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Ferroelectric instability of two-dimensional crystals
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The macroscopic dielectric permittivity of dielectric crystals is related to the microscopic atomic polarizability
of constituent atoms by the known Clausius-Mossotti relation obtained in the middle of the 19th century.
We derive a similar relation for recently discovered two-dimensional crystals (mono- and bilayer graphene,
boron nitride, etc) and show that, in contrast to three-dimensional materials, much stronger electron-electron
interaction in two dimensions leads to a spontaneous electric polarization of the ground state of two-dimensional
crystals. The predicted ferroelectric transition may have interesting applications in electrodynamics and
optics.
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I. INTRODUCTION

The macroscopic dielectric susceptibility χ and permittivity
ε of dielectric crystals are related to the microscopic atomic
polarizability α of constituent atoms by the known Clausius-
Mossotti relation,1,2

ε − 1

4π
= χ = Nvα

1 − 4πNvα/3
, (1)

where Nv is the volume concentration of atoms. The di-
vergence of χ and ε at Nvα → 3/4π is known as the
polarization catastrophe (e.g., Refs. 3 and 4), which may lead
to a ferroelectric instability of the ground state of the crystal.
Physically, this is a consequence of the local field effects:4

the electric field, which acts on each atom of the crystal and
polarizes it, differs from the external one by the fields produced
by all other polarized atoms in the crystal lattice.

In three-dimensional (3D) crystals, however, the influence
of the local fields is not very strong since they often cancel each
other. This is illustrated in Fig. 1 (left) for the case of a simple
cubic lattice. In such a lattice each dipole is surrounded by four
nearest neighbors in the azimuthal plane and two neighbors in
the vertical direction. Since the dipole field

Edip(r) = 3(d · r)r − dr2

r5
(2)

is strongly anisotropic, four azimuthal (red) dipoles create the
field −4 × d/a3 opposite to the external one, while the two
blue (“north” and “south”) dipoles produce the field +2 ×
2d/a3 in the same direction as the external field (a is the
lattice constant). The sum of these fields vanishes.

The discovery of graphene5–7 and other atomically thin
crystals8 opened a way of exploiting new types of materials:
two-dimensional (2D) crystals. As seen from Fig. 1, in purely
2D crystals the local field is much stronger, since two azimuthal
(red) dipoles are absent. This local field is really huge; for
example, if electrons are shifted from their host atoms by only
δx � 0.01 Å, the field 2d/a3 = 2eδx/a3 from the nearest four
dipoles shown in Fig. 1 (right) is about 2 × 106 V/cm (for a
typical lattice constant a � 2.5 Å).

In this paper we show that these strong local fields caused
by electron-electron interaction may lead to a ferroelectric
instability of atomically thin crystals and to a reconstruction
of their ground state.

II. CLAUSIUS-MOSSOTTI AND INSTABILITY IN 2D

The real 2D crystals (graphene, boron nitride) have a hexag-
onal lattice, Fig. 2, consisting of two triangular sublattices A

and B (black and open circles). If the external field E0 is
parallel to the 2D plane, the induced dipole moments dA and
dB satisfy the equations

dA = αA

{
E0 + dA

2a3
SAA + dB

2a3
SAB

}
, (3)

dB = αB

{
E0 + dA

2a3
SBA + dB

2a3
SBB

}
, (4)

where αA and αB are atomic polarizabilities of the A and B

atoms, and a is the lattice constant. The sums

SAA = SBB =
∑

(m,n)�=(0,0)

1

(m2 + mn + n2)3/2
≈ 11.034 (5)

and

SAB = SBA =
∑
m,n

1(
m2 + mn + n2 + m + n + 1

3

)3/2

≈ 23.151 (6)

correspond to the summation over all dipoles of the same and
of the other sublattice. The susceptibility of the hexagonal 2D
lattice then assumes the form

χhex
‖ = Ns

2

αA + αB + (αAβB + αBβA)(SAB − SAA)

(1 − βASAA)(1 − βBSAA) − βAβBS2
AB

, (7)

where β = α/2a3 and Ns = 4/
√

3a2 is the surface density of
atoms. If the atoms A and B are identical, then

χhex
‖ = Nsα

1 − β(SAA + SAB)
, (αA = αB = α). (8)

