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Intrinsic lifetime of Dirac plasmons in graphene
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We calculate the intrinsic lifetime of a Dirac plasmon in a doped graphene sheet by analyzing the role of
electron-electron interactions beyond the random phase approximation. The damping mechanism at work is
intrinsic since it operates also in disorder-free samples and in the absence of lattice vibrations. We demonstrate
that graphene’s sublattice-pseudospin degree of freedom suppresses intrinsic plasmon losses with respect to those
that occur in ordinary two-dimensional electron liquids. As a byproduct, we are able to present a microscopic
calculation of the homogeneous dynamical conductivity at energies below the single-particle absorption threshold.
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I. INTRODUCTION

Plasmons are ubiquitous high-frequency collective density
oscillations of an electron liquid, which occur both in metals
and insulators.1,2 The study of optical phenomena in the
nanoscale vicinity of metal surfaces, i.e., nanoplasmonics,3,4

revolves around the coupling between light and plasmons,
which, in turn, enables the compression of electromagnetic
energy to the nanometer scale of modern electronic devices.
Of particular interest for novel applications is the study of the
so-called “Dirac plasmons” (DPs)5–8 of the two-dimensional
(2D) electron liquid in a doped graphene sheet,9–11 where the
carriers are massless Dirac fermions (MDFs). The properties of
DPs have been studied experimentally by a variety of spectro-
scopic methods12 and their coupling to infrared light has been
engineered in a number of ways.13–18 References 15 and 16,
in particular, have revealed that the plasmon wavelength can
be much smaller than the illumination wavelength and that
DP properties are easily gate tunable, thus igniting the field of
“graphene plasmonics.”12

Mathematically, a plasmon is an isolated pole of the density-
density linear-response function χnn(q,ω),1,2 that is found at a
frequency �p(q) = ωp(q) − i�p(q), with 0 < �p(q) � ωp(q),
i.e., located slightly below the real axis. The real part of the
DP dispersion relation ωp(q) displays the usual dependence5

ωp(q) ∝ √
q on wave vector q, typical of 2D electron gases

(2DEGs).2 The prefactor, however, displays certain peculiar-
ities stemming from broken Galilean invariance.6 By using
perturbation theory to first order in electron-electron (e-e)
interactions,6 it was shown that the prefactor of the plasmon
dispersion at long wavelengths is controlled by an interaction-
enhanced Drude weight.6,7 This is a result that cannot be
obtained on the basis of the random phase approximation
(RPA).1,2 The long-wavelength DP dispersion has also been
analyzed within the Landau theory of Fermi liquids.8

A key figure of merit of nanoplasmonics is the plasmon
lifetime

τp(q) = 1

2�p(q)
, (1)

or, equivalently, the inverse quality factor γp(q) =
[τp(q)ωp(q)]−1. Plasmon damping is controlled by e-e,

electron-impurity, and electron-phonon scattering. Yan et al.19

have shown that the damping rate of mid-infrared DPs is
strongly affected by substrate and intrinsic phonons. More
recently, the role of electron-impurity scattering has been
analyzed in Ref. 20. In this paper we present a theory of the
intrinsic DP lifetime. By “intrinsic” we mean the contribution
to τp that is solely determined by e-e collisions and therefore
survives also in the complete absence of disorder and lattice
vibrations.

For extreme concentration of electromagnetic energy the
plasmon momenta q of interest are much larger than qlight =
ωph/c, where h̄ωph is the free-space photon energy,14–16 but
still much smaller than the Fermi wave number kF for typical
electron densities21 n ∼ 1011–1012 cm−2. For qlight � q � kF

the DP dispersion satisfies the inequality h̄ωp(q) < 2εF and
therefore a plasmon cannot decay by emitting single electron-
hole pairs (Fig. 1)—a mechanism that would be captured by
the RPA.5 Therefore, in this regime of momenta, the RPA
erroneously predicts no damping whatsoever.2,22,23 To correct
this, we carry out a calculation of τp for DPs in a doped
graphene sheet by employing second-order perturbation theory
in the strength of e-e interactions. Physically, the lifetime we
calculate is determined by decay processes in which a plasmon
emits two electron-hole pairs.2,22,23 Our final expression for τp

is exact in the limit of a large number Nf of fermion flavors.24

As a byproduct of our calculation, we are able to determine the
dynamical conductivity of graphene for frequencies below the
single-particle absorption threshold (h̄ω < 2εF). In this regime
the dynamical conductivity is indeed controlled (at the leading
nonvanishing order in the strength of e-e interactions) by the
simultaneous excitation of two electron-hole pairs.

Our paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and all the basic definitions. In Sec. IV
we describe the approach we have used to carry out the
calculation of the intrinsic DP lifetime, which is based on a
canonical transformation that exactly cancels, order-by-order
in perturbation theory, the Coulomb interaction from the
complete Hamiltonian. In Sec. V we explicitly derive the form
of the generator of the canonical transformation up to first
order in the Coulomb interaction. In Sec. VI we approximate
this expression in the limit q → 0 and vFq � ωp(q) � 2εF/h̄.
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FIG. 1. (Color online) The RPA Dirac plasmon dispersion ωp(q)
(solid line) in units of the Fermi energy εF, plotted as a function
of wave vector q in units of the Fermi wave vector kF. In this plot
we set the dimensionless parameter αee = 0.5 [see Eq. (67) for the
definition]. Within RPA the long-wavelength Dirac plasmon is a well-
defined excitation since it lives outside the particle-hole continuum
(shaded region). RPA thus (erroneously) predicts no damping of the
collective mode at small q.

In Sec. VII we derive the expression for density-density linear
response function, which is the fundamental input to calculate
the Dirac plasmon lifetime, to second order in the strength
of e-e interactions and in the so called “large-N” limit. In
this limit the second-order expression for the imaginary part
of the density-density response function has the appealing
form of a convolution of two single-particle spectra, which is
also known in the electron-gas literature as “mode-decoupling
formula.”2 Our theoretical method allows us to unify the
large-N expansion of diagrammatic perturbation theory with
the mode-decoupling approximation,2 providing a formal
justification for the latter. Section VIII is devoted to the
presentation of our main results. In Sec. IX we draw our
main conclusions. Three Appendices report a number of useful
intermediate algebraic steps and technical details.

II. MODEL AND BASIC DEFINITIONS

We describe π electrons in graphene by means of a
one-orbital tight-binding (TB) model. To keep the model as
simple as possible, we set to zero all the hopping parameters
but the nearest-neighbor one. The low-energy MDF limit
will be taken only at the very end of the calculation, after
carrying out all the necessary algebraic manipulations. By
following this procedure we avoid problems associated with
the introduction of a rigid ultraviolet cutoff, which breaks
gauge invariance6 and is responsible for the appearance of
anomalous commutators.6,25

The noninteracting Hamiltonian is (from now on we set
h̄ = 1)

Ĥ0 =
∑

k∈BZ,α,β

ψ̂
†
k,α( f k · σ αβ)ψ̂k,β , (2)

where the operator ψ̂
†
k,α (ψ̂k,α) creates (annihilates) an electron

with Bloch momentum k, which belongs to the sublattice10

α = A,B. The vector fk is defined as10

f k = −t

3∑
i=1

(Re[e−ik·δi ], −Im[e−ik·δi ]). (3)

Here t ∼ 2.8 eV is the nearest-neighbor tunneling amplitude,
while δi (i = 1, . . . ,3) are the vectors which connect an atom
to its three nearest neighbors, i.e., δ1 = a

√
3x̂/2 + a ŷ/2, δ2 =

−a
√

3x̂/2 + a ŷ/2, and δ3 = −a ŷ. Here a ∼ 1.42 Å is the
carbon-carbon distance in graphene. The sum over k in Eq. (2)
is restricted to the first Brillouin zone (BZ) and the Pauli
matrices σ i

αβ (i = x,y,z) operate on the sublattice degrees of
freedom.

The TB problem posed by the Hamiltonian (2) can be easily
solved analytically.10 One finds the following eigenvalues
εk,λ = λ| f k|, with λ = ±. These two bands touch at two
inequivalent points (K and K ′) in the hexagonal BZ. The
low-energy MDF model is obtained from Eq. (2) by taking
the limit a → 0, while keeping the product ta constant. In
this limit f K+k → vFk, where vF = 3ta/2 ∼ 106 m/s is the
density-independent Fermi velocity.

