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Semiclassical study of intersubband cavity polaritons:
Role of plasmonic and radiative coupling effects
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We theoretically discuss the properties of intersubband polaritons supported by a multiple-quantum-well
structure embedded in the planar microcavity with dielectric and plasmonic mirrors. A semiclassical approach
based on the transfer matrix formalism supplemented by the sheet model and the “microscopic” implementation
of the effective medium approximation is employed. The presence of the intrasubband transition is taken into
account. The obtained results show that in the case of realistic systems exhibiting superstrong coupling regime,
radiative coupling between cavity modes can lead to the violation of a commonly used single-mode cavity
approximation. It manifests itself as a formation of hybrid polariton modes having a non-negligible admixture of
higher photonic modes and/or surface plasmonic modes. The comparison with results predicted by a microscopic
quantum approach recently developed is also presented. Performing the above mentioned comparison we pay
special attention to the role of intra- and interwell Coulomb couplings.
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I. INTRODUCTION

The linear intersubband response of multiple-quantum-well
(MQW) structures embedded in planar microcavities (MCs)
has been studied by many authors for both fundamental physics
and application reasons. The coherent dipole coupling between
the collective intersubband excitation having the frequency
ωIT and the ground photonic mode is usually characterized
by the resonant Rabi coupling frequency �res

R . In the strong-
coupling regime, the above mentioned quantity dominates the
decay rates of the intersubband excitation and the photonic
mode. Due to this dominance, the formation of mixed modes
termed intersubband-cavity-polaritons (ICPs) is possible. Such
a type of modes, named the upper polariton branch (UPB) and
lower polariton branch (LPB), were first observed in 2003 by
two groups1,2 as a double-peak structure in the angle-resolved
absorption spectra. The minimal frequency separation between
the above mentioned polariton peaks (�min

ICP) is usually several
times larger than the resonant Rabi splitting frequency in the
momentum space (�min

ICP ≈ 2�res
R ). This difference is due to the

fact that the absorption peaks are connected with ICP branches
having different in-plane wave vectors.3–5

The largest value, for planar MQW-MC systems, of the
normalized coupling frequency �res

R /ωIT ≈ 0.11 was reported
by Anappara et al.6 It is interesting to note that the larger values
of the normalized coupling frequency have been realized using
zero-dimensional metallic MCs7–9 and inductance-capacitance
electronic microresonators.10

Since only the normal component of the electric field
couples to the intersubband excitation, the experimentally
studied planar semiconductor microcavities are designed to
operate at a large angle of incidence ϕ(≈70◦) with respect
to the growth direction z. In the above mentioned limit, the
frequency separation between the two lowest cavity (photonic)
modes in the momentum space (�CM) is several times
smaller than ωIT.4,5 It is not difficult to achieve the following
experimental condition: �min

ICP � �CM.3,6,11–14 In the literature,
this regime is called the superstrong coupling (SSC) regime.15

When the SSC regime is achieved, more than one cavity

modes “see” and interact with the intersubband excitation.
It gives rise to new physical effects not observed in systems
exhibiting “ordinary” strong coupling regime. For example,
the normal-mode splitting can occur for more than one cavity
modes (therefore denoted as the multi-normal-mode splitting).
It manifests itself as the formation of additional peaks in the
absorption spectra. Such peaks have been observed experi-
mentally by Dupont et al.2,14 in the MQW-MC system where
the whole space between the mirrors is uniformly occupied
by the QWs. We have shown5 that the above mentioned
phenomena can be interpreted as diagonal coupling between
“dark” intersubband states and higher photonic modes.

The behavior of the UPB and LPB is usually modeled em-
ploying a semiclassical approach based on the transfer matrix
formalism5 (TMF) or the simplified multibeam interference
analysis.16 The TMF is very convenient for the calculations
of reflection and absorption spectra of MQW-MC systems.
Moreover, taking the external field to be zero we can also
obtain the dispersion relations for the electromagnetic modes
of the systems.

The situation is different when we want to describe the
luminescence process, which is closely related to the quantum
nature of the ICPs.17–21 Then the approach based on the
(simplified) coupled-harmonic-oscillator model5,22–24 is more
suitable. However, the above mentioned oscillator model is
based on the rotating wave approximation (RWA). Thus it does
not work correctly when 2�res

R becomes a significant fraction
ωIT. This situation corresponds to the ultrastrong coupling
(USC) regime. Note that the USC should be distinguished from
the already mentioned superstrong coupling (SSC) regime
referring to the scenario where polariton branch splitting �min

ICP
becomes comparable with the cavity mode separation �CM.
Thus, in the case of the typical semiconductor MCs, where
�CM is several times smaller than ωIT, the USC regime is
achieved at substantially larger value of the resonant Rabi
frequency �res

R than the SSC regime. It is obvious that in
systems exhibiting the USC regime the already mentioned
simplified oscillator model should be replaced by a more so-
phisticated microscopic quantum-mechanical approach,8,25–28
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which includes the non-RWA terms. The above mentioned
terms not only substantially modify the ICP spectra but
also lead to the appearance of new phenomena such as the
generation of the correlated photon pairs.25

Practically, in all the papers employing the quantum
approach, as well as the simplified oscillator model the
authors assume that the formation of the LPB and the UPB
is connected with the coupling of the intersubband excitation
with the ground photonic mode. It is the so-called single mode
cavity approximation (SMCA). To our knowledge the range of
validity of the above mentioned approximation has not been
discussed in the literature so far. Semiclassical estimations
reported in our recent paper5 (see also Ref. 29) indicate that
the SMCA has a good justification when the system is uniform,
i.e., when the mirrors are perfect and the whole space between
mirrors is occupied by the MQW slab. If these conditions
are not fulfilled, the radiative coupling between the cavity
modes should be considered in the systems exhibiting the
SSC regime. The above mentioned coupling manifests itself as
the formation of the LPB and the UPB with a non-negligible
admixture of higher cavity modes.

Discussing the validity of the SMCA we should also take
into account the fact that in many systems experimentally
studied the n-doped dielectric layers (or multilayers) also
play the role of one3,6 or both2,14 of the MC mirrors. The
presence of free carriers in the mirror material leads to the
reduction of the real part of the mirror dielectric function
[εmirr(ω)]. Because of that, the plasmonic mirrors can be
much thinner compared to purely dielectric mirrors. They also
allow for the electrical pumping of the MQW-MC systems.
However, the presence of free electrons in the mirror material
not only affects the dispersion characteristics of the photonic
modes but also leads to the formation of additional - surface
plasmon polariton (SPP) modes. The above mentioned modes
are located below the ground photonic mode or, more precisely,
below the plasma frequency (ωp,mirr) of the mirrors.30–32 It is
obvious that the formation of the ICP branches with a non-
negligible admixture of the SPP modes cannot be excluded
a priori in the case of the systems where ωp,mirr is comparable
with ωIT.

It is well known that the intrasubband collective modes are
also supported by the MQW slab.30,33 These modes are located
below the plasma frequency (ωp) of the bulk MQW. In the case
of symmetric QWs the direct interaction between intrasubband
and intersubband plasmons is forbidden.34 Nevertheless, when
the MQW is located inside the semiconductor MC, the
interaction through cavity photons22 becomes possible. In
other words, the violation of the SMCA is potentially possible
due to the formation of the mixed hybrid ICP branches with an
admixture of the intrasubband plasmonic mode. At this point,
we would like to stress that the phenomena connected with
the formation of the intrasubband plasmon have been recently
discussed,30,35–37 but not in the context of their influence on
the ICP characteristics.

The aim of this work is to provide a systematic analysis
of the dispersion characteristics of the UPB and the LPB
supported by planar MQW-MC systems. Special attention
will be paid to the plasmonic and radiative coupling effects
leading to the violation of the SMCA. Such an analysis seems
to be extremely relevant in the light of recent achievements in

the construction of new electroluminescent devices based on
ICPs.18–21

We employ a semiclassical approach based on the TMF
supplemented by the “microscopic” effective medium ap-
proximation and the so-called sheet model.5,38 To clearly
understand the origin of the considered phenomena properly
simplified Fabry-Perot models are also considered. A great
advantage of the simplified models is that the polariton
characteristics predicted by them can be directly compared
with those obtained employing the microscopic quantum
electrodynamics.7,26,27 They also allow for the demonstration
of the important role of the interwell Coulomb coupling4,33 in
systems exhibiting the USC.

The theoretical background is presented in Sec. II. Sim-
plified analytical calculations are performed in Sec. III. In
Sec. IV, the numerical results obtained with the help of the
TMF for parameters corresponding to realistic systems with
dielectric and plasmonic mirrors are reported and discussed.
Section V is a brief conclusion. Some technical details
are presented in Appendices A–H. The acronyms and main
symbols introduced in this paper are listed in Appendix I for
the reader’s convenience.

II. THEORETICAL BACKGROUND

A. Transfer matrix formalism and electromagnetic eigenmodes

The planar MQW-MC system can be, in general, treated
as a layered structure sandwiched between the nonabsorptive
semi-infinite substrate (j = 0) and cladding (j = m) media
with the dielectric constants ε0 = εs and εm = εc, respectively.
Consider a harmonic plane wave (polarized in the x-z plane)
with an exp(−iωt) temporal dependence incoming on the stack
from the substrate at the angle ϕ. The relation between the
(complex) amplitudes of the magnetic field in the substrate
and cladding media is determined by the 2 × 2 transfer matrix
of the system T.38 The above matrix can be considered as a
product of matrices Lj and Ij,j+1. The matrix Lj describes the
effect of propagation through the j th layer, while the matrix
Ij,j+1 accounts for the interface between layers j and j + 1.

Unfortunately, the calculation of the transfer matrix across
the MQW is a rather complex problem. The intersubband
and intrasubband optical response of the infinite MQW has
been discussed by King-Smith and Inkson39 employing a
semiclassical self-consistent approach based on the Coulomb-
gauge minimal-coupling Hamiltonian. The same Hamiltonian
has been used in the work by Liu40 devoted to the intersubband
response of the MQW embedded into semiconductor MC.
Unfortunately, the formalism used by Liu is very complex
and practically not amenable to some analytical treatment.
Moreover, the author takes into account only the paramagnetic
contribution in the intersubband response (see Appendices A
and B). Because of the above mentioned simplification, the
approach employed by Liu is not appropriate for the study of
systems exhibiting the USC regime.

In order to overcome the difficulty, we employ the fact
that the effective thickness of the QW is much smaller than
the wavelength of the radiation interacting with intersubband
excitation [the long-wavelength approximation (LWA)]. Thus
we can work in the dipole gauge Hamiltonian.41–43 It is also
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reasonable to assume that the quasi-2D-electron gas (Q2DEG)
located in the QW, can be considered as an infinitely thin
sheet (centrally positioned in the QW) carrying a field-induced
current.38,41,44 It is a so-called sheet model. Since we employ
the semiclassical approach, the current induced in the QW
has to be determined in a self-consistent manner.43 The sheet
conductivity (σzz) describing the linear intersubband response
to the z component of the external (not total) electric field is
given in Appendix A.

Usually, the MQW slab contains a large number of QWs
(NQW � 1). Moreover, the spatial period of the MQW (dMQW)
is much smaller than the wavelength of the incident radiation.
It means that in the case of typical systems the homogenization
of the sheet model is possible. In other words, the sheet model
can be replaced by a much more convenient for analytical
and numerical calculations “microscopic” implementation of
the effective medium approximation (EMA).38 An impor-
tant advantage of this approximation is that the intrasub-
band excitation can be simply incorporated introducing (see
Appendix A) the intrasubband sheet conductivity (σxx).

In the considered approximation, the MQW is treated as
a uniform uniaxial medium (slab) with the diagonal effective
dielectric tensor ερρ ′ = δρρ ′ερρ (ρ,ρ ′ = x,y,z).38 The relations
between the principal components εxx = εyy and εzz of the
effective dielectric tensor and the intrasubband σxx and the
intersubband σzz components of the sheet conductivity tensor
are given in Appendix A.

The complex reflection coefficient of the MQW-MC struc-
ture (r) is connected with the elements of the corresponding
transfer matrix T by the relation r = T21/T11. We concentrate
on a typical situation when the transmission through the back
mirror can be taken as zero. Then, the absorptance (equal to
the fraction of the incident energy absorbed) of the structure
is given by A = 1 − |r|2.

The characteristic equation for electromagnetic modes
supported by the system, resulting from the requirement that
no light incidents on the cavity from outside, takes the form

T11 = 0. (1)

The above mentioned modes can be generally divided
into two classes: (i) nonradiative (bound) modes and
(ii) radiative (virtual) modes. We concentrate on the constant-
angle virtual modes, which are accessible by angle resolved
reflectance-absorptance measurements. They radiate the
energy into the substrate at the fixed and real angle ϕ. The
above mentioned facts imply that not only the frequency
of the κth constant-angle virtual mode but also its in-plane
wave vector should be treated as complex-valued quantities,
ω̃κ = ω′

κ + iω′′
κ and k̃κ,x = k′

κ,x + ik′′
κ,x , satisfying the relation

k̃κ,x/ω̃κ = |k̃κ,x/ω̃κ | = (ε1/2
s /c) sin ϕ. The details can be found

in Ref. 45 (see also Ref. 46).
Let us assume that the frequency of the κth radiative mode

is spectrally separated from the rest of the modes. Then such a
mode can be associated with a Lorentzian shape maximum in
the angle-resolved absorptance of width 2γκ = −2ω′′

κ centered
at ω′

κ .5,45 The mode is treated as a well defined entity only
when |ω′′

κ | � ω′
κ . In this limit, a dispersion relation for the

polaritons in terms of frequency versus in-plane wave vector
(more precisely the real part of the above mentioned vector)

can be extracted from the angle-resolved dispersion using the
following relation:

kx ≡ k′
κ,x

∼= (
ε1/2
s

/
c
)
ω′

κ (ϕ) sin ϕ. (2)

B. Characteristic equations for simplified models

1. Basic formula

For our purpose, it is very convenient to have the dispersion
equations for electromagnetic modes, which are explicitly
written in terms of the coefficients associated with the light
reflection by the Q2DEG. We derive such equations for the
MQW-MC system and for the system consisting of a single
QW embedded into the MC.

Let us denote by Tcb the transfer matrix from the coupling
(c) to the back (b) mirror. The condition that only outgoing
waves exist outside the system implies the following matrix
equation for the eigenfrequency:

G
[

rc

1

]
= Tcb

[
1

rb

]
, (3)

where rc (rb) is the reflection coefficient of the coupling (back)
mirror.

We assume for convenience that the spacer layers, with the
dielectric constant εsl, are placed between the MQW slab (or
the single QW) and the mirrors. It implies that the reflection
coefficients rc and rb correspond to the situation when the light
incidents from the medium with the dielectric constant εsl.