If the external field E0 is perpendicular to the 2D plane,
the factors dA,B/2a3 in Eqs. (3) and (4) should be replaced
by −dA,B/a3. Then the perpendicular susceptibility of the
hexagonal lattice with identical A and B atoms reads

χhex
⊥ = Nsα

1 + 2β(SAA + SAB)
, (αA = αB = α). (9)
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FIG. 1. (Color online) The local field effects in (left) three- and
(right) two-dimensional simple cubic/square lattices. The electric
field −4d/a3 of the four red dipoles in the 3D cubic lattice (left)
exactly compensates the field +4d/a3 of the two blue dipoles. In
the 2D square lattice (right) there are only two red dipoles and
the resulting local field is +2d/a3. Its direction coincides with the
direction of the external field.

Before starting to discuss the derived Clausius-Mossotti-type
relations (7)–(9) we would like to make some comments.
Equations (7)–(9) describe the electromagnetic response of
truly two-dimensional (few-atom-thin) crystals. For crystals
whose thickness in the perpendicular direction does not exceed
a few atomic monolayers the notion of the macroscopic
dielectric permittivity ε is no longer meaningful. Indeed, the
equations of the macroscopic electrodynamics of 3D materials
are derived from the microscopic Maxwell equations by
averaging over “physically infinitesimal” volume elements,9

i.e., over dimensions small as compared to macroscopic scales
(the radiation wavelength, the sample dimensions) but large
as compared to interatomic distances. As a result of such
averaging one gets for the macroscopic (averaged) charge
density ρmicro → ρmacro = −divP , with the dipole moment
of a unit volume P . Then one can properly define the
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FIG. 2. The hexagonal two-dimensional lattice of graphene and
boron nitride. The basis lattice vectors are a1 = a(1/2,

√
3/2)

and a2 = a(−1/2,
√

3/2); the vector connecting the two triangular
sublattices is b = a(0,1/

√
3). a is the lattice constant.

electric induction D = E + 4π P , the dielectric susceptibility
χ (P = χ E), and the dielectric permittivity ε (D = ε E). The
quantities χ and ε are dimensionless in 3D.

For truly 2D materials the macroscopic averaging can be
performed only over physically infinitesimal surface elements;
the averaging in the z direction is no longer possible. The
dielectric susceptibilities (7)–(9) of the 2D crystal still have a
clear physical meaning as they are related to the dipole moment
of the unit area (the 2D susceptibility has the dimensionality
of length), but the essentially 3D quantity—the dielectric
permittivity ε—cannot be properly defined.

In the electrodynamics of thin films they are often con-
sidered as uniform 3D layers with the thickness d and the
dielectric constant ε. Such a description is relevant if the “thin”
films, nevertheless, are sufficiently thick, i.e., contain many
(N 	 1) atomic monolayers. A similar description of single-
or few-layer materials (N � 1), such as mono- and bilayer
graphene, boron nitride, carbon and BN nanotubes, which can
sometimes be met in the literature, is not appropriate.

Let us now analyze the results (7)–(9) obtained above.
Figure 3(a) shows the dimensionless susceptibility χhex

‖ /a,
Eq. (7), of the 2D hexagonal lattice as a function of
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FIG. 3. (Color online) (a) The parallel and (b) the perpendicular
susceptibility of the hexagonal 2D lattice χ hex

‖ /a and χ hex
⊥ /a as a

function of ᾱ/a3 = (αA + αB )/2a3, at η = 1 (black, solid curve),
η = 0.78 (red, dashed), and η = 0.1 (blue, dotted). The black and
red curves correspond to parameters of graphene and boron nitride,
respectively.
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ᾱ/a3 = (αA + αB)/2a3 at several values of the parameter η =
4αAαB/(αA + αB)2. When the ratio ᾱ/a3 becomes sufficiently
large the susceptibility diverges and the system becomes
unstable with respect to the spontaneous dielectric in-plane
polarization. If the atoms A and B are identical (η = 1, the
black solid curve in Fig. 3), this happens at

α

a3
= 2

SAA + SAB

≈ 0.0585. (10)

If η = 0.78 (the red dashed curve), the system is stable at
ᾱ/a3 < 0.06225. One can show that in the monoatomic square
lattice the stability boundary lies at α/a3 = 0.2214, and in a
linear chain of atoms, i.e., in a truly one-dimensional crystal, a
spontaneous electric polarization along the chain would arise
at α/a3 � 0.2080. Figure 3(b) shows that the perpendicular
susceptibility χhex

⊥ /a is a continuous function not having any
divergency.