Introducing the field operator ĉ
†
k,λ (ĉk,λ) as the creation

(annihilation) operator in the eigenstate representation, Eq. (2)
can be rewritten as

Ĥ0 =
∑
k,λ

εk,λĉ
†
k,λĉk,λ. (4)

In the same representation the Hamiltonian describing e-e
interactions reads2

Ĥee = 1

2

∑
q

vq n̂q n̂−q, (5)

where the density operator is

n̂q =
∑

k,λ,λ′
Dλλ′(k − q/2,k + q/2)ĉ†k−q/2,λĉk+q/2,λ′ , (6)

and vq is the 2D discrete Fourier transform of the real-
space Coulomb interaction, which is a periodic function of
the reciprocal-lattice vectors. Finally, in Eq. (6) we have
introduced the “density vertex”

Dλλ′(k,k′) = ei(θk−θk′ )/2 + λλ′e−i(θk−θk′ )/2

2
, (7)

with θk = Arg[fk,x + ifk,y]. Here {fk,i ,i = x,y} denotes the
Cartesian component of the vector fk. In the low-energy MDF
limit, θK+k → ϕk, where ϕk is the angle between k and the x̂
axis.

Note that in writing Eq. (5) we have neglected the one-body
operator proportional to the total number of particles, which
avoids self-interactions2 since it has no effect on the calcu-
lations we will carry out below. The Dirac plasmon lifetime
outside the particle-hole continuum is indeed determined by
two-particle excitations only, which are generated by two-body
operators.
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For future purposes we also introduce the “pseudospin-
density” vertices

S (x)
λλ′ (k,k′) = λ′ei(θk+θk′ )/2 + λe−i(θk+θk′ )/2

2
(8)

and

S (y)
λλ′(k,k′) = λ′ei(θk+θk′ )/2 − λe−i(θk+θk′ )/2

2i
. (9)

In what follows we concentrate on a doped graphene sheet.
For the sake of definiteness, we assume the system to be n

doped. Results for a p-doped system can be easily obtained by
appealing to the particle-hole symmetry of the model defined
by Eqs. (2) and (5).

Our goal is to calculate the DP lifetime as defined in
Eq. (1). To this end, we recall that the imaginary part
�p(q) of the plasmon dispersion is controlled by the wave-
vector- and frequency-dependent density-density linear re-
sponse function2 χnn(q,ω):

�p(q) = Im[χnn(q,ω)]

∂Re[χnn(q,ω)]/∂ω

∣∣∣∣
ω=ωp(q)

. (10)

Since outside the single-particle electron-hole continuum
Im[χnn(q,ω)] starts at second order in e-e interactions,
Re[χnn(q,ω)] can be calculated to zeroth order and the real
part of the plasmon frequency ωp(q) can be evaluated within
the well-known RPA:5,12

ωp(q � kF) =
√

2D0

ε
q. (11)

HereD0 = 4εFσuni/h̄ is the noninteracting Drude weight, εF =
h̄vFkF is the Fermi energy, σuni = Nfe

2/(16h̄) is the so-called
universal optical conductivity,11,12 and ε = (ε1 + ε2)/2 is the
average of the dielectric constants of the media above (ε1) and
below (ε2) the graphene flake.10,11 Finally, kF = √

4πn/Nf is
the Fermi wave vector, with n the electron density.

In what follows we calculate Im[χnn(q,ω)] to the lowest
nonvanishing (i.e., the second) order in perturbation theory
and in the limit q � kF and vFq � ω � 2εF.

III. THE CONTINUITY EQUATION IN THE
TIGHT-BINDING MODEL

Within the TB model outlined above, the density-density
and longitudinal current-current response functions satisfy
the usual relation imposed by the continuity equation2 [see
Eq. (16) below]. To prove this statement, we first note that
[n̂q,n̂q ′] = 0 since the sum over momentum on the right-hand
side of Eq. (6) is restricted to the first BZ. The density operator
thus commutes with Eq. (5). We therefore find

i∂t n̂q =
∑

k,λ,λ′

∑
j

ĉ
†
k−q/2,λĉk+q/2,λ′ ( fk+q/2 − fk−q/2)j

×S (j )
λλ′ (k − q/2,k + q/2) ≡ −q · ĵ q . (12)

Here ĵ q is the TB expression for the current operator.
We now remind the reader that a linear response function

χAB(ω), which describes the response of an operator B̂ to a
potential which couples linearly to the operator Â, is related

to the so-called “Kubo product” by

χAB(ω) = 1

S
〈〈Â; B̂〉〉ω, (13)

where S is the 2D electron system area26 and

〈〈Â; B̂〉〉ω ≡ −i

∫ ∞

0
dtei(ω+iη)t 〈[Â(t),B̂]〉. (14)

Note that the average 〈· · ·〉 in Eq. (14) is taken over the ground
state of the interacting system. The Kubo product satisfies the
following well-known2 identities:

〈〈Â; B̂〉〉ω = 1

ω
〈[Â,B̂]〉 + 1

ω
〈〈i∂t Â; B̂〉〉ω

= 1

ω
〈[Â,B̂]〉 − 1

ω
〈〈Â; i∂t B̂〉〉ω. (15)

Using the previous identities and the fact that the equal-time
commutator of two Hermitian operators is anti-Hermitian, we
finally get

Im[χnn(q,ω)] = q2

ω2
Im

[
χ

(L)
jj (q,ω)

]
, (16)

where χ
(L)
jj (q,ω) is the longitudinal current-current response

function. The longitudinal component of the current density
operator q̂ · ĵ q is defined by Eq. (12).

At first sight one might be confused by Eq. (16), since
we are dealing with a TB model, which is not invariant
under free-space translations. It is indeed well known (see
also Appendix 7 in Ref. 2) that the response functions of the
electron gas in a crystal are (i) matrices in the reciprocal-lattice
vectors and (ii) depend on the wave vector q (not only on its
modulus q ≡ |q|). The matrix structure of the linear response
functions stems from the presence of an infinite number of
bands. However, the one-orbital TB description of graphene
adopted in this paper reduces the infinite band structure to the
two π bands. For this reason, the response functions in Eq. (16)
are scalars (rather than matrices) in the reciprocal-lattice
vectors. Note that they contain all the information about both
intra- and interband transitions. Moreover, in view of the
low-energy MDF limit which will be taken at the very end
of the calculation, and which restores rotational invariance,
the response functions in Eq. (16) depend only on q.

IV. THE CANONICAL TRANSFORMATION

To proceed further in the evaluation of the density-density
response function, we introduce a unitary transformation
generated by a Hermitian operator F̂ :

Ĥ′ = eiF̂ (Ĥ0 + Ĥee)e−iF̂ . (17)

The operator F̂ is chosen in such a way as to cancel e-e
interactions from the transformed Hamiltonian, i.e., to have
Ĥ′ ≡ Ĥ0. This can be done systematically order-by-order
in perturbation theory by expanding F̂ = 1̂ + F̂1 + F̂2 + · · ·,
where 1̂ denotes the identity and F̂n denotes the nth order
term in powers of a dimensionless parameter that controls the
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strength of e-e interactions. We get

Ĥ′ = Ĥ0 + Ĥee + i[F̂1,Ĥ0]

+ i[F̂2,Ĥ0] + i[F̂1,Ĥee] − 1
2 [F̂1,[F̂1,Ĥ0]] + · · · .

(18)

When we equate Eq. (18) to Ĥ0 we obtain a chain of equations
connecting Ĥee and Ĥ0 to F̂n, which can be determined by
solving the following infinite system of operator identities:

[Ĥ0,iF̂1] = Ĥee

i[F̂2,Ĥ0] + i[F̂1,Ĥee] − 1
2 [F̂1,[F̂1,Ĥ0]] = 0 (19)

· · · .

For example, to eliminate e-e interactions up to first order, F̂1

must obey the first equality in Eq. (19), which can be easily
solved (see Sec. V).

Note that after carrying out the transformation F̂ , both the
ground state of Ĥ′ and the time evolution of the operators
in the Heisenberg representation become noninteracting. This
is clearly a significant simplification. The Kubo product in
Eq. (14) is reduced to the evaluation of a noninteracting
response function ∝〈〈Â′,B̂ ′〉〉0,ω. The subscript “0” here means
that the average 〈· · ·〉 is now performed over the ground state
on the noninteracting system and that the time evolution is
generated by Ĥ0. However, the operators Â′ = eiF̂ Âe−iF̂ and
B̂ ′ = eiF̂ B̂e−iF̂ become complicated since they are dressed
by e-e interactions. For example, the imaginary part of the
longitudinal current-current response function on the right-
hand side of Eq. (16) obeys the following exact-eigenstate
(Lehmann) representation:

Im
[
χ

(L)
jj (q,ω)

]
= −π

∑
m

〈0|q̂ · ĵ
′
q |m〉〈m|q̂ · ĵ

′
−q |0〉δ(ω − ωm0). (20)

Here |0〉 is the ground state of the noninteracting system,
|m〉 is an excited state, and ωm0 is the excitation energy.
Equation (20) is valid at zero temperature and for ω > 0.
Results for ω < 0 can be easily obtained by noting that the
imaginary part of the linear-response function we are interested
in is antisymmetric2 under the exchange ω ↔ −ω. Finally, the
“rotated” longitudinal current operator q̂ · ĵ

′
q can be expanded

in a power series of the form

q̂ · ĵ
′
q = q̂ · ĵ q + q̂ · ĵ1,q + q̂ · ĵ2,q + · · · , (21)

where, for example,

q̂ · ĵ1,q = [iF̂1,q̂ · ĵ q], (22)

q̂ · ĵ2,q = [iF̂2,q̂ · ĵ q] + 1
2 [iF̂1,[iF̂1,q̂ · ĵ q]], (23)

etc. Here ĵn,q is the contribution of order n (in the strength of

Coulomb interactions) to the “rotated” current operator ĵ
′
q .

