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An optical nanoantenna and adjacent atomic systems are strongly coupled when an excitation is repeatedly
exchanged between these subsystems prior to its eventual dissipation into the environment. It remains challenging
to reach the strong-coupling regime but it is equally rewarding. Once they are achieved, promising applications
such as signal processing at the nanoscale and at the single-photon level would immediately become available.
Here, we study such hybrid configuration from different perspectives. The configuration we consider consists of
two identical atomic systems, described in a two-level approximation, which are strongly coupled to an optical
nanoantenna. First, we investigate when this hybrid system requires a fully quantum description, and we provide
a simple analytical criterion. Second, a design for a nanoantenna is presented that enables the strong-coupling
regime. In addition to a vivid time evolution, the strong coupling is documented in experimentally accessible
quantities, such as the extinction spectra. The latter are shown to be strongly modified if the hybrid system is
weakly driven and operates in the quantum regime. We find that the extinction spectra depend sensitively on the
number of atomic systems coupled to the nanoantenna.
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I. INTRODUCTION

Metallic optical nanoantennas have proven to be ideal
in tailoring light-matter interactions at the nanoscale. They
enable drastic changes to the spontaneous-emission rates of
adjacent atomic systems or their radiation properties; see,
e.g., Refs. 1–6. Although the modified light-matter interaction
manifests in a multitude of phenomena, all of them are
eventually promoted by the same underlying principle, i.e., that
metallic optical nanoantennas can support strongly localized
surface-plasmon polaritons. This is at the heart of all observa-
tions and entails that their coupling to far-field radiation and
quantum systems can be engineered on purpose.7,8

Recent advances in nanotechnology have enabled the
fabrication of nanoantennas with a precision down to the
atomic scale.9 This implies that a precise arrangement of,
e.g., quantum dots, molecules, or atoms close to a carefully
designed nanoantenna is feasible. It has already been shown
that in such situations, remarkable new phenomena can be
expected where the huge enhancement of dipole-forbidden
transitions in the gap of a dimer nanoantenna may serve
as a representative example.10,11 The tremendous spatial
localization of the plasmonic mode permits a strong coupling
of quantum systems to nanoantennas. The strong-coupling
regime is characterized by a transition from irreversible
spontaneous emission and nonradiative damping processes
to a reversible energy exchange between nanoantenna and
atomic system. Such a behavior has been reported for cavities
operating in the infrared and visible spectral domain.12–14

To achieve strong coupling is of paramount importance with
respect to applications in deterministic quantum computation
and for high-power emission of nonclassical light into prede-
fined directions.

In our contribution, we want to go one step further and
consider two atoms, rather than a single, isolated one, strongly
coupled to a nanoantenna. The aim is to demonstrate that
in this case strong-coupling effects appearmore pronounced
where one purpose of the nanoantenna is to strongly increase

FIG. 1. (Color online) A general scheme of the considered hybrid
system. A nanoantenna is strongly coupled to two atoms and excited
by an external driving field.

the interaction between both atoms. Moreover, the structure
is highly interesting since a much larger splitting of the
energy levels of the hybrid system may be anticipated when
compared to that of bare atoms isolated from the nanoantenna.
Perspectively, this may suggest an alternative route toward
artificial atoms with engineered energy levels. Furthermore,
the properties of the hybrid system are shown to depend
sensitively on the number of atoms or molecules involved,
paving the way for ultrasensitive devices operating on the
single molecule level.

Moreover, besides being of importance from an applied
perspective, the setup is essential for basic science since it
constitutes a system of rich dynamics that can be operated
in different regimes where each regime requires a well-
adapted approach to fully grasp its properties. Specifically,
the nanoantennas themselves may be described at different
levels of approximation.

The simplest approach is to consider the nanoantenna as a
passive system which can significantly influence the atoms’
dynamics while the properties of the nanoantenna remain
unaffected. If such an approximation holds, the nanoantenna is
treated as a classical harmonic oscillator, as frequently done in
the literature.15,16 This simplifies the treatment considerably
but prevents the observation of effects associated with the
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quantum nature of the nanoantenna-like Rabi splitting or
antibunching of its emitted light.17

On the contrary, one may account for the full dynamics
of the electrons inside the nanoantenna. Such an exhaustive
treatment is required if the atoms are placed only a few
angstroms off the nanoantenna such that electron-spill-out
and quantum tunneling effects become relevant.18,19 However,
these effects have not been considered in most experimentally
accessible situations.

In between, however, lies a regime where the nanoantenna
can be considered as a harmonic oscillator but which requires a
proper quantization.20–24 The approach permits the description
of the rich quantum behavior of the hybrid system. It is
especially useful to study effects at low power levels where
only a few photons are involved. However, it is a priori
not clear whether such an elaborate approach is necessary
or whether the semiclassical treatment is already sufficient.

Therefore, first we will develop both a semiclassical and
a fully quantum theory for the problem in which an atom
described in a two-level approximation is coupled to an optical
nanoantenna. In Sec. III, we are going to compare the results of
both approaches and we will derive an unambiguous criterion
that can be used to decide, on the basis of experimentally
accessible quantities, which of the two approaches is neces-
sary. Second, in Sec. IV we will explicitly discuss the design
of a nanoantenna that can be operated in the strong-coupling
regime. After that, in Sec. V we are going to study the impact of
the strong coupling on the extinction spectra of a hybrid system
where two atoms are coupled to the optical nanoantenna. We
will find that the presence of the atoms strongly affects both
absorption and scattering properties of the hybrid system.
After concluding on our findings, we will provide in elaborate
appendixes the details of our calculations and results that
support our conclusions from the main body of the manuscript.
In Appendix A, the equations of motion for the semiclassical
formulation will be derived. Appendix B will detail our method
to calculate the coupling constants of the nanoantenna to the
atoms and to the driving field from numerical simulations.
Also, the estimation for the radiative and nonradiative decay
rates of the nanoantenna will be given. In Appendix C, in the
framework of the fully quantum approach, the eigenstates and
eigenenergies of the hybrid system will be evaluated in detail.

II. MODEL

We consider two identical two-level systems. We refer to
them as atoms, but they could equally describe molecules,
quantum dots, nitrogen vacancy (NV) centers in diamond,
etc.25 The two-level systems shall be symmetrically placed
next to a mirror-symmetric nanoantenna that is excited with a
driving field propagating along the symmetry axis. Schemat-
ically, the situation is shown in Fig. 1. This high-symmetry
configuration has been chosen for the sake of reasonable
simplicity in our treatment, but it does not constitute any
limitation.

As discussed above, the theoretical description of such
a system may be performed in several approximations. In
Sec. II A, we consider a fully quantum model including a
quantum description of the nanoantenna itself. In practice, such
an approach requires a considerable numerical effort, unless

the excitation field is rather weak and the total system remains
approximately at the single excitation level. A considerable
simplification and limitation of numerical efforts is provided
by a mean-field approximation, where the electromagnetic
field is described classically.26 This semiclassical treatment
will be given in Sec. II B. Both models will be compared in
the succeeding section.