Eliminating coefficient G from Eq. (3), one gets

T cb
11 + T cb

12 rb = rc

(
T cb

21 + T cb
22 rb

)
. (4)

In further discussion, we neglect for simplicity the dielectric
mismatch. More precisely, we neglect the differences between
the dielectric constants of the spacer layer(s) (εsl), the substrate
(εs), the barrier (εb) and the well (εw) materials taking εsl =
εs = εb = εw. The above mentioned approximation modifies
the resonance conditions between the intersubband excitation
and the ground photonic mode. Nevertheless, it does not
affect the main conclusions resulting from simplified models
considered in the next section. We would like to stress that
the numerical results reported in Sec. IV have been obtained
taking into account the dielectric mismatch.

2. The MQW-MC system

Now we apply Eq. (4) to the MQW-MC system in which the
thicknesses of the spacer layers are negligibly small compared
to mirror separation (LMC), i.e., the cavity thickness. In other
words, we assume that LMC practically coincides with the
thickness of the MQW slab (LMQW). (Note that in Ref. 26 the
thickness of the MQW slab is denoted by LQW.) In the system
of interest here, the matrix Tcb, appearing in Eq. (3), can be
written as a product38 (see Appendix C1):

Tcb ∼= I(rMQW)L(βMQW/2)I(rMQW), (5)

where βMQW = kMQW,zLMQW and

kMQW,z = [
εxx

(
K2 − k2

x

/
εzz

)]1/2
(6)

is the z component of the wave vector in the MQW slab.
(K = ω/c is the wave vector of the radiation in vacuum and c is
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the speed of light in vacuum.) Moreover, rMQW is the reflection
coefficient associated with the interface between the semi-
infinite MQW and the medium with dielectric constant εw (the
MQW-εw interface). Light incidents from the dielectric.

Substituting the expressions for the components of Tcb

given by Eqs. (C5)–(C7) into (4), we get the characteristic
equation for the system:

1 − rcrbe
i2βMQW = −rMQW(rb + rc)(1 − ei2βMQW )

+ r2
MQW(1 − rcrb)ei2βMQW . (7)

Let us assume that rMQW → 0. It means that we completely
neglect the effects introduced by the optical interference
between the light reflected from the MQW-εw interfaces
and the light reflected from the cavity mirrors. In this limit,
Eq. (7) simplifies to the form consistent with the multibeam
interference analysis16

1 − rcrbe
i2βMQW = 0. (8)

One can check that in the case of the systems with identical
perfect mirrors (rc = rb and |rc| = |rb| = 1) characteristic
equation (7) reduces to the form

1 − ei2βMQW = 0, (9)

which is not affected by the above mentioned interference.
The inspection of Eqs. (7) and (9) shows that the effects

connected with the light reflection by the Q2DEG start to
play an important role when the cavity modes substantially
penetrate into the mirrors or more precisely, when the effective
thickness of the MC (see Sec. III B) is substantially larger
than the thickness of the MQW slab. In such systems, the
optical interferences between the light reflected from the
MQW-εw interfaces and the light reflected from the cavity
mirrors modify the spatial variation of the LPB and the
UPB compared to the spatial variation of the ground cavity
mode. As mentioned in Introduction, it can be interpreted as a
formation of the LPB and the UPB with a different admixture
of higher photonic modes.47 Equivalently, we can speak about
the (radiative) coupling between the cavity modes mediated
by the intersubband excitation.29

3. The MC with a single QW

Now we discuss a strongly nonuniform case when a
single QW is positioned centrally between the mirrors. For
convenience, we neglect the intrasubband excitation. Modeling
the Q2DEG by the 2D sheet we find that the transfer matrix
across the cavity can be written as38 (see also Appendix C2)

Tcb = L(βMC/2)I2DL(βMC/2), (10)

where βMC = kw,zLMC, kw,z = (K2
w − k2

x)1/2 and K2
w ≡

εwK2 = εwω2/c2. Matrix I2D corresponds to the 2D sheet
embedded in a medium with dielectric constant εw. It can
be written in terms of the transmission (tQW) and reflection
(rQW) coefficients of the Q2DEG. The explicit form of Tcb is
presented in Appendix C2.

Let us assume for simplicity that rc = rb. Then, from
Eqs. (4), (10), and (C11)–(C13), one finds the following

characteristic equation for the considered system:

0 = [rc(tQW + rQW)eiβMC − 1]

× [rc(tQW − rQW)eiβMC + 1]. (11)

Deriving the above equation we have assumed that only
a single QW is located inside the MC. Nevertheless, it is
reasonable to expect that Eq. (11) can be also employed for
the qualitative analysis of the role of radiative coupling effects,
associated with spatial nonuniformity of systems, even when
NQW > 1.

III. ANALYTICAL SOLUTIONS
FOR SIMPLIFIED MODELS

The solution of the “exact” dispersion equation (1) or
even simplified equations (8) and (11) requires, in general,
complicated numerical calculations. Unfortunately, they can-
not provide an intuitive insight into the relations between
various parameters. Accordingly, the analytical description is
investigated and presented below. We discuss three simplified
models employing formulas derived in Sec. II B.

A. Models with perfect mirrors

For a deeper insight into the polariton physics in the
SSC regime and beyond, we model the realistic system by a
simple (symmetric) Fabry-Perot resonator with perfect mirrors
separated by the distance LMC. The ohmic losses and dielectric
mismatch are omitted for simplicity. We discuss two particular
configurations corresponding to the uniform (model I) and
strongly nonuniform (model II) systems.

Model I is composed of an MQW slab (with the thickness
LMQW

∼= LMC) bounded by perfect mirrors (see insert in
Fig. 1). The coupling of the photonic modes with intersub-
band as well with intrasubband excitations is considered. In
particular, we employ this model for the study of the influence
of the intra- and interwell Coulomb coupling (see Appendix D)
on the LPB and UPB characteristics.

Model II corresponds to the case when only a single QW,
modeled by the 2D sheet, is centrally positioned between mir-
rors (see insert in Fig. 2). Such a configuration is appropriate
for modeling of the MQW-MC systems with a small number
of QWs (LMQW � LMC). With the help of this model we
explicitly demonstrate the violation of the SMCA in the case
of the nonuniform systems exhibiting the SSC regime.

We concentrate on the study of the kx-dependent character-
istics. The ϕ-dependent characteristics, predicted by model I,
are very briefly discussed in Appendix E.

1. Model I

a. Basic formula and coupling selection rules. The char-
acteristic equation (9) corresponding to the uniform system
(model I) leads to a well known condition for the allowed
values of kMQW,z:

kMQW,z = nπ/LMC. (12)

The mode index n gives the number of half-wavelength of
the standing waves of the mode-field across the MC. In the
case of the metallic (dielectric) mirrors, n = 0,1,2, . . . (n =
1,2,3, . . .). In further discussion, it is convenient to introduce
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mirror type dependent parameter nmin. The above mentioned
parameter corresponds to the ground photonic mode index,
i.e., it takes the value 0 (1) when mirrors are of a metallic
(dielectric) type. In the case of the undoped (passive) MQW,
the left-hand side of Eq. (12) should be replaced by kw,z =
(εwK2 − k2

x)1/2.
The condition (12), supplemented by Eqs. (6) and

(A5)–(A8) gives the following eigenvalue equation for the
nth-order (hybrid) polariton branches:

ω2 − � 2
n = f12ω

2
pω2

‖
ω2 − ω2

IT

+ ω2
pn2ω2

⊥
ω2 − ω2

p

, (13)

where ω‖(kx) = kxc/
√

εw, ω⊥ = πc/
√

εwLMC, �n(kx) =
[ω2

‖(kx) + (nω⊥)2]1/2 is the (kx-dependent) frequency of the
nth-order photonic mode of the passive MQW-MC sys-
tem, Ns is the surface concentration of the Q2DEG, ωp =
(4πNse

2/dMQWm∗εw)1/2 is the plasma frequency of the bulk
MQW with the period dMQW, m∗ is the effective mass of the
electron and f12 is the oscillator strength of the 1 → 2 tran-
sition. Moreover, ωIT = (ω2

21 + ω2
P )1/2 is the depolarization

shifted intersubband resonant frequency, ω21 is the intersub-
band separation frequency and ωP = ωp(dMQW/Leff

QW)1/2 is the
QW plasma frequency. The effective thickness of the quantum
well (Leff

QW) is defined in Appendix A. We assume that only
ground subband is occupied. Note that Eq. (13) is valid when
the restrictions imposed by the LWA are fulfilled, i.e., when
kxdMQW � 1 and kMQW,zdMQW = πn/NQW � 1.39

It is obvious that if the size-quantization of kMQW,z is
omitted, the solutions of Eqs. (6) and (A5)–(A8) describe
the polariton branches supported by an infinite MQW. Their
characteristics practically coincide (in the LWA) with the
characteristics predicted by a much more sophisticated current-
response theory based on the Coulomb-gauge minimal-
coupling Hamiltonian.39 The above mentioned coincidence
supports the validity of the “microscopic” EMA, even if the
presence of the intrasubband transitions is taken into account.

At this point it is worth recalling that the minimal-coupling
Hamiltonian contains the intra- and interwell (nonretarded)
Coulomb interactions.43,51 It is well known that in infinite
MQWs the interwell Coulomb coupling leads to the de-
localization of the intersubband and intrasubband plasmon
modes associated with each QW. Equivalently, we can speak
about the formation of the intersubband and intrasubband
plasmon bands.33 Since the MQW slab is bounded by perfect
mirrors, the above modes are size quantized according to
Eq. (12). In other words they can be labeled by the mode
index n.

We denoted the quantized intersubband (intrasubband)
Coulomb modes supported by the uniform MQW-MC systems
by C inter

n (Cintra
n ). Making in Eq. (13) the substitution c → ∞,

one finds the following expressions for the frequencies of the
above mentioned modes:

ωCinter
n

=
√

ω2
21 + ω2

P (1 − � sin2 θn), (14)

ωCintra
n

= ωp sin θn, (15)

where sin θn = kx/[k2
x + (nπ/LMC)2]1/2 = ω‖/�n and

� = f12(ωp/ωP )2 = f12L
eff
QW

/
dMQW. (16)

The system with perfect dielectric mirrors supports the
intersubband and intrasubband Coulomb modes with mode
index n = 1,2,3, . . .. In systems with perfect metallic mirrors,
the intersubband Coulomb mode with index n = 0 can be
additionally supported.

The above considerations (see also Appendix D and Ref. 43)
lead to the following conclusion. When we work in the
framework of the minimal-coupling Hamiltonian, the po-
lariton branches, described by the eigenvalue equation (13),
appear due to the coupling of the pure photonic mode with
the intersubband as well as with the intrasubband Coulomb
modes described by Eqs. (14) and (15), respectively.

It is important to stress that in the case of the uniform
systems only the photonic and Coulomb modes having the
same mode index are coupled. Thus we can speak about the
diagonal coupling. This finding is consistent with the statement
that in the above mentioned systems the photonic and Coulomb
modes having the same mode index have the same oscillatory
spatial dependence in the MC.

It is obvious that the nonuniformity of the MQW-MC
system implies the different quantization conditions on the
radiation and the material excitations. Consequently, in such
systems we can expect an interaction between the Coulomb
and cavity modes having different mode indexes (nondiagonal
coupling). Equivalently, we can speak about the radiative
coupling between the cavity modes induced by the inter-
subband excitation.29 Note that the interpretation of the
coupling selection rules presented above, in contrast with the
interpretation based on the concept of the “bright” and “dark”
states (see Ref. 5), takes into account the interwell Coulomb
coupling and goes beyond the RWA.

b. Intersubband cavity polaritons. Initially, we shall ignore
the intrasubband transitions (εxx = εw). In other words, we
omit the second term on the right-hand side of Eq. (13). The
above mentioned simplification has a good justification when
ω2

IT, ω2 � ω2
p. In this limit, Eq. (13) reduces to the form(

ω2 − ω2
IT

)(
ω2 − � 2

n

) = 4ωIT�n�
2
R,n, (17)

where �R,n = (ωP /2)(��n/ωIT)1/2 sin θn.
Solving this equation, we get

ω2
±,n = ω2

IT + � 2
n

2
±

√(
ω2

IT − � 2
n

)2

4
+ �ω2

P ω2
‖. (18)

The branches predicted by the above equation can be
divided into the “resonant,” with n � n∗, and the “nonres-
onant,” with n > n∗, where n∗ is the maximal value of n

for which the condition �n(kx = 0) = nω⊥ � ωIT is fulfilled.
One can check that the nth-order resonant branch of the upper
type (+,n < n∗) starts at ω = ωIT and approaches �n as kx

increases. On the other hand, the nth-order resonant branch of
the lower type (−,n < n∗) starts at ω = nω⊥ and approaches
asymptotically the frequency ω̄IT = (ω2

IT − ω2
P �)1/2 as kx

increases. It is not an unexpected result since ω̄IT coincides
with ωCinter

n
(kx → ∞) [see Eq. (14)]. Thus, in agreement with

Refs. 26 and 10, model I predicts the formation of the polariton
gap between ωIT and ω̄IT. The above mentioned phenomenon is
directly related to the formation of the intersubband plasmon
bands due to the interwell Coulomb coupling [see Eq. (14)
and Appendix D]. It is worth stressing that the polariton gap
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appears only for the resonant modes. As shown in Ref. 5,
the nonresonant lower type branches (−,n > n∗) are located
in the above mentioned gap. They start at ω = ωIT and
approach asymptotically ω̄IT. It means that the in-gap polariton
branches are well-modeled by the intersubband Coulomb
modes described by Eq. (14).

At this point, we would like to note that the formation of
in-gap polariton states is also demonstrated for a planar MC
having all the space between the mirrors continuously filled
by GaAs.48 In such a system, the formation of the in-gap
states is associated with the (diagonal) coupling of the higher
photonic modes with excitonic states appearing due to the
size-quantization of the exciton center-of-mass motion.49

Note that the formula (17) has the same form as the (exact)
eigenvalue equation describing two harmonic oscillators
with the frequencies ωIT and �n. The coupling between
them is controlled by the frequency �R,n.50 When we
restrict to the SMCA (n = nmin) then, in agreement with
the quantum-mechanical approach developed in Ref. 26, the
quantity �R,nmin can be treated as the (dipolar gauge) Rabi
frequency determining the coupling between intersubband
excitation and the ground cavity mode. In further discussion,
the superscript nmin in the SMCA Rabi frequency will be
dropped for convenience, i.e., �R ≡ �R,nmin .

