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Photon energy dependence of circular dichroism of the Au(111) surface state
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Through relativistic photoemission calculations for the Au(111) surface state at the Fermi level, we study the
photon energy dependence of circular dichroism. The dichromatic signal (DS) pattern changes 23 times with
photon energies between 7 and 100 eV, and we have found 13 different patterns in the k‖ map at the Fermi level for
the DS from the Au(111) surface state with normal incidence light. We show that the photon energy dependence
of DS is very complex even in the simplest case. The sign change in the circular dichroism as a function of
photon energy is related to the relative phases of the complex expansion coefficients of different outgoing partial
waves in a time-reversed low-energy electron diffraction state. With off-normal incidence, the z component of
the incoming photon field is dominant, and the fine structure seen in the DS in the normal incidence case is lost
very rapidly, moving from a normal to an off-normal incidence. We also report that the Rashba split surface state
of Au(111) has a significant component of d-type orbital due to relativistic effects and the computational setup
used.
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I. INTRODUCTION

In novel low-dimensional and topological materials, many
fundamental properties of electronic structure arise from a
relativistic origin, e.g., from variations of spin-orbit coupling
(SOC). This poses new challenges to spectroscopic methods,
such as angle resolved photoemission spectroscopy (ARPES),
where one requires sophisticated experimental and theoretical
tools in order to access finer energy scales and to probe orbital
character and spin polarization in retracing the initial state of
the emerging photoelectrons. Controlling the handedness of
the ingoing circularly polarized light brings about the circular
dichroism, which together with selection rules provides a
handle to distinguish between certain special features that are
split due to a broken symmetry by, e.g., SOC.

Schönhense has investigated the origin of circular dichro-
ism in angular distribution (CDAD) in the case of grazing
incidence.1 He derived nonrelativistic theoretical expressions
for CDAD from free atoms, adsorbed molecules, and clean
surface of graphite. In the case of graphite, only a pz-type
initial state was considered, and thus the expression for
the CDAD remains quite simple. Schönhense associated the
angular dependence of the DS to the relative phase differences
between two outgoing partial waves with the same quantum
number l. Fecher2 and Fecher et al.3 have done similar studies,
where the angular dependence of the DS has been investigated.

Instead of less known and more involved novel materials,
we choose the relatively simple and widely studied Au(111) as
a model system for determining the origin of the dependence
of DS on photon energy. Especially, the splitting of the surface
state has been studied by LaShell et al.,4 Reinert et al.,5

Nicolay et al.6 and also in Refs. 7 and 8. Guided by the existing
experimental observations, we scrutinize the DS as a function
of photon energy with normal and off-normal incidence of
light.

Studying normal incidence of light with pz-type ini-
tial states readily requires relativistic calculations, as the
nonrelativistic analysis provides vanishing CDAD. In the
present calculations, the ARPES intensity is calculated in

a fully relativistic way by utilizing the Dirac equation. For
the photoemission process, the one-step model and multiple
scattering theory are utilized. The surface potential is modeled
using the Rundgren-Malmström barrier.9 Although the spectra
have been calculated with a fully relativistic code, the results
are analyzed using the nonrelativistic theory, where relativistic
terms are explicitly expressed as separate terms. The purpose
of this is to make the role of relativistic effects more
transparent.

We relate the change of the sign in the DS as a function
of photon energy to the zeros of the DS . We develop a
toy model for the DS , starting from the one-step model for
the ARPES intensity, and use it to search the origin of the
zeros of the normalized dichromatic signal (DN ). We show
that the photon energy dependence of DN can be associated
with the relative phases of the complex expansion coefficients
of different outgoing partial waves. Our study also shows
that, due to relativistic effects and normal incidence of light,
there is a significant initial state d-type contribution to the
photoemission intensity from the Au(111) Rashba split surface
state.