A. Fully quantum approach

In the fully quantum approach, we regard the nanoantenna
as a single-mode quantum harmonic oscillator. Then the
Hamiltonian in the rotating frame takes the following form
within the rotating-wave approximation:17

H = h̄ �ω0

2

Ntls∑
j=1

(
σ (j )

z + 1
) + h̄�ωnaa

†a

− h̄κ

Ntls∑
j=1

(
σ

(j )
+ a + a†σ (j )

−
) − h̄�(a + a†), (1)

with �ω0 = ω0 − ωdr, �ωna = ωna − ωdr. Here, Ntls = 2 is
the number of identical atoms (two-level systems), and ω0

corresponds to their transition frequency. The operators σ
(j )
z =

|e(j )〉〈e(j )| − |g(j )〉〈g(j )| represent the population inversion in
the j th two-level system, and σ

(j )
+ = |e(j )〉〈g(j )| and σ

(j )
− =

σ
(j )
+

†
are the corresponding creation and annihilation operators

of atomic excitation. As usual, {|e(j )〉 and |g(j )〉} denote the
excited and ground state of the j th two-level system. The
symbols a and a† stand for the annihilation and creation
operator of the nanoantenna mode, respectively. Several
approximations have been made here. For simplicity, only the
dipolar transitions in the atoms have been taken into account. In
cases in which such an approximation is not valid, a treatment
such as the one described in Ref. 27 should be applied.
Treatment of the nanoantenna as a single-mode harmonic
oscillator is also an approximation. It is assumed that a single
resonance dominates the nanoantenna spectrum around the
atomic transition frequency; see also Refs. 15 and 11 and the
discussion in Sec. IV.

We note that the single-mode approach for both the atomic
system and the nanoantenna is an approximation taking
only the dipolar transitions in the atomic system and the
nanoantenna into account; see Appendix B.

The nanoantenna is coherently driven by an external laser
beam, assumed to be monochromatic at frequency ωdr. The
driving field intensity is related to the Rabi frequency �,
which is taken here as real for simplicity; see Appendix B.
The coupling constant between atom and nanoantenna is given
by κ , identical for both atoms because of their symmetric
placement. Note that κ can be assumed constant if the transition
frequency of the atoms is close to the broad resonance of
the nanoantenna of central frequency, ωna. We neglect the
free-space interaction of the atoms, i.e., the dipole-dipole
interaction in the absence of the nanoantenna, because it is
considerably weaker than the interaction of the atoms due to
the nanoantenna. We also neglect the direct coupling of the
driving field to the atoms, as, again, it is much weaker than the
nanoantenna’s scattered field at the position of the atoms.
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The dynamics of the hybrid system is described by the
Lindblad-Kossakowski equation:17

ih̄ρ̇ = [H,ρ] + iLna(ρ) + iLtls(ρ), (2)

where ρ is the density operator of the hybrid system and
Lna,tls (ρ) are Lindblad operators responsible for losses in the
nanoantenna and the atoms, respectively, given by

Lna(ρ) = −h̄�(a†aρ + ρa†a − 2aρa†), (3)

Ltls(ρ) = −1

2
h̄�fs

Ntls∑
j=1

(
σ

(j )
+ σ

(j )
− ρ + ρσ

(j )
+ σ

(j )
− − 2σ

(j )
− ρσ

(j )
+

)

+ 1

2
h̄�d

Ntls∑
j=1

(
σ (j )

z ρσ (j )
z − ρ

)
. (4)

In the above expressions, � = �r + �nr describes radiative
and nonradiative losses by the nanoantenna. The free-space
spontaneous-emission rate of a single two-level system is
given by �fs, whereas �d is the rate of pure dephasing. An
example of the latter would be the interactions with phonons
in quantum dots that affect the coherence but not the population
distribution.28 Typically, the radiative and nonradiative losses
in the metallic nanoparticle are much stronger than all losses
in the atoms.

B. Semiclassical approach

In the preceding subsection, we formally introduced a fully
quantum description of the atoms coupled to a nanoantenna.
Now the same physical situation will be considered but the
description of the nanoantenna will be approximated by a
classical equation of motion. The state of the atomic system
may then be described by its density operator, which we
denote as ρsc. Its evolution follows the Lindblad-Kossakowski
equation

ih̄ρ̇sc = [H sc,ρsc] + iLtls(ρ
sc), (5)

with the semiclassical Hamiltonian17

H sc = h̄�ω0

2

Ntls∑
j=1

(
σ (j )

z + 1
)

− h̄κ

Ntls∑
j=1

[
σ

(j )
+ α (t) + α
 (t) σ

(j )
−

]
. (6)

For the sake of comparison to the fully quantum Hamiltonian
H , we denote the Rabi frequency of the scattered field by
κα (t), with the classical dimensionless amplitude α (t) ∈ C.

The time-dependent dipole moment of each atom acts
naturally as an electrodynamic source. Thus, the overall field
is a superposition of contributions from the atoms and the
nanoantenna. Usually the field generated by the j th atom is
expressed by its mean transition dipole moment, E (r,t) ∝
〈d(j )〉 = d(j )

ge ρsc
eg

(j ),15 where ρsc
mn

(j ) = ρsc
nm

(j )
 = 〈m|ρsc(j )|n〉 is
an element of the reduced density matrix of the j th atom,
and the asterisk stands for the complex conjugate. Similarly,
d(j)

ge = 〈g(j )|d(j )|e(j )〉 corresponds the matrix element of the j th
atom dipole moment operator. As derived in Appendix A, the
evolution equation of the field in the slowly varying envelope

approximation |α̇| � |αωdr| and for � � ωdr is given by

α̇(t) = −(� + i�ωna)α(t) + i

⎡
⎣κ

∑
j

ρsc
eg

(j )(t) + �

⎤
⎦ . (7)

Such a description is an approximation which turns out to
be valid just for very weak excitations, as we will show in the
following section.

III. COMPARISON OF SEMICLASSICAL AND FULLY
QUANTUM APPROACHES

One of the main issues addressed in this paper concerns
the identification of conditions in which the semiclassical and
the fully quantum approaches yield equivalent results. To this
end, we will consider the simplest scenario in which a single
atom is coupled to the nanoantenna at first. We will directly
compare the evolution equations of the atomic operators in the
fully quantum approach, obtained in the Heisenberg picture,
with the corresponding ones of the atomic density matrix
and of the field amplitude in the semiclassical approach. A
limit will be identified in which both approaches agree to a
good approximation. An interpretation in terms of correlation
functions will also be provided.

As we will show, the very source of discrepancies between
both approaches is the interaction term proportional to κ ,
which we will now focus on. For this reason, we consider
for a while the simplified lossless case, and also set � = 0,
but we assume that the excitation is initially present in the
coupled system. For instance, the atom is initially excited
and/or photons are present in the field of the nanoantenna.

Directly from the Heisenberg equation Ȧ = −i/h̄[A,H ] +
∂A
∂t

, which describes the evolution of any operator A, we obtain
the evolution of the field annihilation operator in the rotating
frame in the fully quantum picture:

ȧ (t) = −i�ωnaa (t) + iκσ− (t) , (8)

and of the atomic operators:

σ̇z(t) = 2iκ[σ+(t)a(t) − a†(t)σ−(t)], (9)

σ̇−(t) = −i�ω0σ−(t) − iκσz(t)a(t). (10)

The first equation can be formally integrated to give

a(t) = a(0)e−i�ωnat + i

∫ t

0
κσ−(t ′)e−i�ωna(t−t ′)dt ′. (11)

Inserting this result into Eqs. (9) and (10) leads to the following
evolution equations for the expectation values:

〈σ̇z(t)〉 = 2iκ[〈σ+(t)a(0)〉e−i�ωnat − c.c.]