The resonant Rabi frequency, introduced in Introduction,
can be defined by �res

R = �R(kres
x ) where kres

x is the resonant
in-plane wave vector such that �nmin (kx) = ωIT. Consequently,
�res

R = (ωP /2)�1/2 in the case of the metallic mirrors and
�res

R = (ωP /2)�1/2 sin θres, with θres = θ1(kx = kres
x ), in the

case of the dielectric mirrors.
We would like to stress that the above statement is consistent

with the fact that in the dipolar gauge Hamiltonian there are
no direct Coulomb interactions between QWs; instead they are
mediated by an exchange of photons. In the minimal coupling
Hamiltonian, the direct and image parts of the Coulomb
interactions are explicitly present.43,51

Let us assume that ω2
P � ω2

21 and kx ≈ kres
x . In the above

mentioned limit, Eq. (17) can be approximated and recast (for
the UPB and the LPB) in the eigenvalue equation predicted by
the simplified oscillator model

(ω − ωIT)
(
ω − �nmin

) = (
�res

R

)2
. (19)

Figure 1 presents numerical solutions of the “exact”
equation (13) (solid curves), the SMCA equation (17) in which
the intrasubband excitation is omitted (gray spheres) and the
two-oscillator equation (19) (crosses), for a uniform system
with dielectric mirrors (nmin = 1). The numerical values used
for solving the above mentioned equations are ωp = 0.4 ωIT,
f12 = 0.86, and ω⊥ = 0.4 ωIT. It corresponds to n∗ = 2,
θres = 68◦, and ω̄IT = 0.93 ωIT.

As expected, the results obtained employing the two-
oscillator expression (19) based on the RWA are shifted with
respect to the results predicted by the SMCA expression (18).
For example, the frequency splitting between the UPB and the
LPB resulting from Eq. (19), takes the minimal value �min

ICP =
2�res

R at kx = kres
x . For comparison, employing Eq. (18), which

goes beyond the RWA, one finds that the minimum of the
above mentioned splitting appears at kx slightly smaller than
kres
x . In the case of metallic type mirrors, the above mentioned

FIG. 1. The normalized frequencies of the three lowest order
(n = 1,2,3) polaritonic branches (solid lines) and the ground photonic
mode c1 (gray solid line) supported by the uniform system with perfect
dielectric mirrors (nmin = 1), as a function of kx (see units in text).
The geometry of the system is shown in the insert. For illustration, we
also present the dispersion of the LPB and the UPB (gray spheres)
calculated employing expression (18) which neglects the presence
of the intrasubband excitation. The crosses correspond to the LPB
and the UPB predicted by the simplified two-oscillator formula (19)
based on the RWA. The dot-dashed line corresponds to the light
line ω = kxc/ε

1/2
w . The modes at the extreme right-hand side of the

diagram between ω = 0 and ω = ωp are essentially the intrasubband
Coulomb modes, while the branches laying between ω ≈ ω̄IT and
ω = ωIT are basically the intersubband Coulomb modes. The modes
located above the light line transform for large wave vector into
photonic modes. ω⊥ = 0.4 ωIT, ωp = 0.4 ωIT, and f12 = 0.86. It
corresponds to n∗ = 2, θres = 68◦, and ω̄IT = 0.93 ωIT.

frequency splitting takes the minimal value exactly for kx at
which �0(kx) = ω̄IT.26

We would like to stress that the eigenvalue equation (17)
includes the effects connected with intra- and interwell
Coulomb couplings. It is well known that in the case of
QWs with parabolic confining potential the static and dynamic
intrawell coupling can be omitted.8,10 The influence of the
above mentioned fact on the behavior of the LPB and UPB
supported by model I is considered in Appendix D.

Moreover, when the two lowest subbands are occupied, the
two (normal) intersubband plasmon modes become optically
active (see, e.g., Ref. 52). In this limit, the semiclassical
approach (see Appendix A) in agreement with the microscopic
quantum electrodynamic approach,27 predicts the appearance
of the photon mediated coupling22 between the above men-
tioned intersubband plasmon modes.

c. Intrasubband cavity polaritons. Now we discuss the case
when only intrasubband transitions are present (εzz = εw).
Since this paper is devoted to the intersubband polaritons the
properties of the intrasubband cavity polaritons will be dis-
cussed very briefly without illustrative numerical calculations.

The simplification εzz = εw has a very good justification if
ω2

p, ω2 � ω2
IT. In this limit, the dispersion equation (13) for
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the nth-order (n > 0) intrasubband polariton branches reduces
to the form (

ω2 − ω2
p

)(
ω2 − � 2

n

) = ω2
pn2ω2

⊥. (20)

Solving the above equation one gets the frequencies of the
lower (−,n) and upper (+,n) type intrasubband polariton
branches:

(
ωintra

±,n

)2 = ω2
p + � 2

n

2
±

√(
ω2

p − � 2
n

)2

4
+ ω2

pn2ω2
⊥. (21)

The upper (lower) type branches are located above (below)
the plasma frequency ωp. The nth upper branch starts at
[ω = (ω2

p + n2ω2
⊥)1/2, kx = 0] and approaches the nth cavity

mode at large kx . The lower type branches start at (ω = 0,

kx = 0) and approach ωp at large kx .
When (ωp/2ω⊥)2 � 1, the coupling between cavity modes

and intrasubband plasmon is strongly nonresonant. Making
appropriate expansions in Eq. (21) one finds that the upper
type branches practically coincide with the photonic modes
while the lower type branches are well modeled by the
intrasubband Coulomb modes described by Eq. (15). The
situation changes when inequality ω⊥/2 < ωp is fulfilled. In
this case, the coupling between the lowest cavity mode c1 and
the lowest intrasubband Coulomb mode Cintra

1 takes a resonant
character. As expected, in the above mentioned regime, the
anticrossing of the polariton branches is predicted by Eq. (21).
This equation also predicts formation of the polariton gap.
The gap is bounded by the frequencies ωp and (ω2

p + ω2
⊥)1/2.

It means that in the presently considered limit the system
exhibits the USC regime.

d. Hybrid intersubband-intrasubband cavity polaritons.
The simultaneous coupling of the cavity mode with the
intersubband and intrasubband excitations can be equivalently
considered as photon mediated coupling between the inter-
subband and intrasubband plasmonic modes.22 The above
mentioned coupling can lead to the violation of the SMCA
through the creation of the ICP branches with an admixture
of the intrasubband plasmon. It is reasonable to expect that
practically only the low-frequency part of the LPB should be
affected by the admixture of the Cintra

1 mode. The numerical
results displayed in Fig. 1 are consistent with the above predic-
tion. As it was mentioned, this figure presents the dispersion
characteristics of the polaritonic modes supported by model
I with dielectric mirrors. The gray spheres corresponds to
the “pure” LPB and UPB described by Eq. (18). The solid
curve, with index n = 1, located between ω = ωp and ω = ω̄IT

(above ω = ω̄IT), can be considered as a hybrid LPB (UPB).
It is clear that in the large wave vector region (kx > kres

x ) the
admixture of the intrasubband plasmon to ICP branches is
small. Consequently, their blue shift, with respect to the pure
branches is negligibly small. For example, at kx = kres

x , the blue
shift of the LPB takes the value close to 0.014 ωIT. As expected,
the blue shift of the LPB increases with the decrease of kx . At
kx

∼= 0.6 kres
x and ω ∼= 0.7 ωIT, the hybrid LPB branch crosses

photonic mode c1 and transforms into the upper intrasubband
polariton branch [see Eq. (21)] when kx → 0. The blue shift
of the hybrid LPB at the crossing point is already substantial
(∼= 0.056 ωIT).

As it was mentioned, the UPB, in contrast with the LPB,
is practically unaffected by the intrasubband transition. The
solid curve corresponding to the hybrid UPB coincides with
the curve corresponding to the pure UPB. Consequently,
the minimal frequency separation between the hybrid ICP
branches is also, but very weakly, affected by the intrasubband
excitation. The simulations show that the modifications of
the ICP characteristics associated with the presence of the
intrasubband excitation are more strongly pronounced on the
ω-ϕ plane than on the ω-kx plane (see Appendix E).

2. Model II

Now we discuss the properties of the ICP supported by
the strongly nonuniform model II. We focus on the role
of the radiative coupling (between cavity modes), which is
directly associated with the light reflection by the Q2DEG.
For simplicity, we neglect the presence of the intrasubband
excitation and assume that the system is symmetric.

Let us assume for a moment that the mirrors are of
a dielectric type. Then, from Eq. (11), one finds that the
characteristic equation can be written as

0 = (tQW + rQW)eiβMC + 1, (22)

0 = (tQW − rQW)eiβMC − 1. (23)

The modes take symmetric [the normal component of the
electric field Ez(z) is even function] and antisymmetric [Ez(z)
is odd function] forms. Substituting relation (C10) into Eq. (23)
we get the solutions corresponding to pure asymmetric cavity
modes (cn=2,4,6...). It means that the above modes do not inter-
act with the intersubband plasmon supported by the centrally
positioned QW. The solutions of Eq. (22) describe polariton
branches resulting from the coupling of the intersubband
plasmon with symmetric cavity modes (cn=1,3,5...). Taking into
account Eqs. (C9) and (C10), we can rewrite Eq. (22) as

�̂

2
= exp(iβMC) + 1

exp(iβMC) − 1
≡ −i cot (βMC/2) . (24)

The explicit expressions for βMC = kw,zLMC and �̂ =
(4π/c

√
εw)σzzk

2
x/Kwkw,z are given in Appendix C. Substi-

tuting the above mentioned expressions into Eq. (24) and
taking c → ∞, we find that the frequency of the intersubband
Coulomb mode (Ĉinter) supported by system QW-MC with
dielectric type mirrors can be written as

ωĈinter =
√

ω2
IT − ω2

P �̂W/ cothW, (25)

where W = kxLMC/2 and �̂ = f12L
eff
QW/LMC.

One can check that in the case of the perfect metallic
mirrors cothW , appearing in Eq. (25), should be replaced
by tanhW . Thus the frequency ωĈinter of the intersubband
Coulomb mode supported by model II is smaller than ωIT.
The above mentioned fact can be associated with the presence
of the image part of the Coulomb interaction.51,53 As already
mentioned, in the approach based on the dipolar gauge this
interaction is mediated by an exchange of cavity photons.
Note that the difference between ωIT and ωĈinter increases nearly
linearly with increasing kx (see Fig. 2). The explanation of this
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FIG. 2. The normalized frequencies of the photonic modes c1

and c3 (gray solid curves) and the two lowest polaritonic branches
A and B supported by the QW-MC system with dielectric mirrors
(model II) as a function of kx (see units in text). The circles are
obtained employing the “exact” Eqs. (31) and (32), which take
into account the higher (n > 1) photonic modes. The gray spheres
correspond to the results obtained employing Eq. (30) in which
the contribution of the higher photonic modes is neglected. The
short dashed curves are obtained employing the simplified oscillator
model based on the RWA. The light gray solid curve corresponds
to the frequency of the intersubband Coulomb mode as given by
Eq. (25). The dot-dashed line represents the light line αw = 0. The
geometry of the system is shown in the insert. ω⊥ = 0.33 ωIT and
�̂

1/2ωP = 0.07 ωIT. It corresponds to �̂res
R = 0.047 ωIT, θres = 72.5◦,

and n∗ = 3.

unphysical behavior of ωĈinter will be presented at the end of
this section.

Initially, we concentrate on the nearly resonant case
(kx ≈ kres

x ). We expand the right-hand side of Eq. (24) around
ω = �1(kx) and make simplifications consistent with the RWA
(see Ref. 22). Performing appropriate manipulations one finds
that the dispersion equation corresponding to the LPB and
UPB reduces, like in the case of uniform model I, to the form
predicted by the two-oscillator model (ω − ωIT)(ω − �1) =
�̂res

R . The resonant Rabi frequency (corresponding to the
QW-MC system) is defined by �̂res

R = (2�̂)1/2(ωP /2) sin θres.
Note that the factors �̂ and � [see Eq. (16)] are connected
by the relation �/�̂ = LMC/dMQW = NQW. It implies that the
resonant Rabi frequency �res

R corresponding to the uniform
MQW-MC system transforms to the above mentioned Rabi
frequency �̂res

R after the replacement NQW → N eff
QW = 2. Thus

N eff
QW = 2 can be treated as an effective number of QWs in

the presently considered configuration. It is obvious that the
value of the Rabi frequency (and consequently N eff

QW) generally
depends on the type of the mirrors and on the location of the
QW inside the MC.47

On the other hand, employing the multibeam interference
analysis (see Appendix D in Ref. 5) we get quite a different
result. Namely, one finds that N eff

QW = 1 for the arbitrary type
of the mirrors and arbitrary position of the QW inside the MC.
Moreover, the antisymmetric photonic modes become opti-
cally active. The above mentioned difference can be attributed
to the fact that the multibeam interference analysis completely
neglects light reflection by the Q2DEG. More precisely, it
neglects an (destructive/constructive) interference between the

signal directly reflected by the mirrors and the signal re-emitted
from the Q2DEG.54

Now, going beyond the RWA, we show that the
characteristic equation (11) corresponding to model II
can be rewritten in the form showing explicitly the in-
fluence of the higher photonic modes on the behav-
ior of the polariton branches. Let us divide the ω-kx

plane into the regions located within and outside the light cone
(of the spacer material). The edge of the light cone is defined
by the light line αw ≡ −ikw,z = 0 (or, equivalently, ω =
kxc/ε

1/2
w ). Within (outside) the light cone, the quantity βMC =

kw,zLMC [see Eq. (C15)] is real (imaginary). Performing ap-
propriate manipulations and taking into account relations (F1)
and (F2) we can rewrite the dispersion equation (11) as

ω2 − ω2
IT =

∑
n

4ωIT�n�̂
2
R,n

ω2 − � 2
n

, (26)

with

�̂R,n = ωP

2

(
�̂Dn

�n

ωIT

)1/2

sin θn, (27)

where Dn = δn,0 + 2δn,l=2,4,6... (Dn = 2δn,l=1,3,5...) in the case
of perfect metallic (dielectric) mirrors.

The above equation has the same form as the eigenvalue
equation corresponding to a system composed of harmonic
oscillator, with the frequency ωIT, linearly coupled to n (→∞)
independent oscillators associated with photonic modes cn.50

Consequently, the quantity �̂R,n can be considered as a
(dipolar gauge) coupling frequency between the intersubband
plasmon supported by the QW and the nth cavity mode.

As already noted, in the SMCA only the coupling of
the ground photonic mode with intersubband excitation is
considered. It means that the above mentioned approximation
corresponds to retaining in Eq. (26) only the term n = nmin.

Below, restricting to the SMCA, we will extend the
dispersion (26) to the case of a system containing an arbitrary
number of the QWs positioned at zN=1,2,3...NQW . Analogously
to our previous paper5 (see also Ref. 26), we define the
generalized overlap coefficient

Onnmin =
NQW∑
N=1

En(zN )Enmin (zN ) (28)

∼= NQW

∫
MQW

En(z)Enmin (z)dz, (29)

where En(z) is the normalized mode function describing the
spatial variation of the normal component of the electric field
(Ez) associated with the nth cavity mode. Writing Eq. (29),
we have assumed that the MQW slab contains a large number
of the QWs (NQW � 1).