II. THEORY

A. Photoemission intensity

In the one-step model,10 the ARPES intensity for photo-
electrons with energy εf and momentum k‖ can be expressed
according to Caroli et al.,11

I (k‖,εf ) = − 1

π
I〈k‖,εf |G+

2 �G+
1 �†G−

2 |k‖,εf 〉. (1)

Here, G±
2 and G+

1 denote the retarded (G+) and advanced
(G−) single-particle Green’s functions for the electron (G2)
and for the hole (G1). The final state is expressed as a time-
reversed low-energy electron diffraction (LEED) state, |�f 〉 =
G−

2 |k‖,εf 〉. Using spectral function representation,

− 1

π
IG+

1 =
∑

i

Bii |�i〉〈�i |, (2)
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where the Green’s function for the photohole is written as a
sum (integral over kz for all bands) of spectral functions Bii

over initial states. The ARPES intensity can now be expressed
formally as a product of the spectral function and the matrix
elements:

I (k‖,εf ) =
∑

i

Bii |〈�f |�|�i〉|2. (3)

The operator � mediates the coupling to the electromag-
netic field,

� = e

2mc
(A · p + p · A) − e� + e2

2mc2
A · A, (4)

where p is the momentum operator, and A denotes the
vector and � the scalar potentials, respectively. Applying the
Coulomb gauge, ∇ · A = 0, assuming � = 0 and neglecting
the term A · A, one ends up to the dipole approximation for
the interaction operator:

� ≈ A · p
c

= iωA · r
c

. (5)

Here atomic units e = h̄ = m = 1 are used.

B. Dichromatic signal

The DS is defined as the difference between the intensities
excited with right- and left-handed polarized light

DS = IRCP − ILCP . (6)

Using Eq. (3), the expression for the DS in the sample’s
coordinate becomes12

DS = − a2

2c2

∑
i

BiiI
{

cos φ sin θM
(z)
f i M

(y)
if

− sin φ sin θM
(z)
f i M

(x)
if + cos θM

(x)
f i M

(y)
if

}
, (7)

where M
(j )
if = 〈�f |ĵ · p|�i〉, and ĵ = x̂,ŷ, or ẑ. θ and φ are

the polar and azimuthal angles of the incoming photon,
respectively, and a is the amplitude of the vector potential.
Thus, with normal incidence of light, DS simplifies to

DS = − a2

2c2

∑
i

BiiI
{
M

(x)
f i M

(y)
if

}
. (8)

C. Toy model for dichromatic signal

The initial and final states can be written in spheri-
cal harmonic representation, according to Schönhense1 and

Pendry,10

�i =
∑
lm

A1lmRl(kir)Ylm(θ,φ),

(9)
�f =

∑
l′m′

A2l′m′Rl′(kf r)Yl′m′ (θ,φ).

Here, the complex expansion coefficients

A1lm = |A1lm| exp(iξlm) and
(10)

A2l′m′ = |A2l′m′ | exp(iξl′m′)

contain the corresponding relative phases ξlm and ξl′m′ of the
partial waves l,m and l′,m′. In order to obtain the DS with
normal incidence of light, the two matrix elements in Eq. (8)
have to be calculated. For M

(x)
if we get

M
(x)
if = 〈�f |x̂ · p|�i〉 = 〈�f |px |�i〉 = 〈�f |m d

dt
x|�i〉

= im

h̄
〈�f | [H,x] |�i〉 = im

h̄
〈�f |Hx − xH |�i〉

= im(Ef − Ei)

h̄
〈�f |x|�i〉 = imω〈�f |x|�i〉

= imω
∑
ll′

∑
mm′

A∗
2l′m′A1lm

∫ ∞

0
r3dr R∗

l′(kf r)Rl(kir)

×
∫ π

0
sin θ dθ

∫ 2π

0
dφ Y ∗

l′m′S(θ,φ)Ylm, (11)

where S(θ,φ) = sin θ cos φ. Similarly, it can be written for
matrix element M (y)

if , for which S(θ,φ) = sin θ sin φ [and M
(z)
if ,

for which S(θ,φ) = cos θ ]. Using Eq. (11) to write for the two
matrix elements in Eq. (8), using m = 1 for the mass and
simplifying the equation, we get

M
(j )
if = iω

∑
lj l

′
j

∑
mj m

′
j

A∗
2l′j m

′
j
A1lj mj

R(j )D(j ), (12)

where we have used shorthand notations for the radial part

R(j ) = Rlj l
′
j
=

∫ 2π

0
r3drR∗

l′j
(kf r)Rlj (kir) (13)

and the angular part

D(j ) = Dlj mj l
′
j m

′
j
=

∫ π

0
sin θ dθ

∫ 2π

0
dφ Y ∗

l′j m
′
j
S(θ,φ)Ylj mj

.