− 2κ2
∫ t

0
〈σ+(t)σ−(t ′)〉e−i�ωna(t−t ′)dt ′

− 2κ2
∫ t

0
〈σ+(t ′)σ−(t)〉ei�ωna(t−t ′)dt ′, (12)

〈σ̇−(t)〉 = −i�ω0〈σ−(t)〉 − iκ〈σz(t)a(0)〉e−i�ωnat

+ κ2
∫ t

0
〈σz(t)σ−(t ′)〉e−i�ωna(t−t ′)dt ′, (13)
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where c.c. stands for the complex conjugate. We consider here
the evolution of expectation values of the atomic operators
because it can be directly compared with the evolution of the
corresponding elements of the density matrix, i.e., 〈σz(t)〉 =
ρsc

ee(t) − ρsc
gg(t), 〈σ−(t)〉 = ρsc

eg(t).
Similarly, in the semiclassical description we integrate

Eq. (7) with � and � set to zero. Next, we insert it into the
Lindblad-Kossakowski equation (5) with � = 0 and �fs =
�d = 0, to arrive at

ρ̇sc
ee − ρ̇sc

gg = 2iκ
[
ρsc

ge(t)α(t) − α
(t)ρsc
eg(t)

]
= 2iκ

[
ρsc

ge(t)α(0)e−i�ωnat − c.c.
]

− 2κ2
∫ t

0
ρsc

ge(t)ρsc
eg(t ′)e−i�ωna(t−t ′)dt ′

− 2κ2
∫ t

0
ρsc

ge(t ′)ρsc
eg(t)ei�ωna(t−t ′)dt ′, (14)

ρ̇sc
eg = −i�ω0ρ

sc
eg − iκα(t)

[
ρsc

ee(t) − ρsc
gg(t)

]
= −i�ω0ρ

sc
eg − iκ

[
ρsc

ee(t) − ρsc
gg(t)

]
α(0)e−i�ωnat

+κ2
∫ t

0

[
ρsc

ee(t) − ρsc
gg(t)

]
ρsc

eg(t ′)e−i�ωna(t−t ′)dt ′. (15)

Now by directly comparing the equations obtained in both
descriptions, we note that the semiclassical approach leads
to nonlinear terms of the type ρsc

ij (t)ρsc
kl (t

′) or, equivalently,
〈σp(t)〉〈σq(t ′)〉, with i,j,k,l = e,g and p,q = z, + ,−. On the
other hand, from the analysis of the Heisenberg equations of
motion, i.e., without the mean-field approximation, we can
see that terms such as 〈σp(t)σq(t ′)〉 appear in the equations of
motion instead.29

Both results are only equivalent if the atomic operators
are uncorrelated, i.e., if 〈σp(t)σq(t ′)〉 ≈ 〈σp(t)〉〈σq(t ′)〉. A
similar problem has been investigated in Ref. 30, where the
authors use a harmonic-oscillator model for a two-level system
and demonstrate that the condition of uncorrelated system
operators is fulfilled for a harmonic oscillator initially in its
ground state. A harmonic oscillator is indeed a good model of a
two-level system if its first excited state occupation probability
is small, and the doubly and higher excited states are not
relevant.

Likewise, a two-level system is a good model for a harmonic
oscillator if the system is approximately in its ground state.
Then the bosonic commutation rule can be recovered for the
annihilation and creation operators [σ−,σ+] = −σz ≈ 1, and
one may apply the result of Ref. 30 to the case of a two-level
system. Moreover, only in such a case is the two-level system
a source of coherent light, which can be accurately described
by the semiclassical approximation. Only if the condition of
uncorrelated system operators holds true, i.e., the two-level
system has to stay approximately in its ground state throughout
the entire evolution, is the mean-field approximation, and
thus the semiclassical approach, valid.21 It is important to
note that the applicability of this restriction does not depend
on the coupling strength. Furthermore, our condition holds
in general for any situation in which atomic systems interact
with light rather than only for coupling of two-level systems
to nanoantennas considered here.

For simulations it is often crucial to find a strict criterion
for the validity of the semiclassical approximation. Such a
criterion can be found by deriving the steady-state solution of
Eqs. (14), where the driving field or loss rates are no longer
assumed to be zero. The assumption that must be fulfilled
for the semiclassical approximation to be valid is that the
excited-state occupation of either atomic system is small, i.e.,
1 ≈ ρsc

gg 	 ρsc
ee. Then, we find

ρsc
ee ≈ 2�dec

�fs

κ2�2

D
� 1,

(16)
D = (

�2
dec + �ω2

0

)(
�2 + �ω2

na

)
+ 2(�dec� − �ω0�ωna)κ2 + κ4,

where �dec = 1
2�fs + �d is the total decoherence rate of an

atom, which includes contributions from spontaneous emis-
sion and pure dephasing processes. In the resonant case with
ωdr = ωna = ω0, the validity criterion for the semiclassical
approximation simplifies to

ρsc
ee ≈ 2�dec

�fs

κ2�2

(�dec� + κ2)2
� 1. (17)

This condition of weak driving fields is confirmed in numerical
simulations using MATHEMATICA 7.31 The calculations were
carried out by numerically solving the Lindblad-Kossakowski
equation (2) in the fully quantum approach. For the semi-
classical approach, Eqs. (5) and (7) were numerically solved,
respectively.

We have performed simulations for different driving
strengths assuming ωdr = ωna = ω0, � = 0.5κ , �fs = 10−9κ ,
�d = 0. Initially, the atom is assumed to be in its ground
state and the field amplitude of the nanoantenna vanishes:
ρ(t = 0) = |g〉〈g| ⊗ |0〉〈0| is the initial condition for the fully
quantum case, whereas ρsc(t = 0) = |g〉〈g| and α(t = 0) = 0
correspond to that of the semiclassical one. In the fully quan-
tum approach, we perform the calculations in a Hilbert space
truncated at sufficiently high number kmax of excitations in the
nanoantenna. Here it suffices to set kmax = 10. In Fig. 2, the
excited-state occupation probability of the atom is compared
when calculated in the semiclassical (black solid line) and
the fully quantum approach (red dashed line), for increasing
intensities of the driving field [panels (a)–(c)]. For weak
fields, and thus small excited-state occupations, the results
are in perfect agreement (a). Slightly stronger fields result in
discrepancies in time evolution, but the steady-state occupation
coincides in both approaches (b). This is no longer the case for
rather strong driving fields that result in considerable excitation
probabilities of the atom (c). In panel (d), the steady-state
relative error, defined as err ≡ |ρsc

ee − ρee|/ρee|t→∞, is shown
to grow fast with the ratio of the Rabi frequency of the driving
field � to the coupling constant κ .