Retaining in Eq. (26) only the lowest-order term n = nmin

and replacing Dnmin by Onminnmin , we get(
ω2 − ω2

IT

)(
ω2 − � 2

nmin

) = 4ωIT�nmin
̂̂�2

R, (30)

where ̂̂�R is defined by Eq. (27) with Dnmin replaced by
Onminnmin . The quantity Onminnmin can be treated as an effective
number of the QWs interacting with the ground cavity mode. In
the case of the uniform system the product �̂Onminnmin reduces
to factor � and we recover the result predicted by model I.
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Equation (30) is consistent with the quantum-mechanical re-
sults (based on the SMCA) reported by Todorov and Sirtori.26

The inspection of Eqs. (26)–(29) (see also Refs. 47 and 5)
suggests that the coupling of the intersubband excitation with
the higher photonic modes starts to play a nonnegligible
role when (i) the system exhibits the SSC regime and
(ii) the nondiagonal overlap coefficients O(n>nmin)nmin become
comparable with the diagonal coefficient Onminnmin .

Now we discuss the influence of the above mentioned
coupling on the behavior of the LPB and the UPB supported
by model II. Let us assume that the mirrors are of a dielectric
type (Dn = 2δn,l=1,3,5,...). Within the light cone (where βMC =
kw,zLMC is real), Eq. (24) can be written in the form containing
explicitly the mode index

n =
(

ω2 − ω2
‖

ω2
⊥

)1/2

− 2

π
arctan

[
π

2

ω2
‖

ω⊥(ω2 − ω2
‖)1/2

�̂ω2
P

ω2 − ω2
IT

]
. (31)

The branches predicted by the above equation will be labeled
A, B, C, . . . in the order of increasing βMC. In the absence
of the coupling between intersubband excitation and photonic
modes (�̂ω2

P → 0) the above mentioned branches transform
into photonic modes.

Outside the light cone (where βMC is imaginary), Eq. (24)
can be written as

−π

2

ω2
‖

ω⊥(ω2
‖ − ω2)1/2

�̂ω2
P

ω2 − ω2
IT

= coth

[
π

2

(ω2
‖ − ω2)1/2

ω⊥

]
.

(32)

The above equation, in contrast with Eq. (31), has only one
solution. This solution can be treated as the continuation of
branch A originating within the light cone.

We discuss numerically and analytically the behavior of
branches A and B taking �̂

1/2ωP = 0.07 ωIT and ω⊥ = 0.33
ωIT. It corresponds to �̂res

R = 0.047 ωIT, θres = 72.5◦, n∗ = 3,
and �3(kres

x ) = 1.37 ωIT. Open circles in Fig. 2 display the
kx dependence of the branches A and B obtained employing
the “exact” expressions (31) and (32). (The higher branches
are not presented since they practically coincide with the
higher photonic modes.) To illustrate the restricted validity
of the RWA and the SMCA, in Fig. 2, we also display
the behavior of the UPB and the LPB predicted by (i) the
simplified two-oscillator model (based on the RWA) and
(ii) the SMCA expression (30), which includes the non-RWA
terms but neglects the coupling with higher photonic modes.

Note that in the presently considered system the normalized
Rabi splitting 2�̂res

R /ωIT is rather small (∼= 0.1). It explains
why the frequencies of the LPB and the UPB predicted by the
oscillator model (see short dashed lines in Fig. 2), practically
coincide with the frequencies predicted by Eq. (30) based on
the SMCA (see gray spheres in Fig. 2). However, the results
displayed in Fig. 2 show that despite the small value of the
ratio 2�̂res

R /ωIT, the corrections resulting from the coupling
with higher cavity modes cannot be treated as negligibly
small. As expected, the above mentioned coupling affects

branches A and B (represented by circles in Fig. 2) in a slightly
different way.

First, we discuss the behavior of branch B. We find
from Fig. 2 that this branch starts at �3(kx = 0) = 0.99 ωIT,
crosses the line ω = ωIT at kcr

x
∼= 0.75 kres

x and approaches
monotonically �1 at large kx . Note that at ω close to ωIT the
(imaginary) parameter �̂, appearing in Eq. (24), takes very
large values. Thus the expansion arctan x = (π/2)(x/|x|) −
1/x (valid for |x| � 1) can be used in Eq. (31). Employing this
expansion, one finds that branch B changes, with increasing
kx , its mode index (from n = 3 to 1) during the crossing
of the line ω = ωIT. The above mentioned transformation is
associated with the simultaneous coupling of the intersubband
plasmon with the ground (c1) and higher (cn=3,5,7...) photonic
modes. At kx

∼= kcr
x , where branch B changes its mode index,

c1 and c3 cavity modes are nearly symmetrically positioned
with respect to ωIT. It is obvious that the admixture of higher
photonic modes (mainly c3) is responsible for the redshift of
branch B with respect to the pure UPB predicted by the SMCA
expression (30). Results displayed in Fig. 2 show that the above
mentioned shift is substantial only for kx � kres

x .
Now we discuss the influence of the coupling with higher

photonic modes on the behavior of branch A represented by
circles in Fig. 2. As one can expect, the above mentioned
coupling also leads to the redshift of branch A with respect
to the pure LPB predicted by the SCMA and represented
by circles in Fig. 2. Now, however, this redshift becomes
substantial when kx � kres

x . The inspection of Fig. 2 shows
that the asymptotic behavior of branch A is quite different
than the asymptotic behavior of the pure LPB. Namely, branch
A is not monotonic with kx . In the presently discussed system,
it reaches the maximum value (≈ 0.978 ωIT) at kx

∼= 1.3 kres
x

and then decreases very slowly with increasing kx . At large
values of kx its behavior is well modeled by the dispersion
of the intersubband Coulomb mode Ĉinter given by Eq. (25).
For comparison, the pure LPB approaches asymptotically the
frequency ̂̄ωIT = (ω2

IT − 2ω2
P �̂)1/2 ≈ 0.995 ωIT.

As already mentioned, the phenomena described above
can be interpreted as a result of the coupling intersubband
excitation with the higher photonic modes. Simulations show
that at kx = 1.5 kres

x , the contribution of n = 3 and n > 3
cavity modes to the redshift experienced by the A branch
is close to 34% and 66%, respectively. Note that the role
of the above mentioned modes increases with increasing kx .
One can check that at sufficiently large kx � k̂x,n (k̂x,n is
determined by relation ω‖(kx) = nω⊥) the contribution of
the nth cavity mode, to the right-hand side of Eq. (26),
very weakly depends on its mode index. This fact can be
associated with the formation of the negative slope of branch
A at kx � 1.3 kres

x . However, we should remember that the
dispersion equations (31) and (32) are based on the sheet
model. Unfortunately, the violation of this model or, more
precisely, the violation of the LWA is expected when the index
of the photonic mode n (interecting with the intersubband
excitation) is sufficiently large (�LMC/Leff

QW). In this limit,
the variation of Ez (connected with photonic modes) in the
region occupied by the Q2DEG cannot be treated as negligi-
bly small. Consequently, the coupling strength with higher
photonic modes is substantial overestimated by the sheet
model.
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We should also remember that the role of the higher pho-
tonic modes decreases dramatically when we replace a single
QW by an MQW slab with a thickness LMQW comparable with
the cavity width LMC. Employing the concept of the gen-
eralized overlap coefficient (29), one can check that the
influence of higher photonic modes on the behavior of the LPB
and UPB decreases very fast with increasing photonic mode
index.5 For illustration, let us assume that the MQW (with
the thickness LMQW = LMC/2) is located asymmetrically
in the space between perfect dielectric mirrors. In such
systems, the ground cavity mode couples radiatively with the
asymmetric cavity modes (n = 2,4,6, . . .). The normalized
nondiagonal overlap coefficientsO1n/O11, associated with this
coupling, take, for n = 2, 4 and 6, the values 0.85, 0.34, and
0.22, respectively. It supports (see also Fig. 8) the statement
that the role of the higher photonic modes (or equivalently, their
admixture to the LPB and UPB) decreases with increasing the
MQW thickness.

Also note that in the case of the realistic systems the
effective modal volume increases with the increasing mode
index (see, e.g., Fig. 1 in Ref. 14). It should lead to an additional
reduction of the coupling strength with higher photonic modes.

The polariton dispersion curves, with a qualitatively similar
behavior to that presented in Fig. 2, have been predicted
for excitonic polaritons, supported by a multimode dielectric
waveguide with embedded QW, employing the semiclassical55

and quantum-mechanical56 approaches. Moreover, the asymp-
totic behavior of branch A is qualitatively similar to
the behavior of the lowest polariton branch supported by
the planar waveguide with perfectly conducting walls when
one of the walls is covered by a thin layer of a “nondissipative”
metal.57

B. Systems with plasmonic mirrors

So far, we have studied the properties of the polariton modes
assuming that the mirrors are perfect and the ohmic dissipation
is negligibly small. In this section we briefly discuss the main
consequences of the above mentioned simplifications. We
pay special attention to the systems with plasmonic mirror(s)
[see, e.g., Fig. 3(b)]. An important feature of the above
mentioned mirrors is the strong ω dependence (dispersion) of
their characteristics (see Fig. 4). It complicates the solution of
the dispersion equation (7) even when its simplified version (8)
is employed. Nevertheless, in the case of nearly resonant
systems exhibiting the ordinary strong coupling regime, useful
analytical expressions can also be obtained making appropriate
simplifications. We restrict ourselves to the discussion of
ϕ-dependent characteristics of virtual modes. As it was
mentioned, such characteristics are directly measured. The
kx-dependent dispersion can be extracted numerically from the
ϕ-dependent characteristics employing relation (2). Such type
of calculations are performed in Sec. IV for systems displayed
in Fig. 3.

Let us assume that the MQW slab, backed by the spacer
layers with dielectric constant εsl = εw, is located between
the mirrors characterized by the ω-dependent reflection co-
efficients rι (ι = b,c). As already mentioned, we concentrate
on systems exhibiting the ordinary strong coupling regime. It
means that a simplified Eq. (8), omitting the radiative coupling

effects (connected with light reflection by the Q2DEG), can
be employed.

It is convenient for further discussion to define the mirror
phase shift in the following way:

rι(ω) = −�ι(ω)ei�ι(ω), (33)

where �ι = √
Rι and �ι (Rι) is the phase shift (the energy

reflection coefficient) of the ιth mirror. In the case of perfect
dielectric mirrors �ι = 0 and Rι = 1. Below, we discuss
realistic systems where �ι �= 0 and Rι < 1.

Taking into account the definition (33), we can transform
Eq. (8) into the following form:

kMQW,zLMC = π (n − �mirr/2π ) + i�mirr/2, (34)

where �mirr = �b + �c is the total mirror phase shift, �mirr =
ln �b�c and n is mode index.

In further discussion we neglect for simplicity the intrasub-
band excitation (generalization is straightforward). Expanding
kMQW,z in a power series38 and employing the relation kw,z =
Kw cos ϕ one can rewrite Eq. (34) into a more convenient form:

ω = � 1

[(
n − �mirr − �′′

2π

)
+ i

�mirr − �′

2π

]
, (35)

where � 1 = ω⊥/ cos ϕ is the ϕ-dependent frequency of
the ground photonic mode of the MC with perfect di-
electric mirrors (see Appendix E) and � ≡ �′ + i�′′ =
NQW(4π/c

√
εw)σzz tan ϕ sin ϕ.

Then we assume that ϕ is close to the resonant angle ϕres

defined by the relation ωIT = ω′
1(ϕ), where ω̃1(ϕ) = ω′

1(ϕ) +
iω′′

1(ϕ) is the complex frequency of the ground photonic mode
of the considered MC. As it was noted, when the mirrors are
of a plasmonic type, the quantities �mirr and �mirr, appearing
in Eq. (35), depend strongly on ω. With no loss of generality
they can be written in the form

�mirr(ω) = �res
mirr + (ω − ωIT)�′ + �nl(ω), (36)

�mirr(ω) = �res
mirr + (ω − ωIT)�′ + �nl(ω), (37)

such that �nl(ω) and �nl(ω) contain only second- and higher-
order variations with ω, and such that �nl(ωIT) = �nl(ωIT) = 0.
For convenience, we have introduced the notation �res

mirr =
�mirr(ωIT) and �res

mirr = �mirr(ωIT).
It is obvious that in the case of a nearly resonant system

(ϕ ≈ ϕres) exhibiting the ordinary strong coupling regime, only
the narrow frequency range, around ωIT, can be considered.
(We assume that in the above mentioned frequency range
quantities �mirr and �′ are positive.) In the first approximation,
we can take into account only the linear dependence of �mirr(ω)
and �mirr(ω) on ω (the linear limit). It is equivalent to the
assumption �nl(ω) = �nl(ω) = 0. Let us neglect for a moment
(i) the intersubband excitation and (ii) the ω-dependence of
�mirr(ω) assuming that �mirr(ω) = �res

mirr. Then, from Eqs. (35)–
(37), one finds that the complex frequency of the ground cavity
mode can be approximated by

ω̃1 = � 1

[(
1 − �res

mirr − ωIT�′

2π

)
+ i

�res
mirr

2π

]
LMC

Leff
MC

, (38)

where Leff
MC = LMC(1 + �′� 1/2π ) is an effective thickness of

the MC. The above equation is consistent with the expression
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derived by Panzarini et al.58 for the MC with the distributed
Bragg reflectors (DBRs).

The inspection of Eq. (38) leads to an important conclusion
that the linear dispersion of �mirr implies the reduction of
the cavity mode broadening by factor LMC/Leff

MC compared
to the nondispersive case �mirr = �res

mirr. The ω dependence
of �mirr practically does not affect the above conclusion.
One can check that the effects connected with the linear
dependence of �mirr on ω are controlled by the parameter
R = � 1�

′LMC/2π�res
mirrL

eff
MC. As long as the ground cavity

mode can be treated as a well-defined entity (i.e., when
ω′

1(ϕres) � |ω′′
1(ϕres)|), the above mentioned parameter is

small. It means that the photonic mode is very weakly affected
by the �mirr dispersion. The situation is more complex in the
case of the polariton branches, i.e., when the intersubband
excitation is included.

Employing Eqs. (35)–(38) and (A4) and performing appro-
priate manipulations, one finds that the angle-resolved spectra
of the LPB and the UPB are determined by the following
equation:

(ω − ω̃1)(ω − ω̃IT) = �2
resLMC

/
Leff

MC(1 − iR), (39)

where �2
res = �(ωP /2)2 tan2 ϕres, ω̃IT = ωIT − iγIT and γIT is

the intersubband dephasing rate. The inspection of Eqs. (38)
and (39) leads to the following conclusions. As long as only
the linear dispersion of the mirror phase shift �mirr is present,
the angle-resolved spectra of the nearly resonant structure
can be modeled by the two-coupled oscillator formula. It
describes two oscillators having complex frequencies ω̃IT and
ω̃1. The coupling between them is determined by the effective
(resonant) coupling frequency �res(LMC/Leff

MC)1/2. It means
that the linear dispersion of the phase shift not only reduces
the cavity mode broadening but also decreases the effective
coupling frequency with respect to the constant phase shift case
(�mirr = �res

mirr). In the case of the perfect mirrors the difference
between LMC and Leff

MC vanishes and the above mentioned
coupling is quantified by frequency �res (see Appendix E).

We would like to emphasize fact that the discussed
above effective coupling frequency determines the minimal
separation between constant-angle (virtual) polariton branches
(�min

ICP). This quantity practically coincides with the polariton
peak splitting in the angle-resolved spectra. As mentioned in
Introduction (see also the next section), �min

ICP is substantially
larger than the minimal polariton branch splitting �min

ICP on the
ω-kx plane.

