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Enhancement of photonic density of states in finite graphene multilayers
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We consider the optical properties of finite systems composed of a series of graphene sheets separated by thin
dielectric layers. Because these systems respond as conductors to electric fields in the plane of the graphene
sheets and as insulators to perpendicular electric fields, they can be expected to have properties similar to
those of hyperbolic metamaterials. We show that under typical experimental conditions graphene/dielectric
multilayers have enhanced Purcell factors, and enhanced photonic densities of states in both the terahertz (THz)
and midinfrared (mid-IR) frequency range. These behaviors can be traced to the coupled plasmon modes of the
multilayer graphene system. We show that these results can be obtained with just a few layers of graphene.
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I. INTRODUCTION

Hyperbolic metamaterials (HMMs) are artificially struc-
tured materials that have hyperbolic light dispersion, leading
to an enhanced photonic density of states.1–5 One approach
that is used to design a HMM is to consider superlattices
with alternating metal and dielectric layers and subwavelength
periods. When described as a homogenous material using an
effective medium approximation, the dielectric constants of
such a superlattice are6,7

ε‖ = ρεd + (1 − ρ)εm, (1)

ε⊥ =
(

ρ

εd

+ 1 − ρ

εm

)−1

, (2)

where ‖ and ⊥ refer to the directions parallel and perpendicular
to the interfaces, ρ is the dielectric to metal thickness ratio,
and εd(m) is the dielectric function of the dielectric (metal)
constituent. By proper choice of materials, thickness ratio,
and frequency, one can engineer a material with a hyperbolic
dispersion relation, i.e., a system in which ε‖ and ε⊥ have
opposite signs over a wide range of frequencies.

HMMs are important in photonic engineering,8 espe-
cially in applications to subwavelength imaging9,10 and
confinement.11 Near-field thermal properties may also be
engineered using HMMs for applications such as energy har-
vesting and thermal management.12 One can also use HMMs to
control luminescence via the Purcell effect,4,13 which reflects
the dependence of spontaneous emission on the surrounding
density of photonic states. In free space, the density of photonic
states is proportional to ω2. In the presence of an interface,
the density of states can be enhanced by evanescent modes
close to the interface. The size of the enhancement can be
a few orders of magnitude, with most of the states localized
close to the interface, leading to a more rapid excited state
decay and enhanced photoluminescence of nearby atoms;
this is the origin of the Purcell enhancement factor. HMMs
can have particularly strongly enhanced photonic densities of
states.

There are two types of HMMs depending on which
components of the dielectric tensor are negative. Type I HMMs

have a metal-like perpendicular dielectric constant (ε⊥ < 0,
ε‖ > 0) while type II HMMs have a metal-like parallel
dielectric constant (ε‖ < 0, ε⊥ > 0). As an alternative to the
alternating layer strategy,5,14 HMMs can also be constructed
by embedding metallic nanowires in a dielectric medium.15,16

Graphene, a monolayer of graphite, has long-lived long-
wavelength plasmons, which are tunable via gate voltage.17–21

The possibility of gate tuning is one attractive feature of using
graphene for the metallic layers in an HMM. Indeed, infinite
graphene/dielectric stacks have recently been predicted to
have a large Purcell factor and a negative22 ε‖ and arrays of
graphene ribbons have been predicted to perform favorably as
a hyperlens.23 Recent calculations of Fresnel coefficients and
power spectra in the terahertz (THz) frequency regime provide
further evidence of graphene’s suitability as a component of
HMMs.24 Here, we report a study of finite stacks of graphene
layers in both the THz and midinfrared (mid-IR) frequency
ranges, and show that even for a small number of layers,
graphene/dielectric stacks retain desirable HMM properties,
in particular an enhanced photonic density of states.25 We
emphasize that only in systems composed of a small number
of graphene sheets will it actually be possible to modify the
carrier densities and hence the plasmon frequencies of individ-
ual graphene layers via the electric field effect.26 (Screening
prevents a back gate from influencing layers far from the
substrate.27)