The key idea now is to realize that the calculation of
Im[χ (L)

jj (q,ω)] to second order in the strength of e-e interaction
requires only the knowledge of the transformed current-
density operator ĵ

′
q to first order, i.e., ĵ

′
q = ĵ q + ĵ1,q . The

untransformed current operator ĵ q is indeed a one-particle
operator and can only excite single particle-hole pairs which

do not contribute to the plasmon lifetime for vFq � ω � 2εF.
From this we see that∑

m

〈0|q̂ · ĵ q |m〉〈m|q̂ · ĵ−q |0〉δ(ω − ωm0) = 0 (24)

and that∑
m

〈0|q̂ · ĵ q |m〉〈m|q̂ · ĵ1,−q |0〉δ(ω − ωm0) = 0 (25)

since q̂ · ĵ q can excite only single electron-hole pairs, whose
phase space is bounded inside the RPA particle-hole contin-
uum. For the same reason, contributions to the Lehmann sum
in Eq. (20) of the form

∑
m

〈0|q̂ · ĵ q |m〉〈m|q̂ · ĵn,−q |0〉δ(ω − ωm0) (26)

for all n = 0,1,2, . . . vanish outside the single-particle
electron-hole continuum. Thus, to second order in the strength
of Coulomb interactions, and for vFq � ω � 2εF, Eq. (20)
reduces to

Im
[
χ

(L)
jj (q,ω)

]
= −π

∑
m

〈0|q̂ · ĵ1,q |m〉〈m|q̂ · ĵ1,−q |0〉δ(ω − ωm0). (27)

V. CALCULATION OF F̂1 AND ĵ 1,q

We now proceed to calculate the operator F̂1. We introduce

k± ≡ k ± 1
2 q ′, (28)

k′
± ≡ k′ ± 1

2 q ′, (29)

and the following ansatz for the operator F̂1:

iF̂1 ≡ 1

2

∑
q ′

vq ′
∑
k,k′

∑
λ,λ′,μ,μ′

Mλ,λ′,μ,μ′(k,k′,q ′)

× c
†
k−,λck+,λ′c

†
k′

+,μ
ck′

−,μ′ . (30)

We determine Mλ,λ′,μ,μ′ (k,k′,q ′) to satisfy the first identity in
Eq. (19).

The commutator between the noninteracting Hamiltonian
Ĥ0 and iF̂1 reads

[Ĥ0,iF̂1] = 1

2

∑
q ′

vq ′
∑
k,k′

∑
λ,λ′,μ,μ′

Mλ,λ′,μ,μ′ (k,k′,q ′)

× (εk−,λ − εk+,λ′ + εk′
+,μ − εk′

−,μ′)

× c
†
k−,λck+,λ′c

†
k′

+,μ
ck′

−,μ′ . (31)

Comparing the previous equation with Eq. (5) we immediately
find

Mλ,λ′,μ,μ′(k,k′,q ′) = Dλλ′(k−,k+)Dμμ′(k′
+,k′

−)

εk−,λ − εk+,λ′ + εk′
+,μ − εk′

−,μ′
. (32)

The operator ĵ1,q can be easily obtained by utilizing
Eq. (22). After some straightforward but lengthy algebraic
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manipulations we obtain

q̂ · ĵ1,q = 1

2

∑
q ′

k,k′

vq ′
∑
λ,λ′

μ,μ′,ρ

{
ĉ
†
k−,λĉk+,λ′ ĉ

†
k′

+−q/2,μ
ĉk′

−+q/2,μ′

[
Mλ,λ′,μ,ρ

(
k,k′ − q

2
,q ′

)
S (x)

ρμ′

(
k′

− − q
2
,k′

− + q
2

)

−Mλ,λ′,ρ,μ′

(
k,k′ + q

2
,q ′

)
S (x)

μρ

(
k′

+ − q
2
,k′

+ + q
2

)]
+ ĉ

†
k−−q/2,λĉk++q/2,λ′ ĉ

†
k′

+,μ
ĉk′

−,μ′

×
[
Mλ,ρ,μ,μ′

(
k − q

2
,k′,q ′

)
S (x)

ρλ′

(
k+ − q

2
,k+ + q

2

)
− Mρ,λ′,μ,μ′

(
k+q

2
,k′,q ′

)
S (x)

λρ

(
k−−q

2
,k− + q

2

)]}
. (33)

In writing Eq. (33) we have used that

fk+q/2 − fk−q/2 → vFq, (34)

when k is close to the K point of the BZ. Equation (34) is exact
in the low-energy MDF continuum limit, which will be taken
momentarily. The same limit restores rotational invariance: We
therefore have the liberty of fixing the direction of the wave
vector q arbitrarily. In Eq. (33) we have taken q = q x̂, without
loss of generality.

We remind the reader that our goal is not to calculate ĵ1,q

per se, but to calculate Im[χ (L)
jj (q,ω)] as from Eq. (27). The

latter contains only matrix elements of q̂ · ĵ1,q between the

states |0〉 and |m〉, multiplied by the factor δ(ω + ωm0). This
property can be used to simplify the energy denominators
inside all the “M functions” that appear on the right-hand
side of Eq. (33). Indeed, the δ function constrains the energy
difference between initial and final states: For the first term on
the right-hand side of Eq. (33) it must be

ω = εk−,λ − εk+,λ′ + εk′
+−q/2,μ − εk′

−+q/2,μ′ , (35)

while for the second term

ω = εk−−q/2,λ − εk++q/2,λ′ + εk′
+,μ − εk′

−,μ′ . (36)

Using Eqs. (35) and (36) in Eq. (33) we get

Mλ,λ′,μ,ρ

(
k,k′ − q

2
,q ′

)
= Dλλ′(k−,k+)Dμρ(k′

+ − q/2,k′
− − q/2)

εk−,λ − εk+,λ′ + εk′
+−q/2,μ − εk′

−−q/2,ρ

= Dλλ′(k−,k+)Dμρ(k′
+ − q/2,k′

− − q/2)

ω + εk′
−+q/2,μ′ − εk′

−−q/2,ρ

,

Mλ,λ′,ρ,μ′

(
k,k′ + q

2
,q ′

)
= Dλλ′(k−,k+)Dρμ′(k′

+ + q/2,k′
− + q/2)

εk−,λ − εk+,λ′ + εk′
++q/2,ρ − εk′

−+q/2,μ′
= Dλλ′(k−,k+)Dρμ′(k′

+ + q/2,k′
− + q/2)

ω + εk′
++q/2,ρ − εk′

+−q/2,μ

,

(37)

Mλ,ρ,μ,μ′

(
k − q

2
,k′,q ′

)
= Dλρ(k− − q/2,k+ − q/2)Dμμ′(k′

+,k′
−)

εk−−q/2,λ − εk+−q/2,ρ + εk′
+,μ − εk′

−,μ′
= Dλρ(k− − q/2,k+ − q/2)Dμμ′(k′

+,k′
−)

ω + εk++q/2,λ′ − εk+−q/2,ρ

,

Mρ,λ′,μ,μ′

(
k + q

2
,k′,q ′

)
= Dρλ′ (k− + q/2,k+ + q/2)Dμμ′(k′

+,k′
−)

εk−+q/2,ρ − εk++q/2,λ′ + εk′
+,μ − εk′

−,μ′
= Dρλ′ (k− + q/2,k+ + q/2)Dμμ′(k′

+,k′
−)

ω + εk−+q/2,ρ − εk−−q/2,λ

,

which allow us to rewrite

q̂ · ĵ1,q = 1

2

∑
q ′

vq ′[ϒ̂q,q ′ n̂−q ′ + n̂q ′ϒ̂q,−q ′], (38)

where

ϒ̂q,q ′ =
∑

k,λ,λ′
ĉ
†
k−−q/2,λ[q̂ · Mλ,λ′(k,q ′,q)]ĉk++q/2,λ′ , (39)

with

q̂ · Mλ,λ′(k,q ′,q) ≡
∑

ρ

[Dλρ

(
k− − q

2 ,k+ − q
2

)
S (x)

ρλ′
(
k+ − q

2 ,k+ + q
2

)
ω + εk++q/2,λ′ − εk+−q/2,ρ

− S (x)
λρ

(
k− − q

2 ,k− + q
2

)
Dρλ′

(
k− + q

2 ,k+ + q
2

)
ω + εk−+q/2,ρ − εk−−q/2,λ

]
. (40)

We stress that Eqs. (38)–(40) are valid only for their use in Eq. (27).