The ω dependence of �mirr leads to the additional renormal-
ization of the effective coupling frequency. Equation (39) indi-
cates that the linear dispersion of �mirr can be included replac-
ing the real effective coupling frequency �res(LMC/Leff

MC)1/2 by
the complex quantity �res[LMC/Leff

MC(1 − iR)]1/2. It implies,
in agreement with the experimental results reported in Refs. 12
and 11, the asymmetry of the linewidth behavior at the
anticrossing for the LPB and the UPB. Thus the polariton
branch broadening is not well reproduced by the two-coupled
oscillator formula when �mirr depends on ω.

Deriving Eq. (39), we have neglected the nonlinear term
in the mirror phase shift dispersion (36). This term leads to
additional modifications of the cavity and polariton spectra.
First of all, it shifts the photonic mode frequencies. The above

mentioned shift depends, in general, on the cavity mode index
n. It means that the presence of higher order terms in the
phase shift dispersion prevents the perfect uniformity of the
cavity mode spacing on the ω-ϕ plane. The above conclusion
is consistent with numerical simulations based on the TMF
(see Ref. 5). One can also check that the presence of the
nonlinear term can lead to the enhancement of the minimal
polariton peak splitting �min

ICP. In other words, the nonlinear
term partially compensates for the reduction of �min

ICP induced
by the linear phase shift dispersion.

Discussing the consequences of the replacement of perfect
dielectric mirrors by plasmonic mirrors, we have assumed
that the mirror phase shift �mirr, appearing in the dispersion
equation (35) is positive (�mirr > 0). However, at a sufficiently
low frequency (ω < ωp,mirr), the above mentioned quantity
can be negative [see, e.g., Fig. 4(e)]. It means that in the case
of the systems with plasmonic mirrors the formation of a new
type of the radiative type cavity eigenmodes—surface plasmon
polariton modes is potentally possible (see Appendix G).
The consequences of this fact are discussed in the next
section.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Description of samples and mirror characteristics

Numerical calculations reported in this section are per-
formed for three structures called: A, B, and C. They are
schematically presented in Fig. 3. We assume, for simplicity,
that in all the considered structures the QWs will be treated as
two-subband systems. Additionally, performing the numerical
calculations, we assume for simplicity that the intersubband

FIG. 3. Diagrams illustrating schematically the geometry of the
three structures discussed in the paper: (a) structure A, (b) structure
B, and (c) structure C. The regions occupied by the n-doped dielectric
layers (or multilayers) playing the role of the plasmonic mirrors are
shaded. The above mentioned layers are described by Drude-like
dielectric function εmirr(ω) given in Appendix G.
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dephasing rate (γIT) coincides with the intrasubband dephasing
rate (γ‖).

The first structure (A), with purely dielectric mirrors, is
similar to that studied recently in Refs. 12 and 11. It is grown
on a GaAs substrate (εs = εGaAs) and consists of a MQW (with
NQW = 50) embedded between undoped AlAs layer (cou-
pling mirror) and undoped Al0.33Ga0.67As spacer layer with
thicknesses of 2.5 μm and 2 μm, respectively. The cladding
medium is air (εc = 1). The period of the MQW consists of
a 90-Å GaAs QW and a 300-Å Al0.33Ga0.67As barrier. We
also take the surface electron density Ns = 2 × 1012 cm−2

(corresponding to the plasma frequency ωp = 31.5 meV/h̄),
h̄ωIT = 120 meV, f12 = 0.86 and 2h̄γIT = 7.5 meV.

Structure B is similar to that studied experimentally by
Dupont et al.2,14 and theoretically in our previous paper.5 It is
also grown on a GaAs semi-insulating substrate and consists of
a MQW (with NQW = 140) embedded between a 0.4-μm-thick
n+ GaAs top layer and 0.8-μm-thick n+ GaAs bottom layer
(coupling mirror) with the doping concentration ND = 2 ×
1018 cm−3. The above mentioned doping corresponds to the
plasma frequency of the mirror material ωp,mirr = 62 meV/h̄.
The cladding medium is Au. The period of the MQW
consists of a 60-Å GaAs QW and a 290-Å Al0.21Ga0.79As
barrier. The QW is described by the following parame-
ters: h̄ωIT = 114 meV, f12 = 0.86, 2h̄γIT = 6.2 meV, and
Ns = 2 × 1011 cm−2 (h̄ωp = 10.5 meV).

Structure C corresponds to the system studied by Anappara
et al.6 It is grown on the GaAs substrate. The coupling
mirror is realized by sandwiching a 1.65-μm-AlAs layer
between two GaAs layers doped to 5 × 1018 cm−3 (h̄ωp,mirr =
98 meV), each having a thickness of 1500 Å. The active region
consists of 70 repeats of n-doped 65-Å-thick GaAs QWs
separated by 80-Å-thick Al0.35Ga0.65As barriers. A 1000-Å-
thick Al0.35Ga0.65As spacer layer is located between the MQW
and a cladding medium (Au). We also take h̄ωIT = 152 meV,
2h̄γIT = 12 meV, f12 = 0.86, and Ns = 3.25 × 1012 cm−2

(h̄ωp = 66 meV).
Figure 4 displays the ω dependence of the power reflection

coefficient Rb(c) and the mirror phase shift �b(c) corresponding
to the resonant configuration (ϕ = ϕres). In the case of struc-
tures B and C, we additionally present mirror characteristics
obtained assuming that the mirror material dielectric function
εmirr(ω) ≡ εn+GaAs(ω) (see Appendix G) does not depend on
ω. More precisely, we assume that εmirr(ω) = εmirr(ωIT). For
convenience, we also assume that in structures A, B, and
C, the back mirror corresponds to 2-μm-thick Ga0.33Al0.67As
spacer layer bounded by air, the 0.4-μm-thick n+ GaAs layer
bounded by Au, and the 1000-Å-thick Ga0.33Al0.67As spacer
layer bounded by Au, respectively.

The results displayed in Fig. 4 indicate that in structure A
only Rc and �b manifest strong ω dependence. However, we
should remember that the nearly linear variation of the back
mirror phase shift �b with ω is mainly connected with the
presence of the Ga0.33Al0.67As spacer layer. Simulations show
that in the absence of this layer, �b is nearly independent on ω.

A much more interesting situation occurs in the case of
plasmonic mirrors. Figure 4 very well illustrates the fact that
the ω dependence of εmirr leads to the substantial dispersion
of the mirror characteristics. Note that the above mentioned

FIG. 4. The spectral dependence of the mirror reflectivities Rb

and Rc (upper panels) and the phase shifts �b and �c (lower panels)
calculated for the resonant structures A (the left panels), B (the
central panels) and C (the right panels). The solid (dotted) curves
are obtained taking into account [neglecting; εmirr(ω) = εmirr(ωIT)] of
the mirror material dispersion. For convenience of the presentation,
the curve displaying the ω dependence of �b in structure C has been
shifted by 360◦.

dispersion is, in general, nonlinear. In the case of single layer
mirrors (like in structure B) the nonlinearity is not very strong.
Nevertheless, it substantially disturbs the perfect uniformity
of the cavity mode spacing on the ω-ϕ plane [see Fig. 2(a)
in Ref. 5]. Figure 4 also supports our previous statement that
in the case of the plasmonic mirror the phase shift becomes
negative at the frequency smaller than mirror plasma frequency
ωp,mirr. As expected the omission of the mirror material
dispersion [more precisely replacement εmirr(ω) by εmirr(ωIT)]
leads to a drastic reduction of the mirror phase shift dispersion.

It is seen from Fig. 4 that the behavior of the multilayer
plasmonic mirror, employed in structure C, is more complex
compared to the single layer case. For example, we observe the
appearance of the dip (at h̄ω ≈ 90 meV) in the ω dependence
of Rc and �c. Since in the system discussed here the mirror
plasma frequency ωp,mirr is close to 98 meV/h̄, the appearance
of the dip can be associated with the formation of the (radiative)
surface plasmon polariton mode (see Appendix H). At this
point we would also like to stress that a slightly similar
situation takes place in the case of DBRs. However, in the
above mentioned system the formation of so-called leaky
modes (below and above the stop band at kx ≈ 0) is responsible
for the appearance of additional structures in the spectra of
reflection coefficient.23,24 It is obvious that the formation of
the leaky modes in the DBRs is not connected with surface
plasmon polaritons but with the interference of the wave in
periodic dielectric structures.58

B. Polariton dispersion characteristics

1. The ϕ-dependent characteristics

Let us first consider the ϕ-dependent characteris-
tics. As already mentioned, such characteristics can be
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FIG. 5. The real part (upper panel) and the imaginary part (lower
panel) of the normalized frequencies of the modes c1, UPB and LPB
supported by structure A as a function of ϕ. The insert shows the ϕ

dependence of the polariton branch separation �ICP. For illustration,
we additionally present the results obtained including only resonant
term in expression for σzz (open circles in the upper panel).

directly determined by angle-resolved reflectance-absorptance
measurements.

The complex frequencies (ω̃κ = ω′
κ + iω′′

κ ) of constant-
angle virtual modes have been calculated numerically em-
ploying the TMF supplemented by the “microscopic” EMA.
For clarity only the lowest-order virtual modes are discussed.
The behavior of higher-order modes (n > 1) supported by
the structures with dielectric and plasmonic mirrors has been
partially discussed in our previous papers.4,5

The numerical results corresponding to structure A are
displayed in Fig. 5. They are consistent with the predictions
resulting from the simplified model discussed in Sec. III B.
For example, in agreement with the experimental results
reported in Refs. 12 and 11, we find that due to strong ω

dependence of Rc the anticrossing of curves corresponding
to the real part of the polariton frequencies (ω′

LPB and ω′
UPB)

is not accompanied by the crossing of curves corresponding
to the imaginary part of the polariton frequencies (ω′′

LPB and
ω′′

UPB). Note also that in the considered structure, the UPB is
narrower than the ground photonic mode and the intersubband
resonance (|ω′′

UPB| < γIT,|ω′′
c1
|) for 60◦ � ϕ � 66◦, while for

62◦ � ϕ � 68◦ the linewidth of the LPB exceeds the linewidth
of both photonic mode and the intersubband resonance
(|ω′′

LPB| > γIT,|ω′′
c1
|). The insert in Fig. 5 shows the variation of

the polariton branch separation �ICP = ω′
UPB − ω′

LPB (on the
ω-ϕ plane). Examining this insert, one finds that the minimal
branch separation appears not at ϕ ≈ ϕres

∼= 66.1◦, as the
simplified two-coupled oscillator expression (39) suggests, but
at ϕ ∼= 62◦. We suppose that this fact can be associated with
radiative coupling effects (see below).

Results presented in the upper panel of Fig. 5 also illustrates
the statement that neglecting the nonresonant term in the

FIG. 6. The real part (upper panel) and the imaginary part (lower
panel) of the normalized frequencies of the modes c1, UPB and LPB
supported by structure B as a function of ϕ. The solid (dotted) curves
are obtained taking into account [neglecting; εmirr(ω) = εmirr(ωIT)]
the mirror material dispersion. In the lower panel the solid curves
corresponding to the modes c1 and UPB practically cannot be
distinguished. Moreover, the difference between ω′′

LPB and −γIT is
also negligibly small. The insert shows ϕ dependence of the polariton
branch separation �ICP.

expression for σzz (see Appendix A) leads to a very small
redshift of the polariton branches. As expected, this shift rather
weakly affects the minimal branch separation. Numerical
simulations (results are not presented) suggest that the above
remarks are also valid for structures B and C.

Figure 6 displays the behavior of the constant-angle virtual
modes supported by structure B with plasmonic mirrors.
Calculations have been performed taking into account (solid
curves) as well as neglecting (doted curves) the dispersion
of the mirror material, i.e., taking εmirr(ω) = εmirr(ωIT). For
clarity, we do not present the behavior of the (radiative) ASP

surface plasmon polariton mode supported by the passive
MC (see Appendix G). As one can expect the above mode
is located slightly below the surface plasmon frequency
ωsurf

p,mirr = ωp,mirr/
√

2 (∼= 0.38 ωIT). The complex frequency
of the above mentioned plasmonic type mode rather weakly
depends on ϕ and can be approximated by ω̃ASP (ϕres) ∼= 0.36
ωIT + i0.018 ωIT where ϕres

∼= 72.6◦. It is obvious that the
presently considered plasmonic type mode does not appear
when εmirr(ω) is replaced by εmirr(ωIT).

The above mentioned replacement leads, in agreement with
analytical results presented in Sec. III B, to the substantial
modification of the polariton branch dispersion. From the
insert in Fig. 6 one finds that, in the presence of the mirror
dispersion, the polariton branch separation �ICP (in structure
B) takes the minimal value of 0.3 ωIT at ϕ ∼= 70.9◦. When the
mirror dispersion is neglected, i.e., when εmirr(ω) = εmirr(ωIT)
the above mentioned separation takes the minimal value of
0.44 ωIT at ϕ ∼= 71.7◦. It is interesting to note that the above
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FIG. 7. The real part (upper panel) and the imaginary part (lower
panel) of the normalized frequencies of the modes c1, UPB, and LPB
supported by structure C as a function of ϕ. The solid (dotted) curves
are obtained taking into account [neglecting; εmirr(ω) = εmirr(ωIT)]
the mirror material dispersion. The insert shows the ϕ dependence of
the polariton branch separation �ICP.

mentioned replacement affects rather weakly the polariton
dispersion on the ω-kx plane (see Fig. 9).

Figure 6(b) also shows that due to strong ω dependence of
Rc, we do not observe the crossing of the curves ω′′

LPB and
ω′′

UPB at ϕ close to ϕres. Since Rc decreases with increasing
ω, the linewidth of the LPB is smaller than the UPB. The
above finding is in qualitative agreement with the experimental
results reported by Dupont et al.2,14

The angular dispersion of the virtual modes supported by
structure C is displayed in Fig. 7. The resonant angle ϕres is
close to 67.9◦. Like in the case of structure B we do not present
the behavior of the surface plasmon polariton mode supported
by the passive MC. The real part of the frequency of this mode
varies between 0.5 ωIT and 0.7 ωIT.

The inspection of the Figs. 6 and 7 shows that the behaviors
of the UPB and the LPB in structures B and C do not differ
dramatically. Nevertheless, some differences are noticeable.
For example, due to a larger value of the normalized Rabi
splitting in structure C, compared to structure B [see Figs. 9
and 10], the branch separation �ICP in the former system
decreases with decreasing ϕ.