We have also found that while having a dielectric between
the graphene layers is important in order to prevent interlayer
tunneling, its direct role in modulating optical properties
in tuning HMM effects for electromagnetic radiation in the
THz regime is minimal. We find that graphene HMMs boast
a large photonic density of states enhancement for a wide
range of frequencies, and that the properties are robust to the
dielectric spacer thickness, Fermi energy, and elastic mean
free path. We focus on wave-vector-resolved transmission
coefficient and photonic density of states, which show the
presence of modes within the metamaterial that are evanescent
in free space. The enlarged photonic density of states leads
to a Purcell enhancement that is greatly improved relative to
metal/dielectric layered HMMs.
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We note that we have assumed equal carrier densities in all
of the graphene layers. This is an unrealistic approximation
for multilayer graphene samples utilizing the electric field
effect to control the carrier density.28 However, it is possible to
achieve approximately equal carrier densities by using doping
techniques,29,30 and in this case, we expect our assumption to
be valid.

Our paper is organized as follows. We first describe the
electromagnetic Green’s functions and transfer matrices we
use to perform calculations. We then characterize graphene
HMMs by evaluating the reflection coefficients, showing
that the anticipated HMM features are already realized at
quite small graphene layer numbers. We then calculate the
transmission coefficient and wave-vector-resolved photonic
density of states for an N = 6-layer graphene-based HMM to
illustrate the dependence of various properties on controllable
parameters. Finally, we evaluate the photonic density of states
and Purcell coefficient for finite graphene-based HMMs in
both the THz and the mid-IR regime.

II. THEORETICAL FORMULATION

Maxwell’s equations in a uniform medium with dielectric
constant ε and permittivity μ = 1 are conveniently solved
using electromagnetic Green’s functions defined by the dif-
ferential equation31,32

∇ × ∇ ×
↔
G

EM

0 (r) − εω2

c2

↔
G

EM

0 (r) = δ(r). (3)

This function is called the dyadic Green’s function to reflect the
property that a source oriented in one direction can in general
result in electric and magnetic (EM) fields in any direction.
In free space, the electric and magnetic Green’s functions
are the same. The electric and magnetic fields are obtained
by integrating the electromagnetic Green’s functions over the
sources:

E(r) = 4πiω

c2

∫
dr′ ↔

G
EM

0 (r − r′)J(r′), (4)

H(r) =
∫

dr′ ↔
G

EM

0 (r − r′)M(r′), (5)

where J includes all free currents and M(r) = (4π/c)∇ × J(r)
can be thought of as the magnetization they produce.

The electromagnetic local density of states (LDOS) can
also be calculated from the Green’s function31–33

ρ(ω,z) = ω

πc2
Im tr

↔
G, (6)

where Im denotes the imaginary part and tr denotes the trace.
In our planar geometry, ρ depends only on the coordinate
z, which measures position relative to the graphene/dielectric
multilayer. In a nonuniform medium, the electric and magnetic
Green’s functions will be different, and the total density of
states is the sum of the electric and magnetic components,
ρ(ω,z) = ρE(ω,z) + ρH (ω,z).31

The Green’s functions defined in Eq. (3) are those of a
uniform medium, while the expression for the LDOS (6)
depends on the Green’s function in the nonuniform medium.
We will assume that the top surface of an HMM of total
thickness L is located at z = 0, and the regions z > 0 and
z < −L are free space (ε = 1). The presence of the HMM can

then be accounted for by writing the total electromagnetic field
at z > 0 as the sum of the incident and reflected parts. We find
that the electric Green’s function for z > 0 can then be written
as

↔
G

E

(k,z,z′; ω) = i

2K
[(ŝ ŝ + p̂−p̂−)e−iK(z−z′)θ (z′ − z)

+ (ŝ ŝ + p̂+p̂+)eiK(z−z′)θ (z − z′)
+ (rs ŝŝ + rpp̂+p̂−)eiK(z+z′)], (7)

where k is the two-dimensional in-plane wave vector, K =√
εω2/c2 − k2 is the out-of-plane wave vector, and rα for α =

s,p are the reflection coefficients for the two polarizations
of EM waves. Here and below, we set ε to 1 for an HMM
embedded in a vacuum. The polarization vectors are

ŝ = 1

k
(kyx̂ − kxŷ),

p̂± = 1√
k2 + K2

(∓Kk̂ + kẑ),

denoting s (TE) and p (TM) polarized light. The ± index
on p̂ distinguishes upward moving and downward moving
waves. The magnetic Green’s function can be obtained from
the electric Green’s function by replacing rs ↔ rp.31 We now
see that the Green’s function for z > 0, and therefore the
LDOS, is determined solely by the reflection coefficients. The
LDOS is

ρ(ω,z) = ω

πc2
Re

{∫
dk

2π

k

2K

[
4+ 4k2

εω2/c2
(rs + rp)e2iKz

]}
,

(8)

where K =
√

ω2/c2 − k2 and ε = 1 when the HMM is in
vacuum. The reflection coefficients, rs and rp, are functions of
k and are explicitly provided below.