VI. REDUCTION OF ϒ̂q,q′ TO A CURRENT-LIKE OPERATOR

We now proceed to approximate the microscopic expression of the operator ϒ̂q,q ′ in Eqs. (39) and (40) by taking the limits q → 0
and vFq � ω � 2εF. We will try to slowly guide the reader through the many steps of this lengthy process.
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To begin with, in the long-wavelength q → 0 limit we can write

1

ω + εk±+q/2,λ − εk±−q/2,ρ

→ δλ,ρ

[
1

ω
− q

ω2

∂εk±

∂kx

]
+ (1 − δλ,ρ)

1

ω + 2λεF
+ O(q2). (41)

We then observe that in the regime of interest in this paper, i.e., vFq � ω � 2εF, the particle-hole states created by the
operator ϒ̂q,q ′ are energetically close to the Fermi energy. The band indices on λ,λ′ on the right-hand side of Eq. (40) are
therefore constrained to take the following values: λ = λ′ = +1 (recall that εF > 0).

Note that the “virtual state” ρ, over which the sum on the right-hand side of Eq. (40) runs, can be either in conduction (ρ = +1)
or valence (ρ = −1) band, even though the states labeled by the band indices λ and λ′ are bound to the Fermi surface.

We first simplify Eqs. (39) and (40) by using Eq. (41). We are naturally led to define

q̂ · M intra(k,q ′,q) ≡ q̂ · Mλ,λ′(k,q ′,q)|ρ=+1 = cos

(
θk−−q/2 − θk+−q/2

2

)
cos(θk+)

[
1

ω
− vFq

ω2
cos(θk+ )

]

− cos

(
θk−+q/2 − θk++q/2

2

)
cos(θk− )

[
1

ω
− vFq

ω2
cos(θk−)

]
+ O(q2) (42)

and

q̂ · M inter(k,q ′,q) ≡ q̂ · Mλ,λ′(k,q ′,q)|ρ=−1 = − 1

2εF
sin

(
θk−−q/2 − θk+−q/2

2

)
sin

(
θk+−q/2 + θk++q/2

2

)

+ 1

2εF
sin

(
θk−+q/2 − θk++q/2

2

)
sin

(
θk−−q/2 + θk−+q/2

2

)
+ O(q2) (43)

so that in the limit vFq � ω � 2εF we have

q̂ · Mλ,λ′(k,q ′,q) = q̂ · M intra(k,q ′,q) + q̂ · M inter(k,q ′,q). (44)

In writing Eq. (43) we have taken the limit ω → 0 in the second term on the right-hand side of Eq. (41). Moreover, in obtaining
Eq. (42) we have used that

cos

(
θk±−q/2 + θk±+q/2

2

)
= cos(θk± ) + O(q2) (45)

and
∂εk±,λ

∂kx

→ λvF cos(θk± ). (46)

The last equation becomes exact for k close to the K point of the BZ and therefore in the low-energy MDF limit.
Clearly we can carry out further approximations, relying on the fact that we are interested in the low-energy MDF limit.

Equation (42) can be further simplified by noting that

cos

(
θk−±q/2 − θk+±q/2

2

)
= cos

(
θk−−q/2 − θk++q/2

2

)
− q

2
sin

(
θk− − θk+

2

)
∂θk∓

∂kx

+ O(q2), (47)

which leads to

q̂ · M intra = cos(θk+) − cos(θk−)

ω
cos

(
θk−−q/2 − θk++q/2

2

)
+ vFq

ω2
[cos2(θk−) − cos2(θk+)] cos

(
θk− − θk+

2

)

+ q

2ω

∂[sin(θk− ) − sin(θk− )]

∂kx

sin

(
θk− − θk+

2

)
+ O(q2). (48)

In the first term on the right-hand side of Eq. (48) we can approximate

cos(θk+) − cos(θk−) → q ′
x

kF
, (49)

while the second term on the right-hand side of Eq. (48) becomes

[cos2(θk−) − cos2(θk+ )] cos

(
θk− − θk+

2

)
→ −2

q ′
x

kF

(
1 − q ′2

4k2
F

)
cos

(
θk− + θk+

2

)
. (50)

Finally, the derivative in the third term on the right-hand side of Eq. (48) reduces to

∂[sin(θk− ) − sin(θk− )]

∂kx

→ −∂(q ′
y/kF)

∂kx

= 0. (51)
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Introducing Eq. (48), approximated according to Eqs. (49)–
(51), back into Eq. (39) we get the “intraband” contribution to
the operator ϒ̂q,q ′ , which reads

ϒ̂
(intra)
q,q ′ =

[
vFq

′
x

kFω
n̂q+q ′ − 2

vFqx

ω2

q ′
x

kF

(
1 − q ′2

4k2
F

)
jq ′,x

]
+O(q2).

(52)

We remind the reader that we have taken q = q x̂ without loss
of generality. Here we used that ĵ q = vFσ̂ q close to the K
point of the BZ.

We now consider Eq. (43). Steps similar to what summa-
rized above for the intraband contribution to ϒ̂q,q ′ yield

q̂ · M inter = 1

2εF
[sin(θk− ) − sin(θk+ )] sin

(
θk− − θk+

2

)

= 1

εF
sin2

(
θk− − θk+

2

)
cos

(
θk− + θk+

2

)

= q ′2

4vFk
3
F

S (x)
λλ′(k−,k+). (53)

Once Eq. (53) is introduced into Eq. (39), it gives the
“interband” contribution to the operator ϒ̂q,q ′ , i.e.,

ϒ̂
(inter)
q,q ′ = q ′2

4vFk
3
F

jq ′,x + O(q2). (54)

Again we used the fact that ĵ q = vFσ̂ q close to the K point of
the BZ.

Summing Eqs. (52) and (54) we finally get

ϒ̂q,q ′ = vFq
′
x

kFω
n̂q+q ′ + ϒ̂ ′

q,q ′ , (55)

with

ϒ̂ ′
q,q ′ = −

[
2
vFqx

ω2

q ′
x

kF

(
1 − q ′2

4k2
F

)
− q ′2

4vFk
3
F

]
ĵq ′,x . (56)

The first term on the right-hand side of Eq. (55) can be
further manipulated. Indeed, when it is introduced in Eq. (38)
it gives

1

2ωkF

∑
q ′

vq ′[q ′
xn̂q+q ′ n̂−q ′ − q ′

xn̂q ′ n̂q−q ′]

= vF

2ωkF

∑
q ′

n̂q+q ′ n̂−q ′ [q ′
xvq ′ − (q + q ′

x)vq+q ′ ]

→ vFq

2ωkF

∑
q ′

vq ′

(
q ′2

x

q ′2 − 1

)
n̂q ′ n̂−q ′ + O(q2). (57)

Here we performed the shift q ′ → q + q ′ in the term propor-
tional to n̂q ′ n̂q−q ′ and we took the small-q limit in the last line
of Eq. (57). Finally, using the continuity equation

ωn̂q ′ n̂−q ′ = −q ′ · ĵ q ′ n̂−q ′ + n̂q ′ q ′ · ĵ−q ′ , (58)

it is possible to redefine the operator in Eq. (55) as

ϒ̂q,q ′ =
∑

α=x,y

{
vFqx

ω2

[
q ′2

y

q ′2
q ′

α

kF
− 2

q ′
x

kF

(
1 − q ′2

4k2
F

)
δα,x

]

+ q ′2

4vFk
3
F

δα,x

}
ĵq ′,α ≡

∑
α=x,y

�α(q,q ′)ĵq ′,α. (59)

FIG. 2. (Color online) (a)–(d) Some of the diagrams that con-
tribute to the noninteracting two-particle response function. The
diagrams in (a) and (b) are the only two that contribute in the large-Nf

limit. (c) and (d) Two nondisconnected diagrams which differ from
each other for the order of the external vertices. (e) [(f)] depicts the
excitations that are responsible for the plasmon damping in (a) and
(b) [(c) and (d)].

