)

with � a proximity-induced gap. We perform a Bogoliubov–de
Gennes transformation

γ †
n =

∫
dz′[u↑(z′)�†

↑(z′) + u↓(z′)�†
↓(z′)

+ v↑(z′)�↑(z′) + v↓(z′)�↓(z′)] (A5)

such that HBCS = ∑
n Enγ

†
n γn. The coefficients u↑, u↓, v↑,

and v↓ can be obtained by solving

heff(z)

⎡⎢⎣u↑
u↓
v↓
−v↑

⎤⎥⎦ = En

⎡⎢⎣u↑
u↓
v↓
−v↑

⎤⎥⎦ (A6)

with

heff(z) =
[
H1D(z) �σ0

�∗σ0 −σyH
∗
1D(z)σy

]
. (A7)

Using the above expression of H1D(z), one gets

heff(z) = hW (z) + hC(z) (A8)

with

hW (z) =
(

p2
z

2m
− μ(z) + pz(αxσy − αyσx)

)
τz

−�τx + Ezσz (A9)

and

hC(z) = −μacτz. (A10)

In the following, we disregard the term in p2
z/2m because we

look for solutions with a low pz.

3. Expressing hW (z) in a purely imaginary basis

We define

αx = αso cos(θso), (A11)

αy = αso sin(θso). (A12)

In the following, we work at first order in pz because we are
only interested in the low-energy eigenstates of heff(z). It is
convenient to express heff (z) in a basis of self-adjoint operators.
For this purpose, we define

R =

⎡⎢⎢⎢⎢⎢⎣
− i√

2
e− iθso

2
1√
2
e− iθso

2 0 0

0 0 1√
2
e

iθso
2 − i√

2
e

iθso
2

0 0 1√
2
e− iθso

2
i√
2
e− iθso

2

− i√
2
e

iθso
2 − 1√

2
e

iθso
2 0 0

⎤⎥⎥⎥⎥⎥⎦ .

(A13)

One can check

h̃W (z) = R−1hW (z)R

= μ(z)σyτz − ih̄αsoτxσz

∂

∂z
− Ezσy + �τy, (A14)

h̃C(z) = R−1hC(z)R = −eαcVrmsτzσy(a + a†). (A15)

Since h̃∗
W (z) = −h̃W (z), it is possible to impose to all the

zero-energy eigenvectors

φ̃(z) = [ua(z),ub(z),uc(z),ud (z)]t (A16)

of h̃W to be real. These eigenvectors correspond to operators

γ †
n =

∫
dz′[ua(z′)γa(z′) + ub(z′)γb(z′)

+uc(z′)γc(z′) + ud (z′)γd (z′)] (A17)
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with

γa(z) = − i√
2
e− iθso

2 ψ
†
↑(z) + i√

2
e+ iθso

2 ψ↑(z) = γ †
a (z),

γb(z) = 1√
2
e− iθso

2 ψ
†
↑(z) + 1√

2
e+ iθso

2 ψ↑(z) = γ
†
b (z),

γc(z) = 1√
2
e

iθso
2 ψ

†
↓(z) + 1√

2
e− iθso

2 ψ↓(z) = γ †
c (z),

γd (z) = − i√
2
e

iθso
2 ψ

†
↓(z) + i√

2
e− iθso

2 ψ↓(z) = γ
†
d (z).

With this representation, one can easily check that a zero-
energy normalized eigenvector of h̃W (z) corresponds to a
Majorana bound state (MBS) γ

†
n = γn with γ 2

n = 1
2 .

4. Eigenstates of ˜hW (z)

a. Uniform case

In the case of a spatially constant μ, assuming |μ| <

Ez, the zero-energy eigenstates of h̃W (z) are V +
km

exp(kmz),
V −

km
exp(−kmz), V +

kp
exp(kpz), and V −

kp
exp(−kpz) with

km(μ) = � − √
E2

z − μ2

h̄αso
, (A18)

kp(μ) = � + √
E2

z − μ2

h̄αso
, (A19)

V +
m (μ) = [− cos φ(μ),0,0, sin φ(μ)]t , (A20)

V −
m (μ) = [0, cos φ(μ), sin φ(μ),0]t , (A21)

V +
p (μ) = [cos φ(μ),0,0, sin φ(μ)]t , (A22)