Below we also consider the wave-vector resolved LDOS,
ρ(q,ω,z), which separates contributions to the LDOS from
different wave vectors:

ρ(k,ω,z) = ω

πc2
Re

{
2

K

[
1 + c2k2

εω2
(rs + rp)e2iKz

]}
.

(9)

The vacuum LDOS can be recovered by setting the reflection
coefficients to zero:

ρ0(k,ω,z) ≡ ρ0(k,ω) = 2ω

πc2

θ (ω/c − k)√
εω2/c2 − k2

, (10)

ρ0(ω,z) ≡ ρ0(ω) = ω2

π2c3
, (11)

which are independent of z. Note that in the absence of an
interface, there is no contribution to the DOS from wave
vectors k > ω/c.

The reflection coefficients rs and rp for s- and p-polarized
light, respectively, are defined as the ratio of the reflected to
the incident electromagnetic field at the interface. They are
determined entirely by the boundary conditions imposed by
Maxwell’s equations:(

E2↑
E2↓

)
= M

s(p)
12

(
E1↑
E1↓

)
, (12)
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where the indices 1 and 2 refer to the region above and below
a graphene sheet, and ↑ and ↓ denote the upward moving
and downward moving modes, respectively. The matrices
connecting the fields are

Ms
12 = 1

2

(
1 + Q1

Q2
− 4πσω

c2Q2
1 − Q1

Q2
− 4πσω

c2Q2

1 − Q1
Q2

+ 4πσω
c2Q2

1 + Q1
Q2

+ 4πσω
c2Q2

)
, (13)

M
p

12 = 1

2

(
1 + ε2Q1

ε1Q2
+ 4πσQ1

ωε1
1 − ε2Q1

ε1Q2
− 4πσQ1

ωε1

1 − ε2Q1
ε1Q2

+ 4πσQ1
ωε1

1 + ε2Q1
ε1Q2

− 4πσQ1
ωε1

)
.

(14)

The two-dimensional conductivity of a graphene is given
by34–40

σ (ω) = 2e2

h

[
i

εF

h̄ω + ih̄/τ
+ i

4
ln

∣∣∣∣h̄ω − 2εF

h̄ω + 2εF

∣∣∣∣
+ π

4
θ (h̄ω − 2εF )

]
. (15)

Here, vD is the Dirac velocity of graphene, εF = h̄vD

√
πn

is the Fermi energy as a function of carrier density n, τ

is the transport time (which depends on the mobility), and
θ (x) is the step function that specifies the threshold for
interband transitions at large ω. This expression ignores the
nonlocal response and is appropriate for k → 0. In practice,
this expression is found to work well away from the onset
of interband transitions, which occurs when h̄ω ≈ 2EF .40

Inserting a transfer matrix for each graphene layer, and one
propagation matrix

Pi =
(

e−iQidi 0
0 eiQidi

)
(16)

for each dielectric layer of thickness di , the total transfer matrix
is a product of the component matrices,

Ms(p) =
∏
j

PjM
s(p)
j−1,j . (17)

The reflection coefficient rs(p) and transmission coefficient ts(p)

are obtained from these expressions by solving(
0

ts(p)

)
= Ms(p)

(
rs(p)

1

)
. (18)

III. OPTICAL PROPERTIES

The Purcell enhancement factor is defined as the ratio of
the total radiation rate of a unit dipole source to the radiation
rate of the dipole in vacuum:7,41

b = 1 + 3

2ω/c
Re

{∫ ∞

0

dk k

K

[
f 2

⊥
k2rp

ω2/c2

+ 1

2
f 2

‖

(
rs − K2

ω2/c2
rp

)]
e2iKz

}
, (19)

where z is the surface to dipole distance, and f‖ and f⊥ are
the components of the dipole along the directions parallel and
perpendicular to the HMM layers, respectively.