On more analytical grounds, we can first examine the
simplest case in which the spontaneous emission is the only
source of decoherence, i.e., �d = 0 and �dec = 1

2�fs. Then,
the prefactor in Eq. (17) is unity because of 2�dec/�fs = 1.
Moreover, for small losses Eq. (17) may be simplified further.
Then we find a condition for the validity of the semiclassical
approach as � � κ . If that condition holds, ρsc

ee � 1, i.e., the
atom will approximately remain in its ground state. If losses
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FIG. 2. (Color online) Excited-state occupation probability of the
atom vs normalized time for different Rabi frequencies � of the
driving field and ωdr = ωna = ω0, � = 0.5κ , �f s = 10−9κ , �d = 0.
The black solid line corresponds to the semiclassical results and
the red dashed line corresponds to the fully quantum results. (a)
For weak driving fields, a perfect agreement is obtained. (b,c) For
stronger driving fields, both the time evolution and the steady-state
results are incorrectly evaluated in the semiclassical approximation
(17). (d) The relative error of the steady-state results grows fast with
increasing �/κ ratio.

dominate, i.e., for atoms weakly coupled to a nanoantenna,
the semiclassical approximation can be applied as long as
� � ��fs/κ .

If dephasing is additionally present (�d �= 0), the excited-
state occupation is always increased (not shown) with respect
to the case of pure spontaneous emission, which makes
condition (17) more difficult to be fulfilled. For small driving
field intensities, the peak value of the excited-state occupation
probability is equal to ρsc

ee,max ≈ �2/2�fs� and is reached for
�dec = κ2/�. Thus we arrive at a strong worst-case-scenario
criterion valid for an arbitrary dephasing rate and an arbitrary
coupling strength: �2 � �fs�.

This result may seem counterintuitive. One might have
expected that the semiclassical approximation is valid in the
limit of sufficiently strong rather than weak fields. This result
can be understood as follows. For weak driving fields, in
good approximation the atoms are in their ground states.
Then they behave as harmonic oscillators which can be
accurately described by the semiclassical approach, which
is in accordance with the results presented in Ref. 21. For
stronger fields, the approximation of the two-level systems
as harmonic oscillators breaks down and consequently the
semiclassical approach does too. However, for even stronger
fields, the feedback from the atoms is only of minor relevance.
Mathematically, this interaction region can be defined by
|α|2 	 1, which naturally leads to � 	 �,κ .

IV. DESIGN OF THE NANOANTENNA

In this section, we aim at designing a nanoantenna that
allows the strong-coupling regime to be achieved. The latter
can be defined by32

κ > �. (18)

This condition suggests that an excitation is exchanged
between the atomic and the nanoantenna subsystems prior
to its eventual dissipation into the environment. We assume
that the decay and decoherence rates in the atoms are small
in comparison with the losses by the nanoparticle. Slightly
differently from Eq. (18), strong coupling might also be
defined with regard to the emergence of a dressed state; see
Refs. 33 and 34.

On our path to a design that allows for the strong-coupling
regime, we are going to investigate how coupling constants
and loss rates can be tailored by varying the shape and size
of the nanoantenna. As a main result of this section, we shall
find that strong coupling can be achieved if the characteristic
spatial dimensions of the nanoantenna are small. The size
of the nanoantenna should not be larger than a few tens of
nanometers and the separation of the elements forming the
nanoantenna should be of the order of a few nanometers. Small
spatial dimensions are eventually the crucial condition since
they guarantee sufficiently small mode volumes as required
to reach the strong-coupling regime. In the following, we
analyze the nanoantennas in terms of two generic parameters
that determine their radiative properties and are frequently
exploited while engineering nanoantennas: the nanoantenna
efficiency η ≡ �r/� and the Purcell factor F . The efficiency
is a measure for the fraction of radiative energy loss �r

by the nanoantenna when compared to its total energy loss
� = �r + �nr.35 As discussed earlier, the coupling to higher-
order modes was neglected so far. However, not to artificially
overestimate the nanoantenna’s efficiency, we calculate η for
a nanoantenna excited by dipoles at the positions of the atoms.

The Purcell factor is understood here to be a measure for the
nanoantenna’s capability to enhance the radiation of a dipole
source.36 It naturally depends on the position of the source
with respect to the nanoantenna. We find the Purcell factor as
the ratio of the total energy flux calculated with and without
a nanoantenna. The latter case corresponds to the free-space
emission rate �fs. Note that the Purcell factor introduced here
is different from that used in the context of cavity QED, i.e.,
the enhancement of the decay rate of an atom.17,35 The decay
rate of atoms interacting with a nanoantenna can be enhanced
by radiative and/or nonradiative loss channels of the nanoan-
tenna. Both losses coincide only for nanoantennas with an
efficiency equal to 1. Our results prove that there is a tradeoff
between the nanoantenna efficiency (or the Purcell factor) and
the coupling strength that can be achieved with a nanoantenna.

Our electromagnetic simulations were performed with the
COMSOL MULTIPHYSICS simulation platform, where the dis-
persive permittivity has been fully considered.37 The methods
that we use to compute the coupling constants and loss
rates for a specific nanoantenna are described in detail in
Appendix B. Here, we note that the results were obtained using
the plane-wave illumination scheme for the nanoantenna. In
such a scheme, almost solely the dipolar mode is excited and
dominates the single nanoantenna resonance. The results might
thus change in a different, e.g., dipole, illumination scheme,
where higher-order modes may in general also contribute to
the resonance. However, in the case of small nanoparticles,
such as the ones considered in this paper, this influence
can approximately be neglected. Thus, we do not take these
higher-order modes into account.
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Two basic nanoantenna geometries which obey the assump-
tions made in the Introduction are considered from now on:
(i) a single or (ii) three identical silver nanospheroids with
axis lengths a and b. For prolate nanospheroids, a > b holds.
The three-nanospheroid geometry is shown in Fig. 3(a). The
nanospheroids are positioned at a distance r0 from each other
along the x axis of the chosen coordinate system with its origin
at the center of the middle nanospheroid.

The reason to compare single- and multiple-nanospheroid
geometries is the following: single nanospheroids are easier to
fabricate, as the experimentally demanding narrow gap is not
required, and they might be suitable for reaching the strong
coupling, as investigated in Refs. 20 and 38. On the other
hand, multiple structures have the potential to confine and
enhance fields much more strongly when compared to isolated
nanospheroids. Furthermore, as we will show below, they are
characterized by higher efficiencies and Purcell factors, which
makes them more suitable for applications, e.g., as nonclassical
light sources.39,40

To provide a visual impression of the spatial distribution of
the enhanced field, we consider a three-nanospheroid design
with the largest κ/� ratio: a nanoantenna made of prolate
nanospheroids of a = 13.3 nm, b = 8 nm, and r0 = 2 nm,
subject to the driving field of frequency ωdr = 3.37 × 1015 s−1,
which is the resonance frequency of the nanoantenna. It is
worth noting that an exact resonance with the atomic transition
frequency is not crucial because of the broad resonance of the
nanoantenna. The driving field propagates along the y direction
and is polarized in the x direction. In Fig. 3(b), we show the
spatial distribution of the absolute value of the x-polarized
component of the scattered field in the xy plane, normalized
to the value of the incoming field. It is the x component of the
enhanced field which contributes to the coupling constant κ ,
as it is parallel to the assumed direction of the transition dipole
moments of the atoms. Only the scattered field is considered
here [not the total (scattered + driving) field], because the
driving field is considerably weaker and its action on the
atom can be neglected to a good approximation. This is in
accordance with the assumptions made for the Hamiltonians
(1) and (6), considered in Sec. II.