Let us apply the general results obtained above to real
2D crystals with the hexagonal lattice, graphene and boron
nitride, BN. Using the atomic polarizability of carbon, αC �
1.63–1.73 Å3,10 and the lattice constant of graphene, a =
2.46 Å, we get αC/a3 � 0.1095. For boron nitride (αB =
3.04 Å3, αN = 1.10 Å3,10 a = 2.52 Å), we get η = 0.78
(corresponds to the red curve in Fig. 3) and ᾱ/a3 = 0.129.
Both values are far beyond the stability boundaries (0.0585
and 0.06225, respectively). The suspended graphene and boron
nitride should thus be in the ferroelectric ground state with the
spontaneous dielectric polarization of the crystal lattice (the
same is valid for bilayer graphene, too). Three-dimensional
graphite, in contrast, is stable, as follows from the 3D Clausius-
Mossotti formula (1). The perpendicular susceptibility of
graphene (9) is about χhex

⊥ ≈ 0.13 Å.

III. DISCUSSION AND CONCLUSIONS

The predicted ferroelectric transition in the ground state
of 2D crystals is a consequence of strong electron-electron
(e-e) interaction Vee. Notice that the tight-binding approx-
imation (TBA), as well as other approaches, which ig-
nore e-e interaction or take it into account perturbatively,
like the density functional theory, cannot properly describe the
predicted effect. This is seen from the following example. The
single-particle TBA calculation leads to the known two-band
electron energy spectrum in intrinsic graphene (see, e.g.,
Fig. 3 in Ref. 11), with the lower and upper energy bands
touching each other at the Dirac points. The many-body ground
state is then given, in the zeroth order in Vee, by a single Slater

determinant corresponding to the occupied single-particle
states of the lower energy band. The many-body ground state
of the intrinsic graphene in the TBA is thus nondegenerate.
However, as seen from the above calculations, taking into
account the e-e interaction (the local field effects) leads to the
ferroelectric transition in the ground state which is degenerate
with respect to the in-plane direction of the spontaneous
polarization. This transition cannot thus be predicted in TBA or
in the density functional theory. In three dimensions, however,
the TBA is reliable12 since the local field effects are much
weaker, Fig. 1. It should also work in 2D crystals if they are in
the stable regime, e.g., on a substrate; see below.

The predicted effect is a peculiar property of two-
dimensional crystals, i.e., of crystals with N � 1 atomic layers.
An extension of the system in the third dimension returns it
back to a stable state (as seen from the above comparison
of mono-/bilayer graphene with three-dimensional graphite).
In particular, if a 2D crystal lies on a substrate with the
dielectric constant ε, screening of the local fields by the
substrate may suppress the instability (this may be the reason
of why the predicted transition has not been experimentally
discovered so far). For example, for graphene or BN lying
on a SiO2 substrate (εSiO2 = 3.9), the polarizability ᾱ in the
above formulas should be replaced by ᾱ/εeff , where εeff =
(ε + 1)/2 = 2.45, and the instability conditions are no longer
satisfied (for graphene αC/a3εeff = 0.0447 < 0.0585; for BN
ᾱ/a3εeff = 0.0526 < 0.06225). On the other hand, choosing
an appropriate substrate one could put the system very close to
the transition point, where the 2D susceptibility is very large;
see Fig. 3. Optical properties of monolayer dielectric crystals
with a very large susceptibility χ are very interesting and
deserve a separate study. For example, a monoatomic layer
with a large susceptibility reflects almost 100% of incident
light.

To conclude, we have predicted a ferroelectric transition in
the ground state of two-dimensional (few-atom-thin) crystals.
This effect is due to much stronger electron-electron interac-
tion in such crystals, as compared to the 3D ones, and may
have interesting applications.
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