V −
p (μ) = [0, − cos φ(μ), sin φ(μ),0]t (A23)

and

φ(μ) = arctan

(√
Ez − μ

Ez + μ

)
. (A24)

Note that in order to find the above solutions, we have assumed
that the term in p2

z/2m is smaller than the other terms of the
Hamiltonian (A9). This is valid provided

2mα2
so � (� − √

E2
z − μ2)2

min(μ,Ez,�,� − √
E2

z − μ2)
(A25)

and

2mα2
so � (� + √

E2
z − μ2)2

min(μ,Ez,�)
. (A26)

This criterion is largely satisfied in our work considering that
the scale 2mα2

so is typically huge (∼40 meV) in comparison
with � and Ez (∼500 μeV).

b. Nonuniform case, disregarding finite-size effects

In the main text, we study a nanowire with topological
(μ = μ1 < μc) and nontopological (μ = μ0 > μc) regions,
with μc = √

E2
z − �2 the chemical potential at which the bulk

topological transition occurs. We consider the μ(z) profile of
the main text [Fig. 1(b)]. For LT → +∞ and LNT → +∞,
one has four MBSs appearing at z = 0, LT , LT + LNT,

2LT + LNT, with corresponding eigenfunctions φ̃i(z) such
that h̃W (z)φ̃i(z) = 0, with i ∈ {1,2,3,4}. These four states
correspond to the Majorana operators γ1, γ2, γ3, and γ4 of
the main text. One can check, for MBS 1,

φ̃1(z < 0) = N
2

�+V +
m (μ0) exp[km(μ0)z]

+ N
2

�−V +
p (μ0) exp[kp(μ0)z], (A27)

φ̃1(z > 0) = NV +
m (μ1) exp[(km(μ1)z], (A28)

and for MBS 2,

φ̃2(z < LT ) = NV −
m (μ1) exp[−km(μ1)(z − LT )], (A29)

φ̃2(z > LT ) = N
2

�+V −
m (μ0) exp[−km(μ0)(z − LT )]

+ N
2

�−V −
p (μ0) exp[−kp(μ0)(z − LT )].

(A30)

The vectors V ±
p (μ1) do not occur in these solutions because

their symmetry is not compatible with the solutions in the
nontopological phase (assuming we keep only normalizable
solutions).3,4,34 Similarly, one has, for MBS 3,

φ̃3(z) = φ̃1(z − LT − LNT) (A31)

and for MBS 4,

φ̃4(z) = φ̃2(z − LT − LNT). (A32)

We have used above

�± = sin φ(μ1)

sin φ(μ0)
± cos φ(μ1)

cos φ(μ0)
(A33)

and the normalization factor

N =

√√√√√√2�
(
�2 + μ2

0 − E2
z

) (√
E2

z − μ2
1 − �

)
h̄αso(μ0 − μ1)

(
�μ1 + μ0

√
E2

z − μ2
1

) . (A34)

5. Coupling between Majorana bound states
for finite LT and LNT

For finite values of LT and LNT, we have to take into
account a dc coupling αij = ∫

φ̃i(z)̃hW (z)φ̃j (z) between ad-
jacent MBSs i and j . We disregard the coupling between
nonadjacent bound states which is expected to be weaker. We
use a perturbation approach to calculate αij , similar to Ref. 35.
We obtain the Hamiltonian Hwire of the main text, with ε and
ε̃ real constants given by α12 = α34 = iε and α23 = iε̃. One
can check ε � λεe

km(μ1)LT and ε̃ � λε̃e
−km(μ0)LNT with

λε = 2ζ

√
E2

z − μ2
1, (A35)

λε̃ = ζ
[√(

E2
z − μ2

1

) + ((
E2

z − μ0μ1
)/√

E2
z − μ2

0

)]
,

(A36)

and

ζ = �
(
μ2

0 − μ2
c

)(
μ2

1 − μ2
c

)/[
Ez

(
μ1 − μ0

)
ϑ

]
(A37)
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with

ϑ = E2
zμ0 + μ1�

2 − μ0μ
2
1 + �(μ0 + μ1)

√
E2

z − μ2
1.