To obtain the results displayed in Fig. 3, we scanned the
extinction cross section41 of every nanoantenna, subjected to
a monochromatic driving field, in the pertinent frequency
domain to find its resonance frequency ωna. We assumed
a lossless host medium (ε = 2.2). Next we considered a
resonantly driven nanoantenna to find both the loss rate � and
the coupling constant κ at the positions of the atoms, which is
always taken as r0/2, and in the case of three nanospheroids
it is the point equidistant from two spheroids, as described in
Appendix B. We set the transition dipole moment of an atom
to a rather high, but realistic, value of dge = 6 × 10−29 C m.

In Fig. 3(c), the κ/� ratio for nanoantennas of varying
size (red circles) and aspect ratio (red crosses) is shown.
The essential result is that the strong-coupling regime may
only be achieved for small nanoantennas (minor axis below
30 nm in the case of three-, and below 20 nm in the case
of single-nanospheroid designs). Less important is the rather
weak dependence on the aspect ratio a/b: the κ/� ratio is
larger for prolate objects, as they can confine and enhance the
fields stronger than oblate ones. Still, the strong coupling can

FIG. 3. (Color online) (a) General scheme of the nanoantenna
consisting of three identical nanospheroids of aspect ratio a/b,
positioned at a distance r0 from each other. (b) Distribution of the
absolute value of the x-polarized component of the scattered field
(normalized by the value of the incoming field) for three identical
nanospheroids with a = 13.3 nm and b = 8 nm and separated by r0 =
2 nm. The coupling constant κ is proportional to the enhancement
of the x-polarized scattered field component at the point where
an atom is placed (blue dots). (c) κ/� ratio for dge = 6 × 10−29

C m and various geometrical parameters of the single- (left) and
three-spheroid (right) nanoantenna: dependence on size (red circles,
constant aspect ratio a/b = 5/3, r0 = 2 nm), on aspect ratio (red
crosses, constant a = 13.3 nm, r0 = 2 nm), and on distance r0 (blue
squares, a = 13.3 nm and b = 8 nm). The atomic distance from
the nanoantenna tip is always r0/2. (d) Nanoantenna efficiency and
(e) Purcell factor, values of parameters as in (c). The proposed design
of a three-spheroid nanoantenna that corresponds to the scattered field
distribution of panel (b) is described in the text and marked in (c)–(e)
with a black cross.

be achieved even for oblate nanospheroids. However, greater
care for the shape must be taken if only one nanospheroid
is considered. In the same figure, the dependence on the
separation distance r0 between the nanospheroids is displayed
(blue squares). The distance of the atom to the nanospheroid
is in each case equal to r0/2, so increasing r0 means also
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increasing the distance from the atom to the nanospheroids.
This explains why the field enhancement, and consequently
the coupling constant κ , drops with distance r0. A strong
field enhancement, and thus strong coupling, is obtained if
the individual nanospheroids are less than 4 nm apart from
each other. Interestingly, slightly larger atom-nanoantenna
distances allow for strong coupling in the single-nanospheroid
case.

Next, we are going to analyze the efficiencies of the
above-considered nanoantennas [see Fig. 3(d)]. According to
our investigations, a small size, which is the key for strong
coupling, will result in a poor nanoantenna efficiency, however
it will always be larger in the multiple-spheroid case. For
nanospheroids of the size at which the strong coupling is
reached (18 nm in the single- and 30 nm in the multiple-
nanospheroid case), the efficiency reads 24% and 54%,
respectively, and drops dramatically as the size decreases. In
Ref. 41, such scaling of the size-dependent efficiency has been
rigorously derived for spherical particles in terms of scattering
and absorption cross sections. The efficiency clearly drops for
prolate nanoantennas in the multiple-nanospheroid case. The
impact of the adjacent dipoles and of additional nanospheroids
on radiative losses and absorption turns out to be marginal,
so the efficiencies of the proposed nanoantennas show little
dependence on r0.

Relatively higher radiative losses in large nanoantennas
result in an increase of the Purcell factor [see Fig. 3(d)]. Again,
it is the size that determines to a large extent the radiative
losses of the nanoparticle. The Purcell factor is almost constant
for a varying aspect ratio in the case of multiple-spheroid
nanoantennas, but it decreases fast for oblate objects in the case
of single spheroids. Naturally, the Purcell factor drops as the
distance between the nanoantenna and the dipole source grows,
since then their mutual interaction decreases significantly.

We may summarize the above considerations by noting that
both single- and multiple-structure geometries are suitable for
strong coupling, although due to their ability to confine and
enhance fields more strongly, three-nanospheroid designs lead
to the strong-coupling regime at larger nanospheroid sizes.
They are also characterized by larger efficiencies and Purcell
factors. Therefore, the optimal geometry turns out to be the
one always marked with the black cross in Fig. 3 and used for
plotting the field distribution in Fig. 3(b). For such a design we
obtain �nr = 7.0 × 1013 Hz, �r = 6.0 × 1012 Hz. (Once again,
we note that small nanoantennas designed for strong coupling
turn out to be rather poor emitters: nonradiative losses prevail
against radiative losses by more than one order of magnitude.)
The coupling constant with each of the atoms amounts to
κ = 2.3 × 1014 Hz. Its large value is responsible for the vivid
dynamics of the hybrid system subject to the driving field,
where excitations are exchanged several times before their
eventual dissipation into the environment via the loss channels
of the nanoantenna.

An example of such behavior is presented in Fig. 4, where
the calculations were performed in the fully quantum approach
with the Hilbert space truncated at kmax = 10. The hybrid
system is initially in its ground state. It is subject to a driving
field of Rabi frequency � = 0.5κ which quickly leads to
an increase of the probability of a single photon excitation
of the nanoantenna, followed by the probability of a single

1 2
t
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0.1

probability symmetric state of TLSs

doubly exc. state of TLSs

single-photon-state of NA

two-photon-state of NA

probability

0.1

0.05

t

FIG. 4. (Color online) Probabilities of different atomic and
nanoantenna excitations vs normalized time. Strong coupling be-
tween the atomic systems and the nanoantenna is manifested in
the dynamics by the mutual exchange of excitations (atomic, solid
lines; nanoantenna, dashed lines). Peaks in occupation probabilities
of the symmetric (blue solid line, results multiplied by a factor of
0.5) and doubly excited (purple solid line) states correspond to dips
in probabilities of the presence of one (blue dashed line) and two
(purple dashed line) photons in the system. Nanoantenna and atomic
parameters are described in the text.

symmetric excitation in the atomic subsystem. In the figure,
the occupation probability of the state |S〉 = (|e(1)〉|g(2)〉 +
|g(1)〉|e(2)〉)/√2 is shown. Next, also the probability of double
excitations increases. For driving field intensities as small as
the one applied here, higher-order excitations are negligible
in the nanoantenna. After the excitations have flipped several
times between the atomic and nanoantenna subsystems, the
hybrid system finally relaxes to a steady state, where an
equilibrium is reached by the driving field and the losses. Note
that this result, with a significant probability of symmetric
state occupation, suggests considerable entangling power of
nanoantennas explored, e.g., in Refs. 42 and 43.

The results of this section prove that while engineering a
nanoantenna, one has to keep in mind the tradeoff between
the coupling strength, achievable with a particular design, and
the corresponding efficiency and ability of the nanoantenna to
enhance radiation of dipole emitters. The size of the structure
turns out to be the key parameter, which needs to be small to
achieve the strong-coupling regime, where the hybrid system
undergoes a complicated dynamics.