The main differences between Eq. (59) and the corresponding
expression that can be found for a 2DEG (see Appendix A) are:
(i) the factor 1 − q ′2/(4k2

F), which is due to the chirality of the
MDF eigenstates and suppresses backscattering at the Fermi
surface, and (ii) the last term in curly brackets, which is finite
even in the long-wavelength q → 0 limit. As to the former,
we observe [see also Eq. (39)] that in the limit of q → 0 q ′
is the total momentum of the electron-hole pair created by
ϒ̂q,q ′ . Such excitations are weighted by the chirality factor
1 − cos(ϕk′− − ϕk′

+) (recall that λ = λ′ = +), which becomes
1 − q ′2/(4k2

F) when all momenta are restricted at the Fermi
surface. Note that this factor suppresses backscattering, i.e.,
the creation of a particle-hole pair with opposite momenta
(q ′ = 2kF). The last term in curly brackets which is finite even
for q → 0 is instead due to the two-band nature of graphene,
which opens the possibility of a virtual state in valence band
even though the real states labeled by the band indices λ,λ′
are at the Fermi energy in conduction band. More details on
the comparison between graphene and an ordinary 2DEG are
presented in Appendix A.

VII. LARGE-Nf APPROXIMATION FOR THE
DENSITY-DENSITY RESPONSE FUNCTION

After the change of variables q ′ → −q ′ in the second term
on the right-hand side of Eq. (38), the latter can be rewritten
as q · ĵ1,q = ∑

q ′ vq ′ϒ̂q,q ′ n̂−q ′ . A major simplification is sug-
gested by the analysis of the Feynman graphs contributing
to the noninteracting spectrum of q̂ · ĵ1,q . Some of these
are shown in Figs. 2(a)–2(d). Because ĵ1,q is a two-particle
operator, these diagrams have four vertices, one for each
creation-annihilation pair. We see that the disconnected graphs
contain two independent sums over the number Nf of fermion
flavors, whereas the connected ones contain only one such
sum. We conclude that the disconnected graphs dominate in
the large-Nf limit. The final formula for the density-density
response function, which is exact to second order in e-e
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interactions and in the large-Nf limit, is

Im[χnn(q,ω)] = − q2

ω2

∑
α,β=x,y

∫
d2q ′

(2π )2
v2

q ′

∫ ω

0

dω′

π

{
�α(q,q ′)�β(−q, − q ′)Im

[
χ (0)

nn (q ′,ω′)
]
Im

[
χ

(0)
jαjβ

(q ′,ω − ω′)
]

+�α(q,q ′)�β(−q,q ′)Im
[
χ

(0)
njα

(−q ′,ω′)
]
Im

[
χ

(0)
njβ

(q ′,ω − ω′)
]}

. (60)

In this equation χ (0)
nn (q,ω), χ

(0)
jαjβ

(q,ω), and χ
(0)
njα

(q,ω) are the
noninteracting density-density, current-current, and density-
current response functions of a 2D gas of MDFs. The quantities
{�α(q,q ′),α = x,y} are defined in Eq. (59). We stress that
the imaginary parts of the three linear-response functions
χ (0)

nn (q,ω), χ
(0)
jαjβ

(q,ω), and χ
(0)
njα

(q,ω) do not depend on any
ultraviolet cutoff in the low-energy MDF limit. Moreover,
since in the limit of ω → 0 the integral over q ′ is naturally
restricted to 0 � q ′ � 2kF, no ultraviolet regularization is
needed in Eq. (60). The only pathology of the integral
in Eq. (60) appears in the infrared q ′ → 0 limit, due to
the 1/q ′ singularity of the Coulomb potential vq ′ . This
problem is cured by screening, as we will further discuss
below.

Equation (60) is the main result of this section. Note
that in the large-Nf limit the second-order expression for
the imaginary part of the density-density response function
in Eq. (60) has the appealing form of a convolution of two
single-particle spectra (with the current operator decoupled
from the density operator). The physical interpretation of
Eq. (60) is the following. At long wavelengths and to the
lowest nonvanishing order of perturbation theory, a plasmon
decays by emitting two electron-hole pairs [see Figs. 2(e)
and 2(f)]. Each of the Kubo products on the right-hand
side of Eq. (60) describes the rate of generation of a
single electron-hole pair. The spectral weight associated
with the excitation of two particle-hole pairs with opposite
momenta and given total energy ω is proportional to their
convolution.

In passing, we mention that Eq. (60) can also be obtained by
means of “brute-force” many-body diagrammatic perturbation
theory when only diagrams of second order in the strength of
e-e interactions and containing two bubbles (i.e., a factor N2

f )
are retained. This statement is proven in Appendix B, where,
for the sake of simplicity, we have reported diagrammatic
calculations for the case of an ordinary 2DEG only.

We now sketch how to make analytical progress in the
evaluation of Im[χnn(q,ω)] as from Eq. (60).

The integrals in Eq. (60) can be carried out analytically with
the help of known formulas for the response functions.5 We

first observe that in the low-energy MDF limit the system is
translationally and rotationally invariant. The current-current
linear-response function χ

(0)
jαjβ

(q,ω) is a rank-2 tensor that can

be therefore decomposed according to2

χ
(0)
jαjβ

(q,ω) = χ
(0,L)
jj (q,ω)

qαqβ

q2
+ χ

(0,T)
jj (q,ω)

(
δα,β − qαqβ

q2

)
,

(61)

where χ
(0,L)
jj (q,ω) and χ

(0,T)
jj (q,ω) are the noninteracting

longitudinal and transverse current-current response functions,
respectively.

In the limit ω → 0 we can expand the imaginary part of
each response function χ (0)

nn , χ
(0)
njα

, χ
(0,L)
jj , and χ

(0,T)
jj in a power

series of ω′, ω − ω′ and retain only the leading order of this
expansion. The leading contribution to Im[χnn(q,ω)] in powers
of ω in the limit ω → 0 can be extracted from the following
asymptotic formulas:

lim
ω′→0

Im
[
χ (0)

nn (q ′,ω′)
] = −Nf

√
4k2

F − q ′2

2q ′
ω′

2πv2
F

(62)

and

lim
ω′→0

Im
[
χ

(0,T)
jj (q ′,ω′)

] = −Nf
2kF

q ′
√

4k2
F − q ′2

ω′

2πvF
. (63)

The imaginary parts of density-current and longitudinal
current-current response functions scale with higher powers
of ω′.

VIII. RESULTS AND DISCUSSION

A. The DP damping rate

Substituting Eqs. (62) and (63) in Eq. (60) we finally get

Im[χnn(q,ω)] = − q

2πvF

[
ANf (αee)

v3
Fq

3

ω3
+ BNf (αee)

qω

vFk
2
F

]
,

(64)

where ANf (αee) = N2
f α2

eef (Nfαee) and BNf (αee) =
N2

f α2
eeg(Nfαee), with

f (x) = 15x3 − 15x2 − 52x + 42 − 3(5x4 − 24x2 + 16)arccoth(1 + x)

288π
(65)

and

g(x) = 3x2 + 3x − 2 − 3x2(2 + x)arccoth(1 + x)

96π (2 + x)
. (66)
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We remark that Eq. (64) is valid only to leading order for
q → 0 and vFq � ω � 2εF. Equations (64)–(66) are the most
important analytical results of this paper.

In Eq. (64) we have introduced the well-known dimension-
less parameter (after restoring h̄)

αee ≡ e2

h̄vFε
, (67)

which measures the strength of e-e interactions relative to the
kinetic energy when the low-energy MDF limit is taken.10,11

For a flake on a typical substrate like SiO2
9–11 or h-BN,27

αee < 1, therefore justifying a perturbative treatment of Ĥee.
Only suspended samples28 (αee ∼ 2.2) are formally outside
the perturbative regime.

Importantly, in obtaining Eq. (64) we have used a statically
screened interaction of the form

vq = 2πe2

εq

1

εTF(q)
, (68)

where εTF(q) = 1 + qTF/q and qTF = NfαeekF is the Thomas-
Fermi screening wave vector.11 Static screening is fully
justified since we are interested in the ω → 0 limit of Eq. (60).
The dependence of ANf (αee) and BNf (αee) on αee beyond α2

ee,
which is encoded into the functions f (x) and g(x) evaluated
at x = Nfαee, stems from the use of Eq. (68), which, as stated
above, is needed to cure infrared divergences associated with
the bare Coulomb potential.6

The first term on the right-hand side of Eq. (64)—the
one controlled by the quantity ANf (αee)—can be traced back
to the term in square brackets on the right-hand side of
Eq. (59), which vanishes in the limit q → 0. This term is
analogous to what one finds in the case of an ordinary
2DEG—see Appendix A—modulo the factor 1 − q ′2/(4k2

F)
which suppresses backscattering. This chirality factor yields
major quantitative differences between the DP damping rate
and the damping rate of a plasmon in a 2DEG (see below).
The second term on the right-hand side of Eq. (64)—the one
controlled by the function BNf (αee)—is instead due to the
Galilean-breaking term in the second line of Eq. (59), and
is therefore peculiar to graphene.