2. The kx-dependent characteristics

The kx-dependent characteristics for the virtual modes
supported by structures A, B, and C have been extracted
from ϕ-dependent characteristics (see Figs. 5–7) employing
relation (2). The results of the calculations are displayed in
Figs. 8–10. To facilitate the comparison with results predicted
by model I and model II the frequency is plotted as a
function of the dimensional quantity kx/kres

x . kres
x corresponds

to the in-plane wave vector at which the first order cavity
mode is in the resonance with the intersubband transition or

FIG. 8. The real part of the normalized frequencies of the modes
c1, c2, UPB, and LPB supported by structure A as a function of kx

(see units in text). The gray solid curve, starting at kx
∼= 0.97 kres

x ,
corresponds to part of the LPB having a nonradiative character. The
gray spheres represent results obtained employing the SMCA (see
text). The crosses represent results obtained with the help of Eq. (19)
corresponding to the simplified oscillator model. The dot-dashed line
represents the substrate light line.

more precisely when ω′
c1

(kx) = ωIT. Simulations show that in
structures (A,B, C) kres

x is close to (1.83, 1.82, and 2.35 μm−1).
We should remember that only the constant-angle virtual

modes corresponding to photonic modes and the UPBs have
a radiative character for arbitrary kx , i.e., they are located
within the substrate light cone. The constant-angle virtual
mode representing the LPB crosses, at ϕ = 90◦, the substrate
light line and transforms continuously into the nonradiative
type mode.45 It means that only part of the (kx-dependent)
dispersion curve of the LPB (which is located within the
substrate light cone) can be extracted employing the above
mentioned approach.

From results presented in Figs. 8–10 one finds that, in
structures (A, B, C) the LPB crosses the substrate light line
at kx = kmax

x close to (0.97 kres
x , 1.01 kres

x , 0.83 kres
x ). It is

obvious that the dispersion of the LPB for kx > kmax
x (where

the above branch has a nonradiative character) can be also
obtained solving numerically a characteristic equation (1).
Then, however, we have to assume that the in-plane wave
vector kx is a real quantity. The mode frequency has to be

FIG. 9. The real part of the normalized frequencies of the modes
c1, c2, UPB and LPB supported by structure B as a function of
kx (see units in text). Results are obtained including (solid curves)
and neglecting (dotted curves) of the mirror material dispersion. The
dot-dashed line represents the substrate light line.
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FIG. 10. The real part of the frequencies of the modes c1, c2, UPB,
and LPB supported by structure C as a function of kx (see units in text).
Results are obtained both including (solid curves) and neglecting
(dotted curves) the mirror material dispersion. The dot-dashed line
represents the substrate light line.

considered as a complex quantity as long as the nonradiative
losses are present.45,46

Our simulations show that the minimal values of the
normalized polariton branch splitting �min

ICP/ωIT (on the ω-kx

plane) achieve values close to (0.17, 0.08, 0.3) in structures
(A, B, C). Thus it is reasonabe to expect that the considered
systems should exhibit the SSC. To illustrate the correctness
of the above mentioned statement we additionally display
the dispersion characteristics of the second order photonic
modes (see curves in Figs. 8–10 denoted as c2). The obtained
results fully confirm the above mentioned suggestion. For
structures (A, B, C), the ratio �min

ICP/�CM takes values close to
(1.3, 1.1, 1.3).

As demonstrated in Sec. III A, in the (nonuniform) systems
exhibiting the SSC, the coupling with higher photonic modes
cannot be excluded a priori. Below, we show evidence
indicating that such a situation takes place in the case of
structure A. We concentrate only on structure A because
modes supported by structures B and C can be substantially
affected by plasmonic effects.

To facilitate a qualitative comparison with results predicted
by model II, we have additionally calculated [solving numer-
ically Eq. (1)] the dispersion characteristic of the LPB in the
region where the above branch has a nonradiative character,
i.e., for kx > kmax

x . Moreover, simultaneously with the exact
numerical results (solid black and gray curves), the results
obtained with the help of the SMCA expression (30) (gray
spheres) and the simplified oscillator model (crosses) are
presented for structure A in Fig. 8. In the two latter cases,
the product �̂O11ω

2
P [appearing in Eq. (30)] was treated as a

fitting parameter. The kx-dependence of the ground photonic
mode frequency was extracted from the TMF results. It is clear
that the deviation of the exact results from those predicted by
the SMCA expression (30) has the same qualitative character
as that observed in the QW-MC system studied in Fig. 2. It is
interesting to note that similar type deviations [see the behavior
of the UPB in Fig. 4(b) in Ref. 5] are also observed in the case
of structure B but when only half of the space between the
mirrors is occupied by QWs. The above findings support our
statement that in realistic systems exhibiting the SSC regime
the effects associated with radiative mode coupling cannot be
neglected a priori.

In the case of structures B and C, the effects connected with
the formation of surface-plasmon modes should be addition-
ally considered. We concentrate on structure C because only
in this structure the difference between intersubband transition
frequency ωIT and mirror plasma frequency ωp,mirr (or more
precisely surface plasmon frequency ωsurf

p,mirr = ωp,mirr/
√

2) is
comparable with Rabi splitting �min

ICP. From Fig. 10, we find
that the low frequency part of the LPB is blueshifted with
respect to the nondispersive case εmirr(ω) = εmirr(ωIT). The
low-frequency part of mode c1 experiences also the blue shift
but it is substantially smaller than the blue shift of the LPB.
We suppose that the above mentioned fact is mainly associated
with the radiative coupling of mode c1 with the surface
plasmonic mode(s). However, some contribution of the effects
connected with the (photon mediated) coupling between the
intersubband and intrasubband plasmons cannot be excluded.
Nevertheless, the relative role of this coupling should be rather
small due to its a strongly nonresonant character. (The origin
of the peculiar behavior of the c2 mode observed, in Fig. 10,
at kx � 0.95 kres

x will be discussed in future publications.)
It is reasonable to expect that the consequence of the

coupling between the inter- and intrasubband plasmons can
be enhanced drastically introducing the modification to the
MQW system, similar to that discussed by Plumridge et al.36

The period of the modified structure should contain, except
a typical QW, an additional heavily n-doped semiconductor
layer(s). The insertion of the above mentioned “metallic”
layer(s) increases the plasma frequency, associated with the
electron motion in the x-y plane, but does not substantially
affect the intersubband resonant frequency.

Discussing the role of the surface plasmonic modes we
have concentrated on the systems where the above mentioned
modes are not resonant with intersubband plasmon. However,
the system can be also designed so as to achieve the
resonant coupling between the surface plasmonic modes and
intersubband excitation. Preliminary simulations, performed
for structure B with ωIT treated as a free parameter, predict the
formation of the multiple peak structure in absorption spectra
when ωIT approaches ωsurf

p,mirr. The above mentioned multiple
peak structure can be associated with the formation of the
intersubband surface plasmon polariton branches. The results
reported in Ref. 31 suggest that they can have interesting
new properties (dispersion characteristics) controlled by the
ratio ωsurf

p,mirr/ω⊥. We are planning to discuss this problem in a
separate paper.

As it was mentioned in Introduction, planar systems are
considered in this paper. Nevertheless, it is worth noting that
the USC between the intersubband excitation and photonic
modes supported by zero-dimensional (0D) metallic MCs
is also observed.7–9,27 In the above mentioned systems,
subwavelength confinement (in the z direction) takes place.
Some remarks connected with this fact are presented below.

It is obvious that in the case of the planar system with
subwavelength thickness only the fundamental c0 ≡ TM0

mode (with Ez that is constant through the MC) can be
considered. The (periodical) lateral patterning of the above
mentioned system leads to the formation of 0D metallic MCs
with a lateral photonic confinement due to the impedance
mismatch between the double and single metal regions. It can
be assumed that in the lateral direction the structure simply
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behaves like a set of independent Fabry-Perot resonators.
Changing the length and/or width of the stripes one can
obtain the resonance conditions between the intersubband
excitation and lateral photonic modes (TMmn0) of the 0D
metallic MC.7–9,27 It is reasonable to expect that the lateral
patterning also affects the intersubband Coulomb modes.
However, different quantization conditions can be expected
for the radiation and material excitations. Note that in the
case of 0D metallic MCs the lateral photonic mode separation
becomes comparable with Rabi frequency when the system
enters into the USC regime. It means that in the above
mentioned situation not only the multi-normal-mode splitting
is potentially possible but also the formation of the polariton
branches with an admixture of many lateral photonic modes
should not be excluded a priori. A more detailed discussion
of the above mentioned problem is beyond the scope of this
paper.

V. CONCLUSIONS

The properties of the ICP modes in realistic MQW-MC
systems have been investigated theoretically employing a
semiclassical approach based on the TMF supplemented by
the “microscopic” EMA and the sheet model. Numerical cal-
culations have been completed by the analytical calculations
performed for simplified models.

Simulations reveal that the correct interpretation of the
ICP spectra supported by the strongly nonuniform structure,
with pure dielectric or plasmonic mirrors, should go beyond
the commonly used SMCA when systems enter into the
SSC regime. In this regime, the Rabi splitting becomes
comparable to/larger than the separation between cavity modes
and more than one cavity modes can, in principle, interact with
intersubband excitation. Consequently, a formation of the LPB
and the UPB having a non-negligible admixture of higher
photonic modes and/or surface plasmonic modes becomes
possible.

Moreover, we have shown that the polariton dispersion
characteristics predicted by the semiclassical approach are
consistent with those resulting from a recently developed
microscopic quantum approach26,27 provided that we work in
the SMCA. Demonstrating the above mentioned consistency,
we have also presented the evidence indicating that in the
MQW-MC systems exhibiting the USC the interwell Coulomb
coupling plays an important role.
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APPENDIX A: EFFECTIVE DIELECTRIC TENSOR
AND COULOMB MODES

The “microscopic” implementation of the EMA leads to
the following expression for the components of the diagonal
effective dielectric tensor ε(ω):38

εαα(ω) = (1 − fQW)εb + fQWεw + �α(ω), α = x,y, (A1)

ε−1
zz (ω) = (1 − fQW)/εb + fQW/εw − �z(ω)/ε2

w, (A2)

where fQW = LQW/dMQW, LQW is the thickness of the
QW, dMQW is the period of the MQW, and �ρ(ω) =
i4πσρρ(ω)/ωLMQW (ρ = x,y,z). σαα(ω) is an intrasubband
(sheet) conductivity of the Q2DEG. It can be taken in the form

σαα(ω) = Nse
2

m∗
i

ω + iγ‖
, (A3)

where γ‖ is the intrasubband dephasing rate, Ns is the sheet
electron density, and m∗ is the electron effective mass.

The intersubband sheet conductivity σzz(ω) describes the
nonretarded collective intersubband response of the Q2DEG
(embedded in a medium with dielectric constant εw) to
the uniform external electric field Eext(t) = ezE

ext
z e−iωt . The

self-consistent density functional theory53,59 (see also next
Appendix) leads to the following expression for σzz(ω):

σzz(ω) = Nse
2f21

m∗
iω

ω2 − ω2
IT + i2ωγIT

, (A4)

where γIT is the intersubband dephasing rate and f12 is the
oscillator strength. As it was mentioned, the QW is treated as
a two subband system with only the ground subband occupied.

The intersubband resonant frequency ωIT corresponds to
the frequency of the intersubband Coulomb mode supported
by an isolated QW. When ω is close to ωIT, the nonresonant
term in Eq. (A4) plays a negligible role and can be omitted.
It is equivalent to the replacement ω2 − ω2

IT → 2ω(ω − ωIT)
(resonant approximation).

In the limiting case discussed in Sec. III, i.e., when εw = εb

and γIT = γ‖ = 0, the components of the effective dielectric
tensor, resulting from Eqs. (A1)–(A4), reduce to the form

εαα(ω)

εw

= ω2 − ω2
p

ω2
, (A5)

εw

εzz(ω)
= ω2 − ω̄2

IT

ω2 − ω2
IT

, (A6)

where ω̄2
IT = ω2

IT − f12ω
2
p.

The frequency ωp = (4πNse
2/dMQWm∗εw)1/2 coincides

with the frequency of the intrasubband plasmon propagating
along the z axes of the infinite MQW.33 The form of Eq. (A2)
indicates that εzz(ω) has a pole at ω = ω̄IT. The above
mentioned frequency coincides with the frequency of the
intersubband plasmon propagating perpendicularly to z axes
of the infinite MQW.33

When LQW and Ns are not too small, then the random phase
approximation can be employed. In this limit, we get53,59

ω2
IT = ω2

21 + ω2
P , (A7)

ω2
P = ω2

p

(
dMQW

/
Leff

QW

)
, (A8)

where Leff
QW = 2m∗ω21/h̄I22 is the effective thickness of

the QW normalized by the Coulomb interaction, I22 =∫
QW ξ 2

12(z)dz, ξ12(z) = χ1(z)∂zχ2(z) − χ2(z)∂zχ1(z), and χ1

(χ2) is the envelope function of the ground (excited) subband.
We should remember that the expression for intersubband

resonant frequency ωIT presented above has been derived
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taking into account only the resonant screening effect. More
sophisticated calculations should include not only the dynamic
Coulomb effect but also the static (Hartree) charge effects,
i.e., the Ns dependence of the subband spacing ω21.8,27,59

Fortunately, in the case of typical rectangular QWs (with
LQW � 100 Å), the difference between the intersubband
transition frequency ωIT and the intersubband spacing of the
bare QW ω21|Ns=0 is determined mainly by the depolarization
shift. In the case of parabolic QWs, like those studied
experimentally by Geiser et al.,10 the depolarization shift is
compensated by the static charge effects and ωIT = ω21|Ns=0.8

When the number of the occupied subbands increases the
number of independent (normal) intersubband plasmon modes
supported by the QW also increases. For example, an explicit
expression for εzz(ω), corresponding to the system with two
occupied subbands (where χ1 → χ2 and χ2 → χ3 transitions
are dominant), can be obtained substituting into (A2) the
formula for σzz(ω) derived in our previous paper.52 The
equivalent result is predicted by the quantum-mechanical
approach.27

The properties of the ICPs supported by the MQW-MC and
QW-MC systems with many occupied subbands have also been
recently studied (see Refs. 8 and 9). The results reported in
the above mentioned papers indicate that when the number of
occupied subbands is large, practically only one intersubband
plasmonic mode is optically active. It means that, then, the
intersubband sheet conductivity takes the same form as that
corresponding to the two-subband system.

APPENDIX B: THE PARAMAGNETIC AND RWA
INTERSUBBAND CONDUCTIVITIES

In the semiclassical approach based on the minimal-
coupling Hamiltonian, the intersubband current density can
be divided into the paramagnetic (nonlocal) and diamag-
netic (local) contributions.43,44,53,60 As it was mentioned, in
theoretical papers40,44 while discussing the properties of the
ICP, the authors neglect the diamagnetic current density
term (which depends linearly on the vector potential A).
The consequences of the above mentioned simplification are
very briefly discussed below. For completeness, the effects
connected with the omission of the counter-rotating term are
also considered. Ohmic losses and static charge effects are
neglected for simplicity.