In the following section, we will analyze the spectral
properties of the investigated system. For any deviating
condition as considered further below, a suitable nanoantenna
that correctly reflects the situation as considered can be
identified out of the data presented in this section. Figure 3
can serve here as a guideline, from which a possible geometry
can be derived for a realization of a given κ/� rate.

Before we detail the modification of the extinction spectra,
we may comment on the actual experimental feasibility for the
suggested nanoantenna designs. The strong-coupling regime
can be achieved with both single- and multiple-nanospheroid
geometries. While the latter generally seem to be more
interesting for applications due to larger values of both
efficiencies and Purcell factors, single nanospheroids may be
more feasible from an experimental point of view, as they
do not require very small nanoantenna feed gaps. In both
cases, two main requirements for an experimental realization
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can be deduced: (a) a highly accurate fabrication of the
nanoantenna itself and (b) a precise placement of the atomic
system. Fortunately, both requirements can be accomplished
by state-of-the-art techniques; see, e.g., Refs. 44–47.

V. MODIFICATION OF SPECTRA

In this section, we shall study how the presence of two atoms
coupled to a nanoantenna modifies its extinction spectrum.
Such modification is profound for strong coupling and in the
quantum regime. In this work, we may refer to the quantum
regime as a situation, where the mean number of excitations
in the system is at the single-quantum level. We compare the
results with the single-atom case to prove the sensitivity of
the hybrid quantum system to the number of atomic systems
involved.

The hybrid system permits several loss channels, namely
radiative and nonradiative losses of the nanoantenna and the
spontaneous emission and dephasing in the atomic density
matrix. The total extinct (absorbed and scattered) power is
given by

P (ωdr) ≡ h̄ωna�〈a†a〉 +
Ntls∑
j

h̄ω0�fs
〈
σ

(j )
+ σ

(j )
−

〉
,

containing the contributions from the nanoantenna and the
atoms, respectively. This quantity is directly accessible in
a potential experiment. Here, 〈a†a〉 = Tr[a†aρ(t → ∞)] de-
notes the mean number of photons in the system’s steady state
ρ(t → ∞). Similarly, 〈σ (j )

+ σ
(j )
− 〉 corresponds to the excited-

state occupation probability of the j th atom.
In the present study, the loss rate of the nanoantenna is much

larger than that of the bare atoms, � 	 �fs; see again Sec. IV.
Thus, the loss of the nanoantenna can be used as an extremely
good approximation of the loss of the hybrid system.48

The spectra are calculated using a freely available quantum
optics toolbox.49 Note that because of the rather low efficiency
of the nanoantenna, i.e., �nr 	 �r, the extinction spectrum is
dominated by the absorption spectrum.

Even though the losses are almost entirely due to the
nanoantenna, the extinction spectrum may be strongly influ-
enced by the two atoms. In particular, this is the case when
the driving field is weak and the hybrid system remains at
the single-excitation level, i.e., in the quantum regime. This
large atomic contribution to the overall spectrum naturally
depends significantly on the coupling, as is illustrated in
Fig. 5. For weak coupling [see panel (a)], a broad resonance
of the nanoantenna dominates the extinction spectrum and
a perturbation at the transition frequency of the atoms can
be observed. For strong coupling [panel (b)], the plasmonic
and atomic contributions to the spectrum can no longer
be distinguished. The extinction at the atomic transition
frequency gets significantly reduced and Rabi peaks are visible
at the sides. Due to the strong coupling, the spectral shift of
the extinction peaks can significantly exceed the linewidth.
Thus strong coupling evokes a large effect of the atoms on the
extinction spectrum of the nanoantenna.

Generally, the spectrum can be understood in terms of
hybridization caused by the interaction of all subsystems.17

The eigenstates and eigenenergies can be derived on the

FIG. 5. (Color online) Impact of atoms on the extinction spectra
of the hybrid system for different coupling strengths κ in the weak-
(a) and strong-coupling regime (b). The steady-state mean number
of photons is plotted vs the driving-field normalized detuning from
the atomic transition frequency �ω0/�. For the sake of comparison,
the spectrum of the bare nanoantenna (no coupling, κ = 0) has been
added. A Fano-like behavior can be observed for increased but still
weak coupling. The results have been obtained for a weak driving field
(Rabi frequency � = 0.6�). Furthermore, a rather small detuning
between nanoantenna resonance and atomic transition frequency
(ωna − ω0 = 1.2�) has been assumed. The blue line in panel (b)
corresponds to the antenna design of Sec. IV.

basis of the Jaynes-Cummings model, which is outlined in
Appendix C in detail. The eigenenergies are plotted in Fig. 6 for
the cases of a single and two atoms coupled to the nanoantenna.
In the resonant case (ωna = ω0), the splitting between the first
pair of excited eigenstates is equal to

√
Ntlsκ . This simple

example proves that the spectrum of the hybrid system, i.e.,
the position of the Rabi peaks, depends crucially on the number
of atoms. Furthermore, the effective increase of the coupling
constant by the factor of

√
Ntls may help to overcome losses

and fulfill the strong-coupling condition (18).
The analysis of the diagrams in Fig. 6 suggests that, in

principle, one might expect an even stronger manifestation
of the number of atoms in the spectra for slightly more
intense driving fields, where highly excited states (n � 2)
become occupied. For this purpose, however, a coupling even
stronger than that obtained with the design of Sec. IV would be
preferable. Otherwise, due to significant nanoantenna losses,

FIG. 6. (a) Eigenenergies of the hybrid system as a function of
the detuning between nanoantenna resonance and atomic transition
frequency for the case of Ntls = 1 (dashed lines) and Ntls = 2 (solid
lines). Only energies of states corresponding to the total number of
excitations n � 2 are shown. (b) Zoomed view for n = 1. Energy
splitting of the first pair of excited states compared for the cases
Ntls = 1 and 2. In the latter case, it is larger by a factor of

√
2 for

ωna = ω0.
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the required sensitivity to trace the contribution of highly
excited states to the spectra cannot be reached.

The interesting question arises whether the influence of
the atoms on the extinction spectra remains so significant
for stronger driving fields, i.e., beyond the quantum regime.
To investigate such a transition, we performed calculations
for increasing driving intensities for the strong-coupling
design proposed in Sec. IV. The results are displayed in
Fig. 7(a). For weak driving fields (blue line), a splitting can
be observed with Rabi peaks at �ω0 = ±√

2κ as well as an
onset of transparency at �ω0 = 0, as measured in cavity QED
systems; see Refs. 50 and 51. For stronger driving fields, the
corresponding extinction peaks are shifted toward the center.
Finally, in the limit of a strong driving field (� > �), the
contribution from the atomic system becomes negligible and
the bare nanoantenna spectrum is recovered.