(14)

Finally, combining Eqs. (12)–(14), we get the following form
for the product of the matrix elements:

M
(x)
f i M

(y)
if = −iω

∑
lx l′x

∑
mxm′

x

A2l′xm′
x
A∗

1lxmx
R(x)∗D(x)∗iω

∑
ly l′y

∑
mym′

y

A∗
2l′ym′

y
A1lymy

R(y)D(y)

= ω2
∑

lx l′x ly l′y

∑
mxm′

xmym′
y

A1lymy
A∗

1lxmx
A2l′xm′

x
A∗

2l′ym′
y
R(x)∗R(y)D(x)∗D(y)

= ω2
∑

lx l′x ly l′y

∑
mxm′

xmym′
y

∣∣A1lymy

∣∣∣∣A1lxmx

∣∣ exp
[
i
(
ξ1lymy

− ξ1lxmx

)]∣∣A2l′xm′
x

∣∣∣∣A2l′ym′
y

∣∣ exp
[
i
(
ξ2l′xm′

x
− ξ2l′ym′

y

)]
R(xy)D(xy), (15)
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where R(xy) = R(x)∗R(y) is a slowly varying function and
D(xy) = D(x)∗D(y). Equation (15) can be used to analyze the
initial and final state effects on the DS . In the present study, we
follow the idea utilized by Gierz et al. for initial-state analysis
for graphene.13

In the following, we apply our toy model for Au(111)
surface state, where we fix the amplitude and the phase of
the initial states. In our case, the initial state can be treated
as a constant because we are investigating the surface state
at the Fermi level for all photon energies. We have denoted
A1lymy

= A1lxmx
= 1 in order to study only the influence of the

final states on the DS . Hence, the difference ξ1lymy
− ξ1lxmx

in
Eq. (15) is also constant and can be neglected. Considering the
slow variance of R(xy), and treating the initial state as constant,
we get for the photon energy dependence of the DS

DS ∝ I

{ ∑
lx l′x ly l′y

∑
mxm′

xmym′
y

∣∣A2l′xm′
x

∣∣∣∣A2l′ym′
y

∣∣

× exp
[
i
(
ξ2l′xm′

x
− ξ2l′ym′

y

)]
D(xy)

}
, (16)

where D(xy) takes care of the dipole selection rules.

III. RESULTS

In the following, we apply fully relativistic calculations to
study the dependence of the DS on the energy of the incoming
photon field. The results of the ab initio calculations are
followed by a decomposition into different excitation channels,
in order to recognize the origin of the observed variations in the
DS . Also the DS with off-normal incidence of light has been
examined, in order to test whether a photon energy dependence
still exists in an off-normal setup.

A. Dichromatic signal

First, we investigate the variation of the DS of the Au(111)
surface state as a function of photon energy. In Fig. 1, the
DS at the Fermi energy in momentum space is shown. The kx

and ky axes are aligned with the K̄-�̄-K̄ and M̄-�̄-M̄ lines of
the two-dimensional Brillouin zone, respectively. A common
feature to all photon energies is a clear splitting of the surface
state due to the Rashba effect. To figure out the basic pattern of
the DS in momentum space, we start with photon energy 7 eV.
At this energy, both the inner and the outer states have threefold
symmetry, with the signs of DS being the same for the inner
and the outer states, which change from positive (negative)
to negative (positive) every 60◦. The DS has six zeros for
both Rashba split states. When increasing photon energy, the
DS changes abruptly, sometimes showing the same pattern as
obtained with photon energy 7 eV. The DS changes 23 times
with photon energies in the range of 7–100 eV, and 13 different
patterns of the DS are found. Threefold symmetry applies to
all photon energies due to our computational setup.

Further understanding to the nature of the DS can be
obtained by investigating different excitation channels sep-
arately. We searched for the origin of the DS by closing
excitation channels from the initial state to the final states,
as Mulazzi et al. did with Cu(111)14 and Scholz et al. with

FIG. 1. (Color online) Obtained changes in the dichromatic signal
with photon energies 7–100 eV. The calculations were done with
normal incidence light. The blue (red) color indicates negative
(positive) signal. Thirteen different patterns for the DS are found,
and the DS changes 23 times in this photon energy range.