As already pointed out in Sec. II, the DP damping rate can
be calculated from the usual equation2 1 − vqχρρ[q,ωp(q) −
i�p(q)] = 0, which can be expanded for �p(q) � ωp(q) to give

1 − vqRe[χnn(q,ωp(q))] = 0,
(69)

�p(q) = Im[χnn(q,ωp(q))]
∂Re[χnn(q,ω)]

∂ω

∣∣
ω=ωp(q)

.

Since Im[χnn(q,ω)] starts already at second order in the
strength αee of e-e interactions, we can take Re[χnn(q,ω)] =
Re[χ (0)

nn (q,ω)] in the second of Eqs. (69). Moreover, in both
Eqs. (69) we can use the RPA DP dispersion (11).

The final result for the DP damping rate can be cast (after
restoring h̄) into the following elegant form:

�p(q) = εF

h̄
ANf (αee)

(
q

kF

)2

. (70)

Note that only the first term on the right-hand side of Eq. (64)
contributes to the DP damping rate at the lowest nonvanishing
order in perturbation theory, i.e., O(α2

ee). The term proportional

FIG. 3. (Color online) The intrinsic Dirac plasmon lifetime τp(q1)
is plotted as a function of electron density n and for a fixed photon
energy h̄ωph. The (blue) solid line refers to αee = 0.9. The (red) dashed
line refers to a 2DEG in a GaAs quantum well. The intrinsic lifetime
of a 2DEG plasmon is much shorter, at least by a factor 10: The
dashed curves have been multiplied by large enhancement factors to
fit into the frames of the figures. Different parts refer to different
values of the photon energy: in (a) we have set h̄ωph = 112 meV
corresponding to mid-infrared plasmons; in (b) h̄ωph = 11.2 meV
corresponds to Terahertz plasmons. Note the difference in the scales
of horizontal and vertical axes between the two parts.

to BNf (αee) gives a contribution to the DP damping rate that
goes like BNf (αee)ω4

p(q). However, since ωp(q) ∝ √
αee, such

a term is O(α4
ee) and must be neglected to be consistent with

the rest of the calculation, which is correct only up to order
O(α2

ee).
In Fig. 3 we plot the DP lifetime τp(q) calculated from

Eq. (1), where �p(q) is provided by Eq. (70). Following
Ref. 15, this quantity has been plotted for q equal to the
plasmon wave number q1/kF = (2αee)−1(h̄ωph/εF)2 for a fixed
photon energy h̄ωph. As density decreases q1/kF increases.
From this figure we clearly see that the intrinsic DP lifetime
can be of the order of 20–120 ps for mid-infrared plasmons and
of tens of nanoseconds for Terahertz plasmons. For the sake of
comparison, in Fig. 3 we have also plotted the intrinsic lifetime
of a plasmon in an ordinary 2DEG hosted in a GaAs quantum
well. Clearly DPs have a much longer intrinsic lifetime than
2DEG plasmons (at least a factor 10 longer). This difference
stems from the chirality factor which characterizes the electron
wave functions in a graphene sheet. This factor suppresses
backscattering at the Fermi surface9–11 therefore enhancing
the DP intrinsic lifetime with respect to that of a plasmon
in an ordinary 2DEG, which is calculated, for the sake of
completeness, in Appendix A.

In Fig. 4 we plot the DP intrinsic inverse quality factor

γp(q) = 2
�p(q)

ωp(q)
= 2

√
2
ANf (αee)√

Nfαee

(
q

kF

)3/2

, (71)

calculated at q = q1 and as a function of doping.
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FIG. 4. (Color online) The intrinsic Dirac plasmon damping rate
γp(q1) is plotted as a function of electron density n and for a fixed
photon energy h̄ωph. In this figure different curves refer to different
values of the graphene fine-structure constant αee. As in Fig. 3,
(a) refers to mid-infrared plasmons, while (b) refers to Terahertz
plasmons.

From Eq. (71) we clearly see that γp(q1) ∝ (h̄ωph/εF)3.
From Fig. 4(a) we note that, in the range of densities explored
in Ref. 15, the dependence of γp on doping is weak. Although
this is in agreement with Ref. 15, the numerical value we
find for the DP inverse quality factor in the mid infrared
(γp ≈ 10−4) is much smaller than the measured value (γp ≈
10−1). We are therefore led to conclude that the experiments
in Refs. 15 and 16 are far from the intrinsic regime where
many-body effects would be dominant. Indeed, as stressed
in Ref. 20, the experimental results for the DP damping rate
published in Refs. 15 and 16 can be explained in terms of
scattering of plasmons against charged impurities.

All the calculations described so far have been performed
at zero temperature. Finite-temperature effects introduce ad-
ditional damping due to the presence of thermally excited
quasiparticles. We have estimated this effect using RPA29 and
the results are plotted in Fig. 5. We conclude that thermal
effects are negligible at the typical densities of the experiments
of Refs. 15 and 16, but certainly not at lower densities. The
thermal broadening of DPs should therefore be taken carefully
into account in any quantitative comparison between theory
and experiment.

B. The background of optical absorption below
the single-particle gap

We now compare our findings for the DP damping rate
[Eq. (71)] with the background of optical absorption Re[σ0(ω)]
with

σ0(ω) ≡ lim
q→0

σ (q,ω), (72)

FIG. 5. (Color online) The Dirac plasmon lifetime τp(q1) is
plotted as a function of electron density n and for a fixed photon
energy h̄ωph = 112 meV. The (blue) solid line refers to the intrinsic
plasmon lifetime calculated at T = 0 [the same function is plotted
in Fig. 2(a)]. The (green) dash-dotted line refers to the RPA plasmon
lifetime computed from the finite-temperature Lindhard function29 at
T = 300 K. Both curves refer to αee = 0.9.

the ac conductivity, calculated at q = 0 and for frequencies in
the single-particle gap10 h̄ω < 2εF.

Making use of the relation1,2 σ (q,ω) = ie2ωχnn(q,ω)/q2

it is easy to show—see Appendix C for details—that

γp(q) = Re[σ (q,ω)]

Im[σ (q,ω)]

∣∣∣∣
ω=ωp(q)

. (73)

At a first sight the previous result seems to suggest that in the
q → 0 limit the DP damping rate γp is linked to the ratio of
the real part to the imaginary part of the optical conductivity.15

However, this suggestion turns out to be incorrect, because
the small-q behavior of Re[σ (q,ωp(q))] is different from the
small-q behavior of Re[σ0(ωp(q))] (see Fig. 6). To second
order in αee a careful calculation shows that

Re[σ0(ω � 2εF/h̄)] ≡ σ1(ω) = 2h̄3D0BNf (αee)

πε3
F

ω2. (74)

FIG. 6. (Color online) The two different ways of taking the limit
ω → 0 in Eq. (60) used in this paper: Along the plasmon dispersion
(ω ∝ √

q—here αee = 0.5) and with q = 0 to begin with. The former
is needed to obtain the inverse quality factor γp(q), while the latter
gives the background of optical absorption σ1(ω)/σ2(ω) for h̄ω �
2εF. As shown in Sec. VIII B the two limits give different results.
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FIG. 7. (Color online) The ratio between γp(q1) and
σ1(ω)/σ2(ω)|ω=ωph , defined respectively in Eqs. (76) and (75). The
two functions become equal for αee � 0.95.

In the same range of energies, Im[σ0(ω)] ≡ σ2(ω) = D0/πω.
To second order in αee we therefore find

σ1(ω)

σ2(ω)

∣∣∣∣
ω=ωph

= 2BNf (αee)

(
h̄ωph

εF

)3

. (75)

Note that (i) in a Galilean-invariant system σ1(ω) vanishes
identically, and (ii) that in the present case this quantity
depends on BNf (αee), which can be traced back to the last
(Galilean-breaking) term in curly brackets on the right-hand
side of Eq. (59).

Note that Eq. (75) has the same dependence on photon
energy and density as Eq. (71), when the latter is evaluated at
q = q1, i.e.,

γp(q1) = ANf (αee)√
Nfα2

ee

(
h̄ωph

εF

)3

. (76)

Their functional dependence on the coupling constant αee is,
however, different. In Fig. 7 we plot the ratio between Eqs. (76)
and (75). We clearly see that γp(q1) is typically larger than
σ1(ω)/σ2(ω)|ω=ωph at small αee, the two quantities becoming
equal for αee ∼ 0.95.