In the effective medium approximation, the enhanced
Purcell effect can be traced to the nonzero imaginary part of the
reflection coefficient in the large k limit, k/(ω/c) → ∞.7 In

FIG. 1. (Color online) Real (top) and imaginary (bottom) parts
of the reflection amplitudes for s (left) and p (right) polarized EM
waves on graphene HMMs with different numbers of layers N . The
parameters used for this calculation were frequency f = 1.0 THz
(h̄ω = 4.1 meV), n = 4 × 1012 cm−2 (Fermi energy EF = 0.23 eV)
in every layer, μ = 50,000 cm2/Vs for graphene, d = 10 nm for the
dielectric layer thicknesses, and ε = 3.9 for their dielectric constant.

real systems, the finite period of the HMM limits the maximum
value of k, but the signature of a nonzero imaginary part of
the reflection coefficient for k > ω/c remains. These modes
are evanescent in the vacuum on either side of the system,
but propagate within the structure, as demonstrated by the
enhanced transmission coefficient.42

In Fig. 1, we plot the reflection coefficients for s- and
p-polarized light as a function of wave vector normalized
to frequency. For s-polarized light, the number of graphene
layers has little effect. For p-polarized light, a greater number
of layers leads to more peaks of smaller magnitude while
the general features remain intact, including the presence
of a nonzero imaginary part of the reflection coefficient up
to k ∼ 200ω/c. For the same parameters, Fig. 2 shows the

FIG. 2. (Color online) (a) Magnitude squared of the transmission
amplitudes for p-polarized light on six layers of graphene HMM
with the same material parameters as in Fig. 1 and ω ranging from
h̄ω = 4.0 meV (f = 1.0 THz) to h̄ω = 165 meV (f = 40 THz),
corresponding to the frequencies shown as colored lines in (b). (b) The
logarithm of the magnitude squared of the transmission coefficient
is shown as a function of frequency in units of Fermi energy and
wave vector in units of Fermi wave vector. The Fermi energy is
233 meV. Overlayed on this plot are the threshold frequencies for
interband transitions (solid grey lines) and the frequency range of
bulk plasmons in graphene superlattices (solid black lines).
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transmittance versus parallel wave vector. Various values of
frequency ω are considered. For both s- and p-polarized light,
a significant fraction of the electromagnetic wave is transferred
through the structure at k < ω/c. This is due to the fact that the
wavelength is much larger than the total thickness, λ � Nd,
for N = 6 layers each of thickness d = 10 nm. We also observe
finite transmission when k > ω/c for both polarizations. As
the frequency increases, the high-k transmission coefficient
decays more rapidly for s-polarized radiation compared to
p-polarized radiation. This decay is due to the decreased
wavelength, and is similar to the behavior of a uniform
dielectric. On the other hand, the transmission coefficient for
p-polarized radiation has several sharp peaks when k > ω/c.
A large value of |tp|2 corresponds to t = E2↓/E1↓ > 1. When
k > ω/c, the ↑ (↓) labels correspond to the evanescent modes
which decay to zero for z → −∞ and z → +∞, respectively.
Any electromagnetic mode with k > ω/c must decay in the
free space on either side of the HMM, so E1↑ → 0, yielding
peaks at electromagnetic modes of the HMM.

The peaks in transmission for p-polarized radiation are
obtained in the same regime where there are peaks in the
imaginary part of the reflection coefficient (see Fig. 2). Such
features are not observed for s-polarized radiation, which does
not excite plasmon resonances since the electric field and
parallel wave vector are perpendicular. These peaks reflect
the coupled plasmon modes in the graphene layers,43 which
have energies bounded by the dashed black lines in Fig. 2(b).
These modes have been predicted and observed in 2DEG su-
perlattices previously,44–48 and are usually discussed in terms
of instantaneous intra and interlayer Coulomb interactions,
an approximation that is reliable in the large k regime. In
the context of HMMs, these are sometimes called high-k
propagating modes42 and have application in subwavelength
confinement and imaging.9 As the frequency is increased, the
transmission of p-polarized radiation is enhanced, with an
optimal value at around 40 THz (165 meV), close to the Fermi
energy. For frequencies above the Fermi energy, the photon
energy is above the maximum plasmon energy,43,45,46,48 and
all high-k modes disappear.