Bi2Te3.15 We assumed that the initial state was of pz -type, but
surprisingly only minor effects were seen in the DS and in the
corresponding photoemission intensities when the channels
p-to-s and p-to-d were closed. Instead, a major effect was
seen when the channel d-to-f was closed. As such, our study
shows that the Rashba split surface state of Au(111) has a
significant d-type component and the major contribution to
the photoemission intensity origins from d-type initial states
when normal incidence light is used. Kim et al. reported that
the majority of the local angular momentum of the Au(111)
surface state has d-orbital origin, while a small contribution
is from p-orbitals.16 Lee and Choi investigated the role of
d-orbitals in the Rashba-type spin splitting of Au(111) surface
state, and they reported that, although the surface state of
Au(111) is mainly p type, the Rashba-type spin splitting
originates from d-type states.17 Our investigation confirms this
and also states that the main contribution to the photoemission
intensity in the normal incidence setup is due to the d orbitals.

Considering Eq. (15), the radial part between the initial
state and different final states varies slowly as a function of
photon energy and therefore does not need to be considered
when we are interested in the zeros of the DS . In our photon
energy range, the radial parts may contribute one zero to
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the DS , which is known as the Cooper minimum.18 The
Coulomb phase shifts δl′—which different outgoing partial
waves experience, as discussed by Schönhense1—are also
negligible when considering the zeros of DS .

If the expansion coefficients for the same quantum number
l and opposite quantum numbers m are equal, it is possible to
talk about orbitals. When considering relativistic effects, these
orbitals are no longer meaningful. Strictly speaking, quantum
numbers l and m are not good quantum numbers, and therefore
we use the κ , μ representation. In Schönhense’s model,1 the
final d-states with quantum number m = ±1 are described
as orbitals having a common complex expansion coefficient.
Fecher et al. have also used the orbital representation with
common expansion coefficients.3 In our model, final states
with the same quantum number l and opposite quantum
numbers m cannot be combined together in a similar way
because the complex expansion coefficients—for example the
coefficients for l = 1, m = ±1—are unequal, and thus we need
to have separate coefficients for both states.

B. Origin of the zeros in the DS as a function of photon energy

In the following, we apply our toy model to the surface
state of Au(111). First, we search the important excitation
channels by closing them separately and adapt those which
contribute to the photoemission intensity. When closing the
excitation channels to the final states with l = 3, m = ±3, no
notable changes were seen in the photoemission intensities
or in the DS . On that account, in our toy model, the initial
state is described with l = 2, m = 0, ±1. Considering the
dipole selection rules, the final state is l = 1, m = 0, ±1
or l = 3, m = 0, ±1, ±2. Now, in calculating the matrix
elements M

(x)
f i and M

(y)
if in Eq. (8), it is evident that they both

contain ten terms. In carrying out the multiplication, we end
up with 100 terms. By holding the initial state constant, the
only factors we need to consider are the final state complex
expansion coefficients A2l′xm′

x
and A2l′ym′

y
, which we took from

our one-step computation. The square of the absolute value of
the expansion coefficient |A2κμ|2 is the probability amplitude
of the final state, having quantum numbers κ and μ. With
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FIG. 2. (Color online) The magnitude |A2κμ| and phase ξ2κμ of
the relativistic expansion coefficients obtained from our one-step
calculation for κ = −2 and κ = 2
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FIG. 3. (Color online) A comparison between the normalized
dichromatic signal obtained with a fully relativistic one-step cal-
culation and our toy model in a fixed k‖ point. The marks in the x axis
are a guide for the eye to notice where the calculated DN and our toy
model have their corresponding zeros.

the coefficients taken from our one-step computation, we can
determine the weights of all possible final states. In Fig. 2, the
magnitude |A2κμ| and phase ξ2κμ of the relativistic expansion
coefficients are shown for κ = −2 and κ = 2. For both κ

values, μ gets values μ = − 3
2 , − 1

2 , 1
2 , 3

2 . The magnitudes
|A2κμ| all have strong photon energy dependence, as clearly
seen in the upper panel in Fig. 2. For both κ values, μ = 1

2 has
the largest value for all photon energies. In the lower panel in
Fig. 2, the corresponding phases ξ2κμ are shown. In the photon
energy range used, the phases change approximately by 30 rad
for κ = −2 and 40 rad for κ = 2. Just looking at a single ξ2κμ

value and its sine or cosine dependent contribution in the DS ,
we see that one ξ2κμ value can produce more than 11 zeros to
the DS . It is also notable that the phases for different quantum
numbers cross one another in the used photon energy range.