IX. CONCLUSIONS

In summary, we have calculated the intrinsic Dirac plas-
mon lifetime as solely due to electron-electron interactions
[Eq. (70)] and the background of optical absorption below the
single-particle threshold [Eq. (74)].

Suppressed backscattering due to the chiral nature of the
eigenstates of the massless Dirac fermion Hamiltonian yields
plasmon lifetimes in graphene which are much longer than
the corresponding counterparts in ordinary 2D electron gases.
Our calculations demonstrate that current samples15,16 are not
yet in the intrinsic regime. This statement is fully supported by
microscopic calculations of the impact of disorder.20 Graphene
sheets on h-BN27 or suspended samples28 offer the opportunity
to reach the intrinsic regime, where our theoretical predictions
can be tested.
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APPENDIX A: THE INTRINSIC LIFETIME OF A PLASMON
IN AN ORDINARY PARABOLIC-BAND 2D ELECTRON GAS

To benchmark our method, in this Appendix we extend the
calculations reported in Secs. IV–VI of the main text to the
case of a conventional parabolic-band 2DEG.

The 2DEG Hamiltonian (per spin channel) is2

Ĥ =
∑

k

εk ĉ
†
k ĉk + 1

2

∑
q ′

vq ′
∑
k,k′

ĉ
†
k− ĉ

†
k′

+
ĉk′

− ĉk+ ≡ Ĥ0 + Ĥee.

(A1)

Here k± = k ± q ′/2, εk = k2/(2m), and vq = 2πe2/(εq).
Following the procedure outlined in Sec. IV, we determine the
generator of the canonical transformation (17) up to first-order
in the strength of e-e interactions. Defining

iF̂1 ≡ 1

2

∑
q ′

vq ′
∑
k,k′

M(k,k′,q ′)ĉ†k− ĉ
†
k′

+
ĉk′

− ĉk+ , (A2)

and solving [iF̂1,Ĥ0] = −Ĥee [see Eq. (19)] we find

M(k,k′,q ′) = 1

εk− + εk′
+ − εk+ − εk′

−

, (A3)

which should be compared with Eq. (32) in the main text.
Following the steps described in the main text, we arrive

at the following result for the first-order correction ĵ1,q to the

transformed current operator ĵ
′
q :

q̂ · ĵ1,q =
∑

q ′
vq ′ϒ̂q,q ′ n̂−q ′ , (A4)

with

ϒ̂q,q ′ = vFqx

ω2

∑
α=x,y

(
q ′2

y

q ′2
q ′

α

kF
− 2

q ′
x

kF
δα,x

)
ĵq ′,α

≡
∑

α=x,y

�α(q,q ′)ĵq ′,α. (A5)

Equation (A5) should be carefully compared with Eq. (59).
The main differences are: (i) the absence of a chirality factor
of the form 1 − q ′2/(4k2

F) in Eq. (A5), and (ii) no term in
Eq. (A5) that remains finite in the long-wavelength q → 0
limit.

Following the steps outlined in the main text, we obtain
that the noninteracting spectrum of q̂ · ĵ1,q can be calculated
from the four-vertex Feynman diagrams in Figs. 2(a)–2(d), of
which the disconnected ones dominate in the large-Nf limit.
The final formula for the density-density response function to
second order in e-e interactions and in the large-Nf limit is
identical to Eq. (60) with �α(q,q ′) defined in Eq. (A5). For
future purposes we define

Mαβ(ϕq ′) ≡ m2ω4

q2q ′2 �α(q,q ′)�β(−q,−q ′)

= {[cos2(ϕq ′ ) + 1] cos(ϕq ′ ), − sin3(ϕq ′)}α
×{[cos2(ϕq ′) + 1] cos(ϕq ′), − sin3(ϕq ′)}β. (A6)
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FIG. 8. Second-order (in the strength of e-e interactions) dia-
grams for the proper longitudinal current-current response function.
(a)–(d) are dominant in the large-Nf limit. (a) A diagram with a
self-energy insertion, while (b) illustrates a diagram with a vertex
correction. Finally, (c) and (d) depict two Aslamazov-Larkin-type
diagrams. Solid (dashed) lines represent noninteracting Green’s
functions (e-e interactions), while filled dots represent current
operators at external vertices.

Corresponding numerical results for the intrinsic damping rate
of plasmons in a 2DEG are reported in Figs. 3 and 4.

APPENDIX B: THE INTRINSIC LIFETIME OF A PLASMON
FROM “BRUTE-FORCE” MANY-BODY DIAGRAMMATIC

PERTURBATION THEORY

In this Appendix we prove, for the simpler case of the
2DEG, that Eq. (60) with �α(q,q ′) as defined in Eq. (A5)
is equivalent to a “brute-force” many-body diagrammatic
perturbation theory calculation.

In Fig. 8 we show all the second-order Feynman diagrams
for the proper2 longitudinal current-current response function.

Solid lines are bare propagators while dashed lines represent
e-e interactions. Filled circles at external vertices represent
2DEG current operators. To make contact with the main text
and in the spirit of a large-Nf expansion, we select only the
diagrams that contain the largest number of fermions loops.
In what follows we therefore consider only the diagrams in
Figs. 8(a)–8(d), which contain two fermion loops. As in the
main text, we consider the limit of zero temperature.

We start from the diagram in Fig. 8(a), which contains
a second-order self-energy insertion on the upper Green’s
function. After summing it to its time-reversal partner (which
contains the second-order self-energy insertion on the lower
Green’s function) we find

χ
(SE)
jxjx

(q,iω) = −
∫

d2k
(2π )2

∫
d2k′

(2π )2

∫ +∞

−∞

dε

2π

∫ +∞

−∞

dε′

2π

× k2
x

m2
W (|k − k′|,iε − iε′)G(0)(k−,iε−)

×G(0)(k+,iε+)[G(0)(k′
+,iε′

+)G(0)(k+,iε+)

+G(0)(k−,iε−)G(0)(k′
−,iε′

−)]. (B1)

We have introduced the bare (noninteracting) Green’s function,

G(0)(k,iεn) = 1

iεn − ξk
, (B2)

where ξk = εk − εF is the 2DEG band energy εk = k2/(2m)
measured from the Fermi energy εF. Moreover,

W ( Q,i�) = −v2
Q

∫ +∞

−∞

dω′

π

Imχ (0)
nn (Q,ω′)

i� − ω′ (B3)

is the spectral representation (see Appendix 14 in Ref. 2) of two
interaction lines with a fermion loop (bare bubble or Lindhard
function) in between.

The diagram in Fig. 8(b), which contains a vertex correc-
tion, reads

χ
(VC)
jxjx

(q,iω) = −
∫

d2k
(2π )2

∫
d2k′

(2π )2

∫ +∞

−∞

dε

2π

∫ +∞

−∞

dε′

2π

× kxk
′
x

m2
W (|k − k′|,iε − iε′)G(0)(k−,iε−)

×G(0)(k+,iε+)G(0)(k′
+,iε′

+)G(0)(k′
−,iε′

−).

(B4)

Finally, the sum of the two Aslamazov-Larkin diagrams in
Figs. 8(c) and 8(d) gives

χ
(AL)
jxjx

(q,iω) = 1

4

∫
d2q ′

(2π )2

∫
dω′

π
vq ′−q/2vq ′+q/2

×�(q ′ − q/2,q ′ + q/2,iω′,iω + iω′)
×�(q ′ + q/2,q ′ − q/2,iω + iω′,iω′), (B5)

where

�(q1,q2,iω1,iω2)

≡ 1

m

∫
d2k

(2π )2

∫ +∞

−∞

dε

2π

(
kx + q1,x + q2,x

2

)
G(0)(k,iε)

× [G(0)(k + q1,iε + iω1)G(0)(k + q2,iε + iω2)

−G(0)(k + q2,iε − iω2)G(0)(k + q1,iε − iω1)].

(B6)
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As we will see below, it is mandatory to retain all the
contributions listed above to find the correct second-order
large-Nf result, since important cancellations occur between
seemingly different diagrams, in particular those leading to
Re[σ0(ω)] = 0.

1. Calculation of self-energy and vertex corrections

We now briefly describe the procedure we have followed to
calculate Eqs. (B1) and (B4).

The easiest way to proceed is to compute the integrals over
ε and ε′ by utilizing standard methods of complex analysis.
These integrals can be calculated by closing the integration
contours on the opposite halves of the complex plane, thus

avoiding the poles of W ( Q,i�). The analytical continuation
iω → ω + i0+ must be carried out only after performing the
two integrals over ε and ε′.