To understand this behavior, we analyze the occupation
probabilities of the hybrid system’s eigenstates. For weak
driving fields, only the first pair of excited eigenstates |ψ1,±〉
with energies equal to h̄ω0 ± h̄

√
2κ is populated. For this

case, the occupation probabilities of the states |ψ1,+〉 and
|ψ2,+〉 are plotted in Fig. 7(b). It can be seen that for the
latter state, it is indeed negligible. The occupation probabilities
of states |ψ1,−〉 and |ψ2,−〉 (not shown) are peaks symmetric
with respect to |ψ1,+〉 and |ψ2,+〉, i.e., they are centered at
ω = ω0 + √

2κ . For an increased driving field, the probability
of exciting higher-energy states becomes significant [see the
green lines in Fig. 7(b)]. This is the reason for the shift of
the Rabi peaks17 toward the center. If the driving field rises, the
energy difference between subsequent occupied eigenstates
converges toward ωna, which explains why in the strong
driving field limit (� > �) the result corresponds to the bare
nanoantenna case. This result can also be derived from the
steady-state solution of the Heisenberg equations of motion,
where one finds that 〈a†a〉 ≈ �2/�2 	 Ntls holds. This means
that indeed for stronger driving fields, the classical behavior of

bare NA

a†a P (|ψ )

00 00

|ψ2+

|ψ1+

|ψ1−
|ψ2−

P (|ψ )a†a

(a) (b)

weak
drive,
10x

strong
drive

FIG. 7. (Color online) (a) Impact of the driving field intensity
on the extinction spectra, normalized by a dimensionless parameter
�2/�2, for the strongly coupled nanoantenna proposed in Sec. IV. (b)
Probability of occupation of the first (n = 1, solid lines) and second
(n = 2, dashed lines) pair of excited states |ψn,±〉 for a driving field
with Rabi frequencies � = 0.2� (blue lines, results multiplied by a
factor of 10) and � = � (green lines).

the nanoantenna is reestablished, irrespective of the presence
of the atoms.

VI. CONCLUSIONS

In this paper, we have investigated the coupling of one
and two atoms approximated by two-level systems to optical
nanoantennas. It was outlined that a full quantum approach
is required to understand the dynamics of the hybrid system.
Only for extremely weak driving fields can a semiclassical
formulation of the nanoantenna dynamics be used.

At the design stage for a nanoantenna, a tradeoff must
be taken into account between the field enhancement by
the nanoantenna, directly responsible for the strength of the
coupling, and the nanoantenna’s efficiency. A small size, which
results in high absorption losses, is essential for achieving the
strong-coupling regime. Then, the spectra of the hybrid system
are hugely influenced by the presence of the atoms provided
that the driving field is considerably weak, i.e., in the quantum
regime.

Furthermore, we have shown that a strong coupling of
several atoms to a nanoantenna does change the spectrum
significantly. Such features will enable experimentalists to
identify situations of multiple coupled atoms in the strong-
coupling regime.
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APPENDIX A: THE DYNAMICS OF
THE CLASSICAL FIELD

In this Appendix, we will outline the semiclassical treat-
ment of the nanoantenna used in this paper. In particular, we
will derive the equations of motion for the respective electric
field in dependence on the state of the atoms.

If a plasmonic structure such as the discussed nanoantenna
is much smaller than the wavelength, it can be treated as
a classical harmonic oscillator, as is well known in the
metamaterials community; see, e.g., Ref. 52. The scattered
field Ẽexc(r,t) of such an oscillator may be separated into
temporally and spatially varying contributions:

Ẽexc(r,t) = α̃(t)Eexc(r) + c.c., (A1)

where the subscript “exc” is used to label the excited field
of the nanoantenna. This notation renders it unnecessary to
distinguish between the scattered field of the nanoantenna and
the field inside its metallic body. The spatial part Eexc(r) can
be found by computer simulations or analytical considerations.
By definition, we assume that this spatial contribution, which
may also be denoted as a mode profile, does not change with
time for the excitations we discuss in the following. Then, the
whole nanoantenna dynamics is exclusively described by the
evolution of the temporal part α̃(t) for which the equations of
motion will be derived and solved in the following.
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Under the assumption of an oscillator-like evolution, the
positive frequency part α̃(t) evolves according to the equation

¨̃α(t) + � ˙̃α(t) + ω2
naα̃(t) = F (t)e−iωdrt , (A2)

where F (t)e−iωdrt is the driving field at the nanoantenna’s site.
In our case, it is proportional to the driving laser field and the
assumed dipolar fields of the two atoms.

We assume the driving term oscillates at the mean fre-
quency ωdr. Then, its envelope F (t) varies much slower.
Consequentially, we can also calculate the solutions to the
equations of motion for the slowly varying part of the
nanoantenna oscillation defined via α̃(t) = α(t)e−iωdrt . Then
using the standard slowly varying envelope approximation
(|α̇| � |αωdr|) and accounting for � � ωdr, one arrives at the
equations of motion for the electric field of the nanoantenna
as

α̇(t) = −�α(t) + i

2ωdr

[(
ω2

dr − ω2
na

)
α(t) + F (t)

]
. (A3)

For near-resonance driving fields (ω2
na − ω2

dr ≈ 2ωdr�ωna), the
above equation further reduces to

α̇(t) = −(� + i�ωna)α(t) + iF (t)/2ωdr. (A4)

We now compare Eq. (A4) with the Heisenberg opera-
tor equation in the fully quantum approach, ȧ(t) = −(� +
i�ωna)a(t) + i[κ

∑
j σ

(j )
− (t) + �] + f (t), where f (t) stands

for the Langevin noise operator such that 〈f (t)〉 = 0,17 which
originates from coupling of the field of the nanoantenna with
its electromagnetic environment and with phonons. With such
a direct comparison, we can identify the driving term,

F (t) = 2ωdr

⎡
⎣κ

∑
j

ρsc
eg

(j )(t) + �

⎤
⎦ , (A5)

and get eventually

α̇(t) = −(� + i�ωna)α(t) + i

⎡
⎣κ

∑
j

ρsc
eg

(j )(t) + �

⎤
⎦ (A6)

as the evolution equation for the electric field of the nanoan-
tenna in the semiclassical approximation. Our result corre-
sponds to the equation of motion of the expectation value of
quantum operators if the nanoantenna’s field is approximated
by a coherent state |α (t)〉.

APPENDIX B: CALCULATION OF PARAMETERS

In Appendix A, we derived the equations of motion for
the electric field of a nanoantenna coupled to an unspecified
number of noninteracting atoms. Now we will specify how to
obtain the relevant system parameters from electromagnetic
simulations. The key for determining the coupling constants
and loss rates lies in the determination of the nanoantenna field
for a single excitation, as we will see shortly.

1. Coupling constant between the nanoantenna and the atoms: κ

In the electric-dipole approximation, the parameter κ

describing the coupling strength between the j th atom and

the nanoantenna is given by

κj = Ese
exc(rj ) · d(j )

ge /h̄, (B1)

where d(j )
ge stands for the transition dipole moment in the

j th atom positioned at rj . In the considered case, the atoms
are assumed to be identical, so the index j can be dropped.
Naturally, here the field Ese

exc corresponds to a single excitation
of the nanoantenna subject to a plane-wave excitation. Because
of the atomic system’s symmetric positioning and the mirror
symmetry of the nanoantenna, Ese

exc(r1) = Ese
exc(r2), the exci-

tation of the antisymmetric state of the atomic system for the
lossless case is prohibited; see Appendix C. It is evident that
κ depends on the dipole moment of both atoms, the electric
field of the nanoantenna’s mode, and the very location of the
atoms. Obviously, this scheme of calculating the field of the
nanoantenna corresponds to a dipolar mode approximation
since the plane wave mainly couples to the dipolar mode of
the nanoantenna. Higher-order contributions are neglected,15

which has two consequences: the coupling strengths κj as
well as the nonradiative loss rate of the nanoantenna, �nr, are
underestimated. We have chosen to restrict our investigations
to this simplified scheme as the inclusion of higher-order
nanoantenna modes significantly complicates the analysis
of the system dynamics and also prevents us from finding
accessible analytical results.