The desirable properties of HMMs stem from their en-
hanced LDOS at wave vector k > ω/c. The LDOS will be a
function of frequency ω and distance z above the graphene
HMM. The wave-vector-resolved LDOS is shown in Fig. 3 for
the same parameters as in Figs. 1 and 2 and for two different
values of the distance z. As expected, the LDOS at large z

(dashed lines) decays more rapidly at large wave vector due to
the weak influence of evanescent modes far from the surface
of the HMM. We also notice that the LDOS enhancement is
greater for smaller frequencies, in spite of the opposite trend
in the transmission coefficient for p polarization [see Fig.
2(b)]. This is also an expected trend, and is due to the 1/ω

dependence of the LDOS, which is apparent in the Purcell
factor, Eq. (19). In addition to the overall larger LDOS, the
peaks in the LDOS are smeared out for smaller frequencies
because h̄τ−1 ≈ 0.7 meV is held constant.

One must be careful at large wave vectors (k ≈ kF ) where
the local approximation for the conductivity of graphene,
Eq. (15), becomes questionable.34 We have found that the
LDOS decays before reaching k = kF for frequencies above
≈4 meV at 10 nm, and for all frequencies studied here

FIG. 3. (Color online) The LDOS for a six layer graphene HMM
with the same material parameters as Fig. 1 and different values of ω

ranging from h̄ω = 1.03 meV (f = 0.25 THz) to h̄ω = 10.34 meV
(f = 2.5 THz), corresponding to the frequencies shown in the legend.
The solid and dashed lines correspond to distances of z = 10 nm and
1000 nm above the surface of the HMM, respectively. Values of
(ω/c)mfp ≈ 0.003 to 0.03 for frequencies shown on this plot.

at 1 μm. At smaller frequencies and distances close to
the interface, the calculation may become unreliable unless
nonlocal corrections to the conductivity are made. Nonlocal
effects are known to provide a large wave-vector cutoff of the
LDOS enhancement.49 In the ballistic limit, kmfp � 1 (mfp

is the elastic mean-free path for electrons), nonlocal effects
are important when ω > vDk, where vD is the Dirac velocity
of electrons. This limit reduces to k/(ω/c) < 300.

The other parameters in the model are the period of the
graphene/dielectric superlattice, the carrier density, and the
mobility of the graphene sheets. For simplicity, we have
assumed that all graphene sheets have the same carrier density
and mobility. The former assumption is unrealistic when
carriers are induced by gates, as mentioned previously, but does
not influence properties in an essential way. Figure 4(a) shows
the dependence of the LDOS on both wave vector and period d.
The calculations were performed for a distance of z = 50 nm
from the surface. The LDOS is only weakly dependent on d

for features at small k; this is because for the THz regime
under consideration, d is always much smaller than λ (λ ∼
100 μm for the frequencies studied here). However, there is
a noticeable enhancement of the high-k features in the LDOS
as d decreases due to the dependence of the transfer matrix
on the combination kd, which becomes comparable to 1 at
k/(ω/c) ∼ 500 for d = 10 nm and k/(ω/c) ∼ 5000 for d = 1
nm. Figure 4(b) shows the logarithm of the LDOS versus
Fermi energy and k/(ω/c). The dependence again is weak, but
as the Fermi energy decreases, there is an enhancement when
ω becomes comparable to EF . For smaller Fermi energies,
we expect that our local approximation for σ (ω) breaks down.
In realistic multilayers that have carriers induced by gates, the
density will normally be low in some layers. Figure 4(c) shows
the logarithm of the LDOS vs h̄τ−1 and k/(ω/c). Again, the
dependence is relatively weak, however, there is a noticeable
enhancement of the LDOS as τ decreases. This is probably
due to stronger absorption in the graphene planes as the real
part of the conductivity becomes larger.
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FIG. 4. (Color online) The logarithm of the LDOS at z = 50 nm
as a function of parallel wavevector divided by vacuum wavevector,
k/(ω/c), and (a) the distance between graphene sheets, d , for fixed
Fermi energy EF = 234 meV and relaxation time τ = 10−12 s; (b)
Fermi energy, EF , for fixed d = 10 nm and τ = 10−12 s; (c) inverse
relaxation time, τ−1 for fixed EF = 234 eV and d = 10 nm. For all
plots, h̄ω = 4.1 meV and there are six layers of graphene separated
by a dielectric with ε = 3.9. The dashed line in (c) corresponds to
kmfp = 1. In (a) and (b), kmfp = 3.7 on the right-hand side of the
figure.