(A38)

The expression of ε̃ has been approximated using

exp
[−2LNT

√
E2

z − μ2
0

)/
h̄αZ

] � 1. (A39)

Cavity photons couple to MBSs due to h̃C(z) defined in
Eq. (A15). Again, it is sufficient to consider the coupling
between consecutive MBSs. The constants β and β̃ of the
main text correspond to β(a + a†) = ∫

φ̃1(z)̃hC(z)φ̃2(z) and
β̃(a + a†) = ∫

φ̃2(z)̃hC(z)φ̃3(z). Using (A39), one finds the
Hamiltonian hint of the main text with

β � λβ

LT

lc
ε, (A40)

β̃ �
(

γβ̃

eVrms

μ0
+ λβ̃

LNT

lc

)
ε̃, (A41)

λβ = μ1√
E2

z − μ2
1

, (A42)

γβ̃ = E2
zμ0(μ1 − μ0)(

E2
z − μ2

0

)[
E2

z − μ0μ1 +
√(

E2
z − μ2

0

)(
E2

z − μ2
1

)] ,

(A43)

λβ̃ =
μ0

((
E2

z − μ2
0

)√
E2

z − μ2
1 + (

E2
z − μ0μ1

)√
E2

z − μ2
0

))
(
E2

z − μ2
0

)[
E2

z − μ0μ1 +
√(

E2
z − μ2

0

)(
E2

z − μ2
1

)] .

(A44)

For the realistic parameters we consider, the dimensionless
parameters λβ , γβ̃ , and λβ̃ are of the order of 1 while
eVrms/μ0 � LNT/lc. This leads to

β̃ � λβ̃

LNT

lc
ε̃. (A45)

APPENDIX B: CONDUCTANCE OF
THE MAJORANA NANOWIRE

The ensemble of the nanowire and the normal-metal contact
connected to MBS 1 can be described by a Hamiltonian
Hwire + HN with5

HN =
∑

p

εpc†pcp + t(c†p − cp)γ1. (B1)

For simplicity, we assume that the coupling element t between
MBS 1 and the contact is energy independent. Since the
nanowire is tunnel coupled to a grounded superconducting

contact, a current can flow between this superconducting
contact and the normal-metal contact, through the MBSs. The
conductance of the contact can be calculated as6

G = (2e2/h)
∫

dε g0(ε)
df (ε − eV )

dε
(B2)

with f (ε) = 1 + exp(ε/kBT ) the Fermi function, 	 =
2πν0 |t |2 the tunnel rate to between the contact and MBS 1, ν0

the density of states in the contact, and

g0 = 	2ω2[ω2 − 4(ε2 + ε̃2)]2

|16ε4 + 4ε2(i	 − 2ω)ω + ω(−i	 + ω)(ω2 − 4ε2)|2 .

(B3)

Near the topological transition (ε and ε̃ finite), and if 	

and kBT are small, the conductance G displays four peaks
at eV � (±h̄ωe ± h̄ωo)/2 which correspond to the eigenen-
ergies of Hamiltonian Hwire of the main text. In this case,
the current flows between the superconducting contact and
the normal-metal contact through the four MBSs which are
coupled together [Fig. 3(a)]. Far from the topological transition
(ε → 0), a single zero-energy resonance is visible because
MBS1, which is the only bound state coupled directly to the
normal-metal contact, is disconnected from the other MBSs.
In this case, the current flows between the superconducting
contact and the normal-metal contact through MBS 1 only
[Fig. 3(b)].

APPENDIX C: KERR OSCILLATOR IN
THE CLASSICAL REGIME

Following Ref. 26, in the framework of the input/output
theory,36 the modulus tcav of the cavity transmission is given
by

tcav = 2
√

γinγout√
[h̄(ωcav − ωRF) + 2KE]2 + γ 2

(C1)

with γin/out the photonic transmission rate between the in-
put/output port and the cavity, γ the total decoherence rate of
cavity photons, and E a semiclassical cavity photon number
given by

E3 + h̄�ω

K
E2 + (h̄2�ω2 + γ 2)

4K2
E = γinP

in
1

K2h̄ωRF
(C2)

with �ω = ωcav − ωRF. Above, P in
1 and ωRF are the power

and frequency of the input signal applied to the cavity. From
Eq. (C2), the cavity transmission becomes hysteretic for P in

1 >

P crit
1 with

P crit
1 = 2

3
√

3

γ 3

γin |K|h̄ωcav. (C3)
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