FIG. 4. (Color online) The dichromatic signal with different polar
angles of the incoming photon. Photon energy is 10 eV for all polar
angles. The color scaling is similar to Fig. 1. The change in the DS

happens very quickly when the polar angle is increased.
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FIG. 5. (Color online) The dichromatic signal with photon angle
θ = 30◦ for different photon energies. The color scaling is similar
to Fig. 1. Although the photon energy dependence is much more
moderate than seen for the normal incidence setup in Fig. 1, a clear
energy dependence is still evident.

The 100 terms obtained from Eq. (8) contain factors that are
proportional to exp[i(ξ2l′xm′

x
− ξ2l′ym′

y
)]. Here, ξ2l′xm′

x
and ξ2l′ym′

y

are relative phase factors of two outgoing waves with different
quantum numbers. In Fig. 3, a comparison between the normal-
ized dichromatic signal DN = (IRCP − ILCP )/(IRCP + ILCP )
from a fully relativistic one-step calculation and our toy model
from Eq. (16) in a fixed k‖ point is shown. As seen in the figure,
our model picks out the zeros of the DN almost perfectly.
The DN calculated with the intensities IRCP and ILCP has
10 zeros. Our toy model has one extra zero around 90 eV,
although a similar structure is visible in the DN , lying a little
bit lower with respect to the x axis. Differences seen between
the two graphs in the positions of the zeros are due to our
approximation for the initial-state expansion coefficients and
also for the selection of the possible initial and hence the final
states. The difference seen in the magnitude of the DN and our
toy model is not meaningful because we are only interested
in the zeros of the DN ;i.e., the change of the sign in the DN .
Similar calculations were made in different k‖ points, and the
same kind of agreement between the calculated DN and our
toy model was discovered.

C. Off-normal incidence

With off-normal incidence of light, all of the matrix
elements in Eq. (7) contribute to the DS , making it a rather
complicated function. In Fig. 4, the DS with different polar
angles of the incoming photon field is shown. The photon
energy is 10 eV and the azimuthal angle φ = 0◦ for all cases.
The DS seen with normal incidence of light is very rapidly
altered when moving from normal incidence to an off-normal
incidence setup. With polar angle θ = 4◦, the pattern seen in
the normal incidence case is still visible, but the separately seen
Rashba split states begin to get blurry. This effect is due to the
z component of the incoming photon field, which appears to
dominate the photoemission process. This strong polar angle
dependence results in high requirements for experimental
measurements. When changing from normal incidence to
off-normal incidence setup, the z component of the incoming
photon field Az increases as the polar angle increases, and
the terms in Eq. (7) with matrix element M

(z)
f i determine the

DS . To test whether the photon energy dependence still exists
in an off-normal setup, we calculated the DS with photon
angles θ = 30◦, φ = 0◦ for different photon energies. The
obtained results are shown in Fig. 5. As seen in the figure,
with off-normal incidence of light, the multiple patterns of the
DS seen in the normal incidence setup in Fig. 1 are lost, and
variation of the DS as a function of photon energy is much
more moderate, but a clear photon energy dependence is still
evident.

IV. CONCLUSIONS

Our investigation shows that the photoemission intensity
from the Rashba split surface state of Au(111) in a normal
incidence setup originates mainly from d-type orbitals due
to the relativistic effects. We have also shown that the zeros
of the DS as a function of photon energy are related to the
relative phase differences between different outgoing partial
waves. Excluding different excitation channels suggest that the
initial states with quantum numbers l = 2, m = 0, ±1 give the
dominant contribution to the DS . Applying the dipole selection
rules and our toy model with fixed amplitude and phase for
the initial state, we end up to a toy model with 100 terms.
This model gives a very good description of the DS , and leads
to an excellent match for the zeros of the DS as compared
to a fully relativistically calculated spectra. Hence, the factor
determining the change of the sign of the DS is the relative
phase between the different outgoing partial waves.
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