To find the correct scaling for κ , the electric field has to be
calculated at the positions of the atoms for an excitation of the
nanoantenna by a single photon with energy h̄ωna. Thus, for
the computation at the nanoantenna’s resonance, first the field
energy for the corresponding excited electromagnetic mode
Eexc(r) has to be determined using the well-known energy-
density integration for dispersive media,53

W = 1

2

∫
∂

∂ω
[ω Reε(ω)]

∣∣∣∣
ω=ωna

|Eexc(r)|2dV

+ 1

2

∫
μ0|Hexc(r)|2dV. (B2)

Then, the electric field of a single-photon excitation is given
by

Ese
exc(r) =

√
h̄ωna/W Eexc(r), (B3)

since the energy of the nanoantenna’s mode corresponds to
N = W/h̄ωna photons.

2. Coupling constant between the nanoantenna and the driving
field: Rabi frequency �

The Rabi frequency � describes the coupling of the
nanoantenna and the driving field. It can be evaluated in
the dipole approximation as � = dse

na · Edr/h̄, where dse
na is

the dipole moment of the nanoantenna corresponding to a
single excitation for which the electric field is known from
the previous subsection. The dipole moment dse

na can then
just be calculated from a multipole expansion of Ese

exc(r). For
our calculations, the main contribution to the far-field of the
nanoantenna was indeed that from the dipole moment, which
justifies the calculation of � in the dipole approximation.

195414-10



STRONG COUPLING OF OPTICAL NANOANTENNAS AND . . . PHYSICAL REVIEW B 88, 195414 (2013)

3. Radiative and nonradiative losses of the nanoantenna: �

The losses of the nanoantenna can be divided into radiative
and nonradiative losses, � = �r + �nr. Both quantities are
related to integrations of the nanoantenna mode for a single
excitation, Ese

exc(r): The radiative loss �r can be determined by
integrating the time-averaged Poynting vector over a closed
surface embedding the nanoantenna, �r = ∫ 〈Sse

exc(r,t)〉dA.
The nonradiative part is given by a volume integral over
the nanoantenna using Ohm’s law, �nr = ∫

σ 〈Ese
exc(r,t)〉2dV ,

where σ is the electric conductivity of the metal.

APPENDIX C: EIGENSTATES OF THE FREE
HAMILTONIAN

Now we are going to analyze the Hamiltonian of the
nanoantenna coupled to two two-level systems in the fully
quantum case. As one might expect, we will arrive at a simple
generalization of the Jaynes-Cummings model and give the
energy spectrum of the hybrid system’s eigenstates.

It is often advantageous to analyze problems of coupled
two-level systems in the so-called Dicke basis that relates
ground and excited states, |g〉 and |e〉, of each two-level
system to a combined eigenbasis:54 {|D〉 ≡ |e〉 ⊗ |e〉, |S〉 ≡

1√
2
(|e〉 ⊗ |g〉 + |g〉 ⊗ |e〉), |A〉 ≡ 1√

2
(−|e〉 ⊗ |g〉 + |g〉 ⊗ |e〉),

|G〉 ≡ |g〉 ⊗ |g〉}, with the doubly excited state |D〉, the
symmetric and antisymmetric states |S〉 and |A〉 with a single
excitation, and the ground state |G〉. In the Dicke basis, the
Hamiltonian reads

H = 1

2
h̄ω0(2|D〉〈D| + |S〉〈S| + |A〉〈A|) + h̄ωnaa

†a

− h̄
√

2κ(�+a + a†�−), (C1)

where

�+ = 1√
2

(
σ

(1)
+ + σ

(2)
+

) = |D〉〈S| + |S〉〈G| and

�− = �
†
+

are the creation and annihilation operators of an excitation
in the atomic subsystem. Note that the antisymmetric state
is decoupled in the isolated system and can be populated
only by decay mechanisms or by an asymmetric drive. From
now on it suffices to consider only the effective three-level
system, whose state belongs to the Hilbert space spanned by
{|G〉,|S〉,|D〉}.

We will give the explicit form of the eigenstates of the
Hamiltonian and the corresponding eigenenergies in the case
of resonance between the atomic and plasmonic systems,
i.e., when ωna = ω0. The states of the hybrid system can be
expressed in the Dicke basis for the atomic subsystem, and in

the Fock basis {|k〉}∞k=0 for the nanoantenna, with k denoting
the number of photons in the system.

Each state can be characterized by the total number of
excitations n to which it corresponds. For instance, n = 0
stands for the total ground state of the system |ψ0〉 = |G,0〉
of energy E0 = 0. For a single excitation n = 1 we have two
eigenstates and eigenvalues:

|ψ1,±〉 = ±|S,0〉 + |G,1〉, (C2)

E1,± = h̄ω0 ∓
√

2h̄κ. (C3)

For the numbers of excitations n � 2 there are three eigenstates
for a given n:

|ψn,±〉= √
n − 1|D,n − 2〉± √

2n − 1|S,n − 1〉 + √
n|G,n〉,

(C4)

En,± = nh̄ω0 ∓
√

2(2n − 1)h̄κ, (C5)

|ψn,0〉 = √
n|D,n − 2〉 − √

n − 1|G,n〉, (C6)

En,0 = nh̄ω0. (C7)

For visibility, the states are not normalized. Note that the
eigenstates of the total system cannot be written as a product
of states of atomic and nanoantenna subsystems. This is a clear
sign of the strong interaction of the subsystems that leads to
their entanglement. The latter is a sole quantum feature which
cannot be accounted for with the semiclassical formalism. Our
condition for the validity of the semiclassical approach can
now be seen from a different perspective: the semiclassical
description can be applied only if entanglement is present in
the system with negligible probability.

The eigenstates attain a more complicated form if the
two-level systems are not in resonance with the nanoantenna
(ωna �= ω0). Then, the energy diagram depends strongly on
the detuning; see again Fig. 6. In the strongly off-resonant
limit, the interaction becomes negligible and the atomic and
nanoantenna subsystems behave independently. Consequently,
the eigenenergies converge toward the unperturbed values.

For large numbers of excitations, the eigenstates become
approximately separable:

|ψn,±〉 ≈ (|D〉 ±
√

2|S〉 + |G〉) ⊗ |n〉, (C8)

|ψn,0〉 ≈ (|D〉 − |G〉) ⊗ |n〉, (C9)

with the interaction energies �En,± = ∓2h̄κ
√

n, �En,0 = 0.
This means that in the limit of large field intensities, even
though the field has a strong influence on the atoms, the atoms
approximately do not affect the field and the semiclassical
approach can be applied again.
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S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke,
and A. Forchel, Nature (London) 432, 197 (2004).

14T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. J.
Kippenberg, K. J. Vahala, and H. J. Kimble, Nature (London) 443,
671 (2006).

15J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov,
Phys. Rev. B 77, 165301 (2008).

16R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua,
Phys. Rev. B 83, 235406 (2011).

17P. Meystre and M. Sargent, Elements of Quantum Optics (Springer-
Verlag, Berlin, 1999).

18J. Zuloaga, E. Prodan, and P. Nordlander, ACS Nano 4, 5269
(2010).

19A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, Nano Lett.
11, 2318 (2011).
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