We start from the LWA expression for the zz component
of the nonlocal intersubband conductivity tensor of the
Q2DEG.44,60 For our purpose, it is convenient to write the
above expression as44,60

σzz(kx = 0,ω | z,z′) = b(ω)ξ12(z)ξ12(z′), (B1)

where

b(ω) = ie2h̄Ns

m∗2ω21

(
1

ω − ω21
+ 1

ω + ω21

)
ϒ(ω)

2
. (B2)

When the diamagnetic and counter-rotating terms are
included then ϒ(ω) = 1. One can check that if the diamagnetic
term is omitted then ϒ(ω) → ϒpar(ω) = ω2

21/ω
2. On the other

hand, employing the RWA, i.e., omitting the counter-rotating
term, we get ϒ(ω) → ϒRWA(ω) = (ω + ω21)/2ω.

The intersubband sheet conductivity σzz(ω) is connected
with the quantities b(ω) and I22 in the following way:44

σzz(ω) = iωεw(2m∗ω21z21/h̄)2

iωεw/b(ω) − 4πI22
. (B3)

Deriving the above equation we have used
relation

∫
QW ξ12(z)dz = 2m∗ω21z21/h̄, where z21 =∫

QW zχ1(z)χ2(z)dz.
It follows from Eqs. (B2), (B3), and (A8) that the expression

for σzz(ω) can be rewritten as

σzz(ω) = ϒ(ω)Nse
2f21

m∗
iω

ω2 − ω2
21 − ϒ(ω)ω2

P

. (B4)

The inspection of the above equation indicates that omission
of the diamagnetic or/and counter-rotating term can be taken
into account making in the exact expression (A4) for σzz(ω) the
following substitution Ns → Nsϒ(ω). Below, we discuss the
influence of the above mentioned substitution on the frequency
of the intersubband plasmon supported by the QW.

Let us neglect the diamagnetic term [ϒ(ω) = ω2
21/ω

2].
Then, one finds, using Eq. (12) and Eqs. (B2)–(B4), that the
intersubband plasmon frequency, at which 1/σzz(ω) → 0, can
be determined from the following relation:

ω2
(
ω2 − ω2

21

) − ω2
P ω2

21 = [ω2 − (ωpar
+ )2][ω2 − (ωpar

− )2] = 0,

(B5)

where (ωpar
± )2 = ω2

21[1 ±
√

1 + (2ωP /ω21)2]/2. Thus the fre-
quency ω

par
+ (≡ ω

par
IT ) can be treated as the paramagnetic

intersubband plasmon frequency.
The omission of the counter-rotating term leads to the

following relation for the intersubband plasmon frequency:

2ω(ω − ω21) − ω2
P = (ω − ωRWA

+ )(ω − ωRWA
− ) = 0, (B6)

where ωRWA
± = ω21[1 ±

√
1 + 2(ωP /ω21)2]/2. The frequency

ωRWA
+ (≡ ωRWA

IT ) can be treated as the RWA intersubband
plasmon frequency.

Figure 11 displays the ωP dependence of ωIT (dotted curve),
ωRWA

IT (dot-dashed curve) and ω
par
IT (dot-dot-dashed curve). The

static charge effects are omitted. The values in this figure
clearly show that the omission of the diamagnetic term, as
it was done in Ref. 40, leads to the underestimation of the
depolarization shift. For example, at ωP = ω21, the omission
of the above mentioned term reduces the intersubband resonant
frequency from the value of ωIT = 1.41 ω21 to ω

par
IT = 1.27 ω21.

Neglecting the counter-rotating term also reduces the depolar-
ization shift. However, this reduction is several times smaller
than that associated with the diamagnetic term. As expected,
as long as (ωP /ω21)2 � 1, the difference between ωIT, ω

par
IT ,

and ωRWA
IT is negligibly small.
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M. ZAŁUŻNY AND W. ZIETKOWSKI PHYSICAL REVIEW B 88, 195408 (2013)

FIG. 11. The frequencies of the ICP branches (solid curves)
and the Coulomb modes (dashed curves) supported by the uniform
MQW-MC system with perfect dielectric mirrors (nmin = 1) as a
function ωP /ω21. Calculations have been performed assuming that the
cavity is resonant with the bare intersubband transition �1(kx) = ω21.
The thick black solid curves and the black dashed curve are obtained
employing the “exact” expressions (18) and (14), respectively.
The gray solid (dashed) curves are obtained employing Eq. (D3)
[Eq. (D4)], in which intrawell coupling is omitted. The thin solid
curves are predicted by the one-electron expression (D1) in which the
inter- and intrawell Coulomb couplings are omitted. The figure also
displays the ωP dependence of the intersubband resonant frequencies
ωIT, ω

prm
IT , and ωRWA

IT predicted by Eqs. (A7), (B5), and (B6),
respectively. The static charge effect is neglected. We have used
ω⊥ = 0.3 ω21 and � = 0.6.

APPENDIX C: CAVITY TRANSFER MATRICES

1. The MQW-MC system

Matrix I(rl,j ), accounting for the interface between the
media (layers) l and j (= l + 1), is given by38

I(rl,j ) = I−1(rj,l) ≡ 1

tl,j

[
1 rl,j

rl,j 1

]
. (C1)

The Fresnel coefficients appearing in the above equation can
be written as

rl,j = (kl,zε̄j − kj,zε̄l)/(kl,zε̄j + kj,zε̄l), (C2)

tl,j = 2kl,zε̄j /(kl,zε̄j + kj,zε̄l), (C3)

where ε̄j �=MQW = εj and ε̄j=MQW = εxx .
Matrix L(βMQWC/2) is given by38

L(βMQW/2) =
[
e−iβMQW/2 0

0 eiβMQW/2

]
. (C4)

Substituting Eqs. (C1)–(C4) into (5) and performing
appropriate manipulations, we get

T cb
11 = (

e−iβMQW − r2
MQWeiβMQW

)/(
1 − r2

MQW

)
, (C5)

T cb
12 = −T cb

12 = rMQW(e−iβMQW − eiβMQW )
/(

1 − r2
MQW

)
, (C6)

T cb
22 = eiβMQW . (C7)

2. The QW-MC system

The transfer matrix corresponding to the sheet can be
written as38

I2D = 1

tQW

[
1 −rQW

rQW t2
QW − r2

QW

]
, (C8)

with

tQW = 1/(1 + �̂/2), (C9)

rQW = tQW − 1 = (−�̂/2)/(1 + �̂/2), (C10)

where �̂ = (4π/c
√

εw)σzzk
2
x/Kwkw,z.

Employing Eqs. (10), (C4), and (C8), we get

T cb
11 = 1

tQW
e−iβMC , (C11)

T cb
12 = −T cb

21 = −rQW

tQW
, (C12)

T cb
22 = t2

QW − r2
QW

tQW
eiβMC . (C13)

In the dissipationless limit, quantities �̂ and βMC are given
by

�̂

2
= i

π2

4

ω2
kx

ω2
⊥

�̂ω2
P

ω2 − ω2
IT

2

βMC
, (C14)

βMC

2
= π

2

(
ω2 − ω2

kx

)1/2

ω⊥
. (C15)

APPENDIX D: THE ROLE OF THE INTERWELL
COULOMB COUPLING AND PARABOLIC QWS

In this Appendix, we briefly discuss the role of the intra-
and interwell Coulomb couplings in model I neglecting for
simplicity the intrasubband excitation. To get the information
about the role of the above mentioned couplings it is instructive
to consider the eigenvalue equation predicted by the one-
electron minimal-coupling Hamiltonian approach developed
by Ciuti et al.25 The results reported in this paper lead to the
eigenvalue equation (for the UPB and the LPB supported by
model I) of the following form:(

ω2 − ω2
21

)(
ω2 − �̂ 2

nmin

) = 4ω21�nmin�̄
2
R, (D1)

where �̂ 2
nmin

= � 2
nmin

+ 4�̄2
R�nmin/ω21.

In agreement with Ref. 17 (see also Sec. III D in Ref. 26),
we assume that the frequency �̄R quantifying, in the minimal
coupling gauge, the coupling between the ground photonic
mode (cnmin ) and the two electronic conduction subbands, can
be taken in the form

�̄R = (
f

1/2
12 ωp

/
2
)(

ω21
/
�nmin

)1/2
sin θnmin . (D2)

Note that the expression for the (minimal coupling gauge) Rabi
frequency �̄R suggested in Ref. 25 is oversimplified. It does
not contain factor (ω21/�nmin )1/2.

The eigenvalue equation (D1) predicts the blueshift of
the bare cavity photon frequency from �nmin to �̂nmin . It
is due to the presence of the diamagnetic (containing A2)
term in the (one-electron) minimal coupling Hamiltonian.25

In other words, omission of the diamagnetic term implies
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the replacement �̂nmin → �nmin in the one-electron eigenvalue
equation Eq. (D1). One can check that the above men-
tioned replacement is equivalent to the replacement Ns →
Nsω

2
12/ω

2 derived in Appendix B employing the semiclassical
approach.

One also can check that making in Eq. (D1) the substitution
ω21 → ωCinter

nmin
we practically reproduce semiclassical eigen-

value equation (17), which includes the intra- and interwell
Coulomb coupling. It is worth stressing that the above
mentioned substitution reproduces exactly the semiclassical
result only when we take f12 = 1. It can be mainly associated
with the fact that calculating the effect of the diamagnetic
term the authors of Ref. 25 have assumed that all the
oscillator strength is concentrated on the 1 → 2 transition
(f12 = 1). On the other hand including the diamagnetic term in
semiclassical approach we have restricted to the two subband
approximation.

The inspection of Eqs. (D1) and (17) [see also Eq. (D3)]
indicates that in the case uniform systems the interwell
coupling partially compensates for the effects introduced by
the diamagnetic term. The relative strength of the interwell
coupling in the above mentioned systems is controlled by
factor � defined by Eq. (16). Modeling the confining potential
of the QW by the infinite square well of the width LQW,
one finds that expression for this factor can be written as
� ∼= 0.58 LQW/dMQW. The above result [see also Eq. (14)]
is consistent with the statement that in typical systems the
intrawell coupling plays a dominant role. Nevertheless, the
effects connected with interwell coupling should be also
considered, particularly when system enters into the USC
regime. The authors of the recently published paper28 claim
that the effects connected with electron-electron interactions
can be incorporated making the substitution ω21 → ωIT in
the (one-electron) minimal-coupling Hamiltonian, with the
simultaneous replacement of single-particle operators by ap-
propriate plasmonic operators. The above discussion indicates
that such a substitution completely omits the effects connected
with interwell coupling. It leads to substantial underestimation
of the polariton branches blueshift in systems exhibiting the
USC. To properly include the intra- and interwell Coulomb
coupling, the following replacement ω21 → ωCinter

nmin
(kx) should

be used. The above conclusion seems to be consistent with the
quantum-mechanical results reported in Ref. 26.

It is also instructive to discuss the case when the confining
potential of the QW has a parabolic shape. Then all intrawell
electron-electron interactions, including the depolarization
shift, exactly cancel each other and the Q2DEG absorbs
radiation only at the bare harmonic oscillator frequency
which coincides with the bare subband separation ω21|Ns=0.8,10

Making the substitution ωIT → ω21 ≡ ω21|Ns=0 in Eq. (A4)
for σzz(ω), one finds that the eigenvalue equation (17) for the
polariton branches supported by model I with parabolic QWs
reduces to the form

(
ω2 − ω2

21

)(
ω2 − � 2

nmin

) = 4ω21�nmin�̆
2
R, (D3)

where �̆R = (ωp/2)(�nmin/ω21)1/2 sin θnmin can be treated as
the (dipolar gauge) Rabi coupling frequency in the case of
parabolic QWs. Writing the above equation we have employed

fact that in the presently considered system f12 = 1 and
consequently �

1/2ωP = ωp.
Making the substitution c → ∞ in the above equation, one

finds that the frequency of the intersubband Coulomb mode
supported by model I with parabolic QWs is given by

ωC̆inter
nmin

=
√

ω2
21 − ω2

p sin2 θnmin . (D4)

The inspection of Eqs. (D3) and (D4) shows that, in
agreement with the experimental results reported in Ref. 10,
the polariton gap occurs also in the case of parabolic QWs. The
gap is located between ω = ω21 and ω = (ω2

21 − ω2
p)1/2. It is

consistent with our previous statement that the appearance
of the polariton gap is connected with the presence of the
long-range interwell Coulomb coupling.

The numerical calculations are performed for the cavity
(having dielectric mirrors, nmin = 1) resonant with bar in-
tersubband transitions ω21 = �1(kx). We take � = 0.6 and
ω⊥ = 0.3ω21. The thick solid curves in Fig. 11 display the
ωP -dependence of the LPB and the UPB predicted by the
exact Eq. (17), which takes into account the intra- and
interwell (dynamic) Coulomb couplings. The frequency of the
corresponding Coulomb mode ωCinter

1
resulting from Eq. (14)

represents black dashed curve. (We neglect the shift of ω21

resulting from static charge effect.) The thin solid curves
display the ωP dependence of the polariton branches obtained
employing the one-electron eigenvalue equation (D1). For
comparison we also present (gray solid curves) the behavior
of the polariton branches predicted by Eq. (D3), which takes
into account only the interwell coupling. The corresponding
Coulomb mode ωC̆inter

1
, obtained employing Eq. (D4), is

represented by the gray dashed curve.
The displayed results illustrate our previous statement that

in typical systems the intrawell coupling plays a dominant
role. This coupling leads to the blue shift of the branches
with respect to the one-electron results (represented by the
thin black solid curves). The above mentioned blue shift is
partially reduced by the interwell coupling. It is obvious that
the situation will be different in the case of the parabolic
QWs where only the interwell coupling can be considered.
Figure 11 shows [in agreement with Fig. 1(a) in Ref. 10]
that the above mentioned coupling induces the redshift of the
branches (represented by the gray solid curves) with respect
to the one-electron results.

It is worth noting that the formula (D3), which was derived
for planar systems, very well describes the experimental results
reported by Geiser et al.10 for the MQW embedded into a
microcavity based on an LC electronic resonator. We have
checked that Eq. (D3) practically reproduces the solid curves
in Fig. 3(a) of the above mentioned paper.

APPENDIX E: MODEL I. THE ϕ-DEPENDENT
CHARACTERISTICS

For the sake of completeness, in this Appendix, we very
briefly discuss the behavior of the polariton branches on the
ω-ϕ plane. The ϕ dependence of the polariton branches can be
obtained formally eliminating kx from Eq. (13) with the help
of the relation kx = Kw sin ϕ. (We assume for convenience
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that εs = εw.) Performing appropriate manipulations, we get

ω2 − ω̌2
n = �ω2

P ω2
IT tan2 ϕ

ω2 − ω2
IT

+ ω2
pn2ω2

⊥ cos−2 ϕ

ω2 − ω2
p

, (E1)

where ω̌2
n(ϕ) = � 2

n(ϕ) + �ω2
P tan2 ϕ. Note that Eq. (E1)

describes the polariton modes located only within the light
cone. They are accessible by the reflectance provided that we
allow for the finite transmissivity of the coupling mirror.