The Purcell factor depends not on the wave-vector-resolved
LDOS, but on the total LDOS, integrated over all wave vectors.
In Fig. 5(a), we show the integrated LDOS normalized to the
vacuum LDOS versus z for different values of ω. As expected,
the normalized LDOS decays away from the surface, and will
reach a value of 1 for z � λ. We also see that the normalized
LDOS is larger for smaller values of ω. Figure 5(b) shows the
dependence of the normalized LDOS as a function of both z

and ω for six layers of graphene with n = 4 × 1012 cm−2. We

FIG. 5. (Color online) (a) The integrated LDOS as a function of
z for several values of ω as indicated in the legend. (b) The logarithm
of the integrated LDOS as a function of ω and z. For both (a) and
(b), the system is six layers of graphene with n = 4 × 1012 cm−2 and
μ = 50 000 cm2/Vs separated by 10 nm of dielectric with ε = 3.9.

again note that for small ω our local approximation for the
conductivity of graphene is questionable.

Next, we calculate the Purcell factor of a ten-layer graphene
HMM (total thickness 100 nm) for the parameters h̄ω =
4.1 meV, n = 4 × 1012 cm−2, μ = 50 000 cm2/Vs, and ε =
3.9. Figure 6 shows the Purcell factor calculated for the two
orientations of a unit dipole: perpendicular to the surface

FIG. 6. (Color online) The Purcell factor as a function of z for
a graphene HMM. The inset shows the Purcell factor as a function
of z for a metal/dielectric HMM and a metallic film. All three have
100 nm total thickness. The graphene HMM is composed of ten layers
of 10 nm each, having the same parameters as in Fig. 5 and at h̄ω =
4.1 meV. The metal/dielectric HMM has ten unit cells each composed
of 5 nm of metal (εm = −27.5 + 0.31i) and 5 nm of dielectric (εd =
6.7), and is at a frequency of h̄ω = 1.65 eV. The metallic film has
the parameters of the metallic part of the metal/dielectric HMM and
is at the same frequency. In both the main figure and the inset, the
solid lines are for a dipole oriented parallel to the HMM layers and
the dashed lines are for a dipole perpendicular to the HMM layers.
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(dashed) and parallel to the surface (solid lines). In the inset of
Fig. 6, we show the calculation of the Purcell factor for 100 nm
of both a metal/dielectric HMM (green) and metallic film (red).
The metal/dielectric HMM is composed of ten unit cells of
5 nm of metal with dielectric constant εm = −27.5 + 0.31i,
and 5 nm of dielectric with dielectric constant εd = 6.7 at
a wavelength of 750 nm, parameters which are relevant for
Ag/TiO2 multilayers, which have been used as typical HMMs
for experiments and theory.42,50,51 The metallic film has the
parameters for the metal at the same wavelength. Our results
for the Purcell enhancement versus dipole distance are in
agreement with those obtained in Ref. 24 for a semi-infinite
graphene-based HMM. We find that the Purcell factor for
graphene is enhanced at small distances compared to both
the metal/dielectric HMMs and the metal films. However,
one must note that the wavelength of the metal/dielectric
HMM is necessarily different than the wavelength of the
graphene HMMs. Metal/dielectric HMMs are limited to a
frequency regime where the metal has a negative dielectric
response (typically in the optical region of the electromagnetic
spectrum), while the graphene HMMs are limited by the
Fermi energy (typically in the THz to mid-IR region.) Note,
for example, at z = 1 nm, the metal/dielectric HMM has a
Purcell factor ∼102. Keeping the ratio of z to free space
wavelength λ = 2πc/ω for the two metamaterials the same,
the corresponding value of z for the graphene-based HMM
is z ≈ 400 nm. We observe that the Purcell factor is ∼103,
a factor of 10 enhancement compared to the metal/dielectric
HMM.

One obtains a large Purcell enhancement at small distances
for small numbers of graphene layers. Figure 7 shows a
comparison of the Purcell factor for N = 1, 2, 4, 6, and 10
layers of graphene. For one or two graphene layers, the Purcell
factor decays more rapidly. By the time, there are four graphene
layers, the curves are almost identical up to z = 1000 nm.