In the absence of the intrasubband excitation, Eq. (E1)
reduces to the form discussed in our previous papers:4,5(

ω2 − ω2
IT

)(
ω2 − ω̌2

n

) = �ω2
P ω2

IT tan2 ϕ. (E2)

Let us discuss the limiting case when (i) mirrors are of a
dielectric type, (ii) ϕ is close to ϕres and (iii) the RWA is valid,
i.e., we assume that ω2

IT � �(ωP /2)2 tan2 ϕres ≡ �2
res. In the

considered limit, Eq. (E2) can be approximated and recast
in the form (ω − � 1)(ω − ωIT) = �2

res corresponding to the
model of two-coupled oscillators [see Eq. (39)]. The polariton
branches resulting from the above simplified equation are
shifted with respect to the “exact” result predicted by Eq. (E2).
Moreover, the minimal value of the branch splitting resulting
from Eq. (E2) appears not at ϕ = ϕres, as it is suggested by the
two coupled-oscillator expression, but at the angle ϕ = ϕ̂res,
which is smaller than ϕres. The difference between ϕres and ϕ̂res

increases with increasing the ratio �res/ωIT.
We have checked (results are not presented) that the mod-

ifications of the ICP dispersion induced by the intrasubband
excitation are more strongly pronounced on the ω-ϕ plane
than on the ω-kx plane. For example, in the case of the system
discussed in Fig. 1, the intrasubband plasmon induced blue
shift of the LPB (at ϕres = θres) is above five times larger on
the ω-ϕ plane than on the ω-kx plane.

APPENDIX F: RELATIONS USED FOR DERIVING EQ. (26)

tan (h)
πx

2
= 4x

π

∞∑
k=1

1

(2k − 1)2 − (+)x2
, (F1)

cot (h)
πx

2
= 2

πx
+ 4x

π

∞∑
k=1

1

(2k)2 − (+)x2
. (F2)

APPENDIX G: MICROCAVITY WITH SEMI-INFINITE
PLASMONIC CLADDINGS

Below we discuss the electromagnetic modes supported by
a microcavity consisting of a dielectric spacer (with thickness
LMC and the dielectric constant εsl = εw) bounded by semi-
infinite n-doped dielectric claddings described by Drude-like
dielectric function

εmirr(ω) = εw

(
1 − ω2

p,mirr

/
ω2

)
, (G1)

where ωp,mirr = (4πNDe2/m∗εw)1/2 is the plasma frequency
of the mirror material, ND is the mirror material doping density.
One can check that for ND ranging from 1018 to 1019 cm−3 the
plasma frequency ωp,mirr can vary from 43.5 to 137.5 meV/h̄

for εw = εGaAs = 10.9.

The electromagnetic modes supported by the considered
system are the solutions of the following equation:30,35,61

tanh(αwLMC/2) = −(εwαmirr/εmirrαw)±1, (G2)

where αmirr = √
k2
x − εmirrω2/c2 and the ± signs correspond

to the symmetric and antisymmetric modes, respectively.
The modes, which are confined to the dielectric slab, exist

only below the mirror boundary curve αmirr = 0. The area
under the boundary curve (ω =

√
ω2

p,mirr + ω2
‖ ) can be divided

into two regions denoted by V and S. Region V (S) is located
within (outside) the spacer light cone. In region V (S), the
quantity αw is imaginary (real). The eigenmode can be treated
as a volume mode when it is located in region V or surface
mode when located in region S. The essential difference,
compared to the case of perfect dielectric mirrors (discussed
in Sec. III A) is the formation of the additional [one symmetric
(SSP) and one antisymmetric (ASP)] plasmonic modes.30 The
SSP mode is located in region V . It starts linearly at (kx = 0,
ω = 0) and goes asymptotically towards the surface plasmon
frequency ωsurf

p,mirr = ωp,mirr/2 as kx → ∞. The ASP mode
starts at kx = 0 and ω = ω∗

ASP
< ωp,mirr as a volume mode.

It crosses the line αw = 0, i.e., it changes its character into a
surface type mode and goes asymptotically towards ωsurf

p,mirr as
kx → ∞. The frequency ω∗

ASP
decreases with increasing LMC.

When the dielectric layer is sufficiently thin ω⊥/2 > ωsurf
p,mirr

then the frequency ω∗
ASP

is located between ωsurf
p,mirr and ωp,mirr.

In such systems, the ASP mode has a negative dispersion
at small kx and exhibits a minimum.31 Except the above
mentioned surface plasmonic modes, the system also supports
volume (cn�1) photonic type modes. However, unlike in the
case of perfect mirrors, the total number of the modes Ntot

is finite and decreases with decreasing the ratio ωp,mirr/ω⊥.
In the limiting case ωp,mirr/ω⊥ < 2, the system supports only
three modes (Ntot = 3): two surface plasmonic modes (SSP and
ASP) and one photonic mode (c1).

The replacement of the plasmonic mirrors by perfect
metallic mirrors is equivalent to the substitution ωp,mirr → ∞.
Then, mode SSP (ASP) transforms into c0 (c1) photonic mode
(see Sec. III A).

It is also instructive to consider the case when a strongly
dispersive cladding material is replaced by a nondispersive
dielectric material with a dielectric function εc < εw. It is
obvious that the surface modes SSP and ASP do not survive
the above mentioned replacement. In the system of interest
here the photonic modes, confined to the dielectric slab, exist
only between lines αc = 0 and αw = 0. More precisely, they
start at line αc = 0 and go asymptotically to line αw = 0. It is
interesting to note that, in contrast with the system with perfect
dielectric mirrors, the lowest mode (c1) starts at kx = 0 and
ω = 0. This mode always exists. Its properties (at kx close to 0)
are similar to the properties of mode TM0.

When we replace the dielectric spacer by the MQW slab,
Eq. (G2) transforms into the form

tanh(αMQWLMC/2) = −(εxxαmirr/εmirrαMQW)±1, (G3)

where αMQW ≡ −ikMQW,z.
The solutions of the above equation describe the

hybrid polariton modes resulting from the coupling of the
(photonic/plasmonic) cavity modes with intersubband and
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intrasubband excitations. The case when only intrasubband
plasmons are coupled to the cavity photonic (plasmonic)
modes has been discussed in Ref. 61 (Ref. 30).

APPENDIX H: MODE STRUCTURE OF MULTILAYER
PLASMONIC MIRRORS

In order to understand the nature of the mode structure of
the multilayer plasmonic mirror employed by Anappara et al.,6

we discuss a simple highest-symmetry structure. It consists
of two n+ dielectric plates, with thickness dn+ and dielectric
function εmirr [see Eq. (G1)], separated by the distance Lgap

and surrounded by undoped dielectric (εw).
The considered system can support four surface plasmon

polariton (SPP) modes located below ωp,mirr. They appear due

to the coupling between the SPP modes supported by indi-
vidual interfaces.62,63 In Ref. 63, the above mentioned modes
are labeled SL, AL, SH , and AH according to the their mode
profiles. Labels S/A denote the symmetric/antisymmetric
modes. Subscript letters L/H associate the mode as originated
from the low/high energy branch of the single n+ plate. The
three lowest energy modes (SL, AL, SH ) always lie outside the
light cone, i.e., they remain nonradiative. The highest mode
(AH ) starts at kx = 0 at finite frequency ω = ω∗

AH
< ωp,mirr

and crosses the light line (at kx = k∗
AH

). The frequency ω∗
AH

decreases with increasing Lgap. Thus the above mentioned
mode has a radiative character for kx < k∗

AH
. The frequencies

of all the four modes approach ωsurf
p,mirr at larger kx . In the limit

dn+ → ∞, the modes SL and AH transform into the modes
SAP and ASP discussed in the previous Appendix.

APPENDIX I: LIST OF ACRONYMS AND IMPORTANT SYMBOLS

DBR Distributed Bragg reflector
EMA Effective medium approximation
ICP Intersubband-cavity-polariton
LPB Lower polariton branch
LWA Long-wavelength approximation
MC Microcavity
MQW Multiple-quantum-well
Q2DEG Quasi-2D-electron gas
SPP Surface plasmon polariton
SSC Super-strong coupling
TMF Transfer matrix formalism
UPB Upper polariton branch
USC Ultra-strong coupling
dMQW Spatial period of the MQW
f12 Oscillator strength of the intersubband transition
kx In-plane wave vector
kres

x In-plane wave vector at which the ground cavity mode is resonant with the intersubband transition
kj (MQW),z Normal component of the wave vector in the j th medium (MQW slab)
LMQW(MC) Thickness of the MQW slab (MC)
Leff

QW Effective thickness of the QW
n Mode index
nmin Ground photonic mode index of the MC with metallic (nmin = 0) or dielectric (nmin = 1) mirrors
Ns Surface electron density
rc(b) Reflection coefficient of the coupling (back) mirror
γκ(IT) Dephasing rate of the κth mode (intersubband transition)
�CM Frequency separation between the two lowest cavity modes
�ICP (�ICP) Frequency separation between the UPB and LPB on the ω-kx (ω-ϕ) plane
εj Dielectric constant of the j th medium
εmirr Dielectric function of the plasmonic mirror
ερρ Principal components of the MQW effective dielectric tensor (ρ = x,y,z)
σρρ Principal components of the sheet conductivity tensor
ϕ Light propagation angle in the substrate
ωCinter

n (Cintra
n ) Frequency of the n-th intersubband (intrasubband) Coulomb mode supported by model I

ωĈinter Frequency of the intrasubband Coulomb mode supported by model II
ωIT Frequency of the intersubband excitation supported by the QW
ω̃κ Complex frequency of the κth mode: ω̃κ = ω′

κ + iω′′
κ = ω′

κ − iγκ

�n Frequency of the nth photonic mode supported by model I
ωP (p) Plasma frequency of the QW (bulk MQW)
ωp,mirr Plasma frequency of the mirror material
�R (�res

R ) Rabi frequency (Rabi frequency at kx = kres
x )
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57A. Castanié and D. Felbacq, Opt. Commun. 285, 3353 (2012).
58G. Panzarini, C. Andreani, A. Armitage, D. Baxter, M. S. Skolnik,

V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova,
and M. A. Kaliteevski, Phys. Solid State 41, 1223 (1999).

59W. L. Bloss, J. Appl. Phys. 66, 3639 (1989).
60A. Eguiluz and A. A. Maradudin, Ann. Phys. (USA) 113, 29 (1978).
61W. Wonneberger and R. Lamche, J. Phys. Chem. Solids 59, 231

(1998).
62G. I. Stegeman and J. J. Burke, Appl. Phys. Lett. 43, 221 (1983).
63J. Chen, G. A. Smolyakow, S. R. J. Brueck, and K. Malloy,

Opt. Express 16, 14902 (2008).

195408-22

http://dx.doi.org/10.1103/PhysRevLett.90.116401
http://dx.doi.org/10.1103/PhysRevB.68.245320
http://dx.doi.org/10.1063/1.2823584
http://dx.doi.org/10.1103/PhysRevB.78.033305
http://dx.doi.org/10.1103/PhysRevB.80.245301
http://dx.doi.org/10.1103/PhysRevB.79.201303
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/PhysRevLett.109.246808
http://dx.doi.org/10.1103/PhysRevLett.109.246808
http://dx.doi.org/10.1103/PhysRevLett.108.106402
http://dx.doi.org/10.1016/j.ssc.2008.03.027
http://dx.doi.org/10.1016/j.ssc.2008.03.027
http://dx.doi.org/10.1038/458157a
http://dx.doi.org/10.1103/PhysRevB.85.081302
http://dx.doi.org/10.1103/PhysRevB.75.205325
http://dx.doi.org/10.1103/PhysRevB.75.205325
http://dx.doi.org/10.1103/PhysRevA.74.065801
http://dx.doi.org/10.1103/PhysRevLett.64.2499
http://dx.doi.org/10.1103/PhysRevB.79.075317
http://dx.doi.org/10.1103/PhysRevLett.100.136806
http://dx.doi.org/10.1103/PhysRevLett.100.136806
http://dx.doi.org/10.1063/1.3002302
http://dx.doi.org/10.1103/PhysRevB.82.045322
http://dx.doi.org/10.1103/PhysRevB.83.081404
http://dx.doi.org/10.1016/S0038-1098(96)00433-4
http://dx.doi.org/10.1016/S0038-1098(96)00433-4
http://dx.doi.org/10.1007/BFb0104383
http://dx.doi.org/10.1063/1.1861979
http://dx.doi.org/10.1063/1.1861979
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevB.85.045304
http://dx.doi.org/10.1103/PhysRevB.86.125314
http://dx.doi.org/10.1103/PhysRevB.85.235140
http://dx.doi.org/10.1103/PhysRevLett.95.043902
http://dx.doi.org/10.1103/PhysRevB.83.125316
http://dx.doi.org/10.1088/0953-8984/24/1/015302
http://dx.doi.org/10.1088/0953-8984/24/1/015302
http://dx.doi.org/10.1103/PhysRevB.86.045408
http://dx.doi.org/10.1103/PhysRevB.86.045408
http://dx.doi.org/10.1103/PhysRevB.29.3318
http://dx.doi.org/10.1103/PhysRevB.29.2334
http://dx.doi.org/10.1103/PhysRevB.76.075326
http://dx.doi.org/10.1103/PhysRevB.77.205428
http://dx.doi.org/10.1103/PhysRevB.77.205428
http://dx.doi.org/10.1103/PhysRevB.86.075309
http://dx.doi.org/10.1103/PhysRevB.59.13043
http://dx.doi.org/10.1103/PhysRevB.36.4796
http://dx.doi.org/10.1103/PhysRevB.55.7101
http://dx.doi.org/10.1016/S0079-6727(99)00008-7
http://dx.doi.org/10.1016/S0079-6727(99)00008-7
http://dx.doi.org/10.1016/S0166-1280(02)00718-2
http://dx.doi.org/10.1364/JOSAB.12.000997
http://dx.doi.org/10.1103/PhysRev.150.573
http://dx.doi.org/10.1103/PhysRevB.79.195414
http://dx.doi.org/10.1088/1751-8113/42/16/165204
http://dx.doi.org/10.1103/PhysRevLett.75.3906
http://dx.doi.org/10.1088/0953-8984/21/41/415301
http://dx.doi.org/10.1088/0953-8984/21/41/415301
http://dx.doi.org/10.1088/0305-4470/34/18/303
http://dx.doi.org/10.1088/0305-4470/34/18/303
http://dx.doi.org/10.1103/PhysRevA.86.053807
http://dx.doi.org/10.1002/pssb.2221230154
http://dx.doi.org/10.1002/pssb.2221770102
http://dx.doi.org/10.1103/PhysRevB.72.195338
http://dx.doi.org/10.1103/PhysRevB.72.195338
http://dx.doi.org/10.1016/0022-2313(91)90225-K
http://dx.doi.org/10.1103/PhysRevB.49.8774
http://dx.doi.org/10.1016/j.optcom.2012.01.039
http://dx.doi.org/10.1134/1.1130973
http://dx.doi.org/10.1063/1.344073
http://dx.doi.org/10.1016/0003-4916(78)90249-X
http://dx.doi.org/10.1063/1.94307
http://dx.doi.org/10.1364/OE.16.014902