FIG. 7. (Color online) The Purcell factor as a function of z for a
graphene HMM of 1, 2, 4, 6, and 10 layers, as denoted in the legend.
The Purcell factors for parallel and perpendicular dipoles have been
plotted against different axes for clarity. Solid lines correspond to a
dipole oriented parallel to the surface, with Purcell enhancement given
on the left axis, while dashed lines correspond to a dipole oriented
perpendicular to the surface, with Purcell enhancement given on the
right axis. The parameters of the graphene and dielectric are the same
as in Fig. 5 and at h̄ω = 4.1 meV.

FIG. 8. (Color online) Properties of a highly doped, low mobility
graphene HMM in the mid-IR regime. In both panels, the graphene
layers are separated by 10 nm of dielectric with ε = 3.9. The graphene
layers have a carrier density of 5 × 1013 cm−2 and a mobility of μ =
1000 cm2/Vs. (a) The integrated local density of states as a function of
position z above the top graphene layer. The wavelengths range from
3 to 8 μm, with energies h̄ω indicated in the legend. (b) The Purcell
factor of a unit dipole oriented parallel (solid) and perpendicular
(dashed) to the surface of a ten-layer graphene metamaterial. The
frequency of the oscillating dipole corresponds to those noted in the
legend of (a).

This shows that graphene-based hyperbolic metamaterials are
possible for few layers of graphene, as low as N = 4.

So far, our calculations are for high-mobility graphene lay-
ers typical of exfoliated samples. Graphene grown by chemical
vapor deposition (CVD) tends to have a lower mobility around
1000 cm2/Vs. For such samples, it is beneficial to operate
in the mid-infrared (mid-IR) regime, where the conductivity
given by Eq. (15) will still have a significant imaginary part
despite the smaller relaxation time. Since the frequency regime
for the HMM is limited by the Fermi level, it is necessary for
such samples to be highly doped, to 1013 cm−2 or larger carrier
density. We have calculated the integrated LDOS and Purcell
factor for highly-doped low mobility graphene at mid-IR
wavelengths. Figure 8 shows that large LDOS and Purcell
factor enhancements are predicted for these parameters. The
Purcell factor is 2 orders of magnitude less than for the
high-mobility graphene in the THz regime; this is partially
attributable to the ratio of z/λ which is larger for mid-IR
wavelengths. The Purcell factor remains, however, improved
over that of the metal/dielectric HMM. We observe a crossover
between wavelengths of 3 and 5 μm (177 and 248 meV)
indicated by the much slower decay of the LDOS and Purcell
factor with z. We attribute this crossover to the transition
from elliptical to hyperbolic isofrequency contour.14 A simple
Bloch theory52 for an infinite graphene-based metamaterial22
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shows that the transition from an effective permittivity ε‖ > 0
to ε‖ < 0 should occur in exactly this regime, while ε⊥ remains
positive.

We should stress here the non-negligible role of loss in the
enhancement of the Purcell factor. A lossy material need not
be hyperbolic in order to produce a large Purcell enhancement:
for example, the metallic film in the inset of Fig. 6 has a larger
Purcell enhancement than a metal/dielectric HMM at small
enough distances. For hyperbolic systems, instead we see an
enhanced Purcell coefficient over a longer distance.

IV. SUMMARY

In conclusion, we have found that thin graphene stacks are
HMMs in the THz to mid-infrared regime for a wide range
of parameters. We have studied the high-k propagating modes
as well as the wave-vector-resolved local density of states for
graphene stacks and find an enhancement of both quantities at
wave vectors that are evanescent in vacuum. This implies that
enhanced near-field effects including subwavelength imaging

and confinement of light may be possible. We also calculate
the Purcell factor for both our graphene HMMs, and HMMs
composed of metal/dielectric stacks. We find that the graphene
HMMs perform very well compared to this benchmark at both
the THz and mid-IR wavelengths. The frequency range of the
graphene HMM is limited by the Fermi energy, h̄ω � εF , and
so the graphene must be highly doped for mid-IR applications.
We observe a transition from high Purcell enhancement to low
Purcell enhancement around 3–5 μm for the low-mobility,
highly doped graphene, which we attribute to a transition from
a hyperbolic to an elliptical isofrequency contour.
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