Importantly, we note that some of the terms in the integrand
of Imχ

(SE)
jxjx

(q,ω) and Imχ
(VC)
jxjx

(q,ω) are of the form

[�(−ξk−) − �(−ξk+)]δ(ω + ξk− − ξk+ ), (B7)

and therefore vanish when q and ω are outside the particle-hole
continuum. Equation (B7) defines indeed the phase space of
single electron-hole pair excitations. We recall that we are
interested in the regime in which these are absent.

We find that the sum Im[χ (SE)
jxjx

(q,ω)] + Im[χ (VC)
jxjx

(q,ω)]
reduces, in the long-wavelength q → 0 limit, to

Imχ
(VC−SE)
jxjx

(q,ω) = −
∫

d2q ′

(2π )2

v2
q ′

m2

∫ ω

0

dω′

π
Imχ (0)

nn (q ′,ω′)
[
q ′2

x

ω2
Imχ (0)

nn (|q + q ′|,ω − ω′) + q
4q ′2

x

ω3
Imχ

(0)
njx

(q + q ′,ω − ω′)

+ q2 10q ′2
x

ω4
Imχ

(0)
jxjx

(q ′,ω − ω′) + q2 q ′4
x

2m2ω4
Imχ (0)

nn (q ′,ω − ω′)
]
. (B8)

2. Calculation of Aslamazov-Larkin diagrams

We now briefly discuss the steps which are needed to calculate Eq. (B5). More details on the calculation of topologically
identical diagrams can be found in Ref. 30.

Integrating Eq. (B6) over the energy ε it is possible to show that the function �(q ′,q + q ′,iω′,iω + iω′) has two branch cuts
for purely imaginary ω′ and ω + ω′. Equation (B5) can thus be calculated by closing the contour in the upper half of the complex
ω′ plane and excluding the branch cuts. Performing the analytical continuation iω → ω + i0+ after the contour integration we
obtain

χ
(AL)
jxjx

(q,ω) = i

∫
d2q ′

(2π )2

vq ′−q/2vq ′+q/2

4m2

∫ ∞

0

dω′

π
[�(1)

−+(−ω′,ω − ω′)�(2)
+−(ω − ω′,−ω′) − �

(1)
++(−ω′,ω − ω′)�(2)

++(ω − ω′,−ω′)

+�
(1)
−−(−ω − ω′,−ω′)�(2)

−−(−ω′,−ω − ω′) − �
(1)
−+(−ω − ω′,−ω′)�(2)

+−(−ω′,−ω − ω′)], (B9)

where we have introduced the shorthands

�
(1)
λ1λ2

(ω1,ω2) = �(q ′ − q/2,q ′ + q/2,ω1 + iλ1η,ω2 + iλ2η) (B10)

and

�
(2)
λ1λ2

(ω1,ω2) = �(q ′ + q/2,q ′ − q/2,ω1 + iλ1η,ω2 + iλ2η). (B11)

It is evident that the imaginary part of χ
(AL)
jxjx

(q,ω) coincides with the real part of the integrand on the right-hand side of Eq. (B9).

Since Re(zw) = Re(z)Re(w) − Im(z)Im(w), the terms contributing to Im[χ (AL)
jxjx

(q,ω)] can be classified into two groups. One

group contains terms proportional to the product Re[�(1)
λ1λ2

(ω1,ω2)]Re[�(2)
λ1λ2

(ω1,ω2)], while the other contains terms of the form

Im[�(1)
λ1λ2

(ω1,ω2)]Im[�(2)
λ1λ2

(ω1,ω2)]. It can be shown that the former group gives a subleading contribution with respect to the
latter, in the long-wavelength limit. In this limit we can therefore consider only the terms which contain the product of imaginary
parts of the functions �

(1)
λ1λ2

(ω1,ω2) and �
(2)
λ1λ2

(ω1,ω2). Integrating Eqs. (B10) and (B11) over the energy, performing the analytical

continuation, and taking the imaginary part, it is easy to show that Im�
(1)
λ1λ2

(q1,q2,iω1,iω2) = Im�
(2)
λ2λ1

(q2,q1,iω2,iω1) when q

and ω are outside the particle-hole continuum.
After some lengthy but straightforward algebra we get, in the long-wavelength q → 0 limit,

Imχ
(AL)
jxjx

(q,ω) =
∫

d2q ′

(2π )2

vq ′vq ′+q

m2

∫ ω

0

dω′

π

{
q ′2

x

ω2
Imχ (0)

nn (q ′,ω′)Imχ (0)
nn (|q + q ′|,ω − ω′)

− q
2q ′2

x

ω3

[
Imχ

(0)
njx

(q ′,ω′)Imχ (0)
nn (|q + q ′|,ω − ω′) − Imχ (0)

nn (q ′,ω′)Imχ
(0)
njx

(q + q ′,ω − ω′)
]

+ q
q ′

x

ω2
Imχ (0)

nn (q ′,ω′)Imχ (0)
nn (|q + q ′|,ω − ω′) + q2 q ′4

x

2m2ω4
Imχ (0)

nn (q ′,ω′)Imχ (0)
nn (q ′,ω − ω′)
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+ q2 2q ′
x

ω3

[
Imχ (0)

nn (q ′,ω′)Imχ
(0)
njx

(q ′,ω − ω′) − Imχ
(0)
njx

(q ′,ω′)Imχ (0)
nn (q ′,ω − ω′)

]

+ q2 3q ′2
x

ω4

[
Imχ (0)

nn (q ′,ω′)Imχ
(0)
jxjx

(q ′,ω − ω′) + Imχ
(0)
jxjx

(q ′,ω′)Imχ (0)
nn (q ′,ω − ω′)

]

− q2 4q ′2
x

ω4
Imχ

(0)
njx

(q ′,ω′)Imχ
(0)
jxn

(q ′,ω − ω′)
}
. (B12)

3. The small-q expansion

Summing Eqs. (B8) and (B12) it is easy to prove that the
coefficients of the terms O(q0) and O(q) are exactly zero. The
latter vanishes upon angular integration over ϕq . After lengthy
but straightforward algebraic manipulations it is possible to
expand the remainder to O(q2). The following identities turn
out to be useful in the algebraic steps:

ω2Im
[
χ (0)

nn (q ′,ω′)
]
Im

[
χ (0)

nn (q ′,ω − ω′)
]

= 2
∑
α,β

q ′
αq ′

β

{
Im

[
χ (0)

nn (q ′,ω′)
]
Im

[
χ

(0)
jαjβ

(q ′,ω − ω′)
]

+ Im
[
χ

(0)
njα

(q ′,ω′)
]
Im

[
χ

(0)
njβ

(q ′,ω − ω′)
]}

(B13)

and

ωIm
[
χ (0)

nn (q ′,ω′)
]
Im

[
χ (0)

nn (q ′,ω − ω′)
]

=
∑

α

q ′
α

{
Im

[
χ (0)

nn (q ′,ω′)
]
Im

[
χ

(0)
jxjα

(q ′,ω − ω′)
]

+ Im
[
χ

(0)
njx

(q ′,ω′)
]
Im

[
χ

(0)
njα

(q ′,ω − ω′)
]}

, (B14)

where α,β = x,y.
The final expression reads

Imχjxjx (q,ω) = − q2

m2ω4

∑
α,β=x,y

∫
d2q ′

(2π )2

∫ ω

0

dω′

π
v2

q ′q
′2

×Mαβ(ϕq ′)
[
Imχ (0)

nn (q ′,ω′)Imχ
(0)
jαjβ

(q ′,ω − ω′)

+ Imχ
(0)
njα

(q ′,ω′)Imχ
(0)
njβ

(q ′,ω − ω′)
]
, (B15)

where

Mαβ(ϕq ′) = (cos(ϕq ′)[1 + cos2(ϕq ′)],− sin3(ϕq ′))α

× (cos(ϕq ′)[1 + cos2(ϕq ′)],− sin3(ϕq ′)β. (B16)

Note that the matrix elements in Eq. (B16) coincide with those
in Eq. (A6). Equation (B15) can be precisely recast in the form
of Eq. (60) with �α(q,q ′) defined in Eq. (A5).

APPENDIX C: THE DEFINITION OF γp

The inverse quality factor γp(q) has been defined in this
paper in order to match the definition given in Ref. 15.

The authors of Ref. 15 define the plasmon frequency (which
coincides with the external photon frequency ωph) as a purely
real quantity. They introduce a complex plasmon momentum
qp = q1 + iq2 and define the inverse quality factor γ̃p as15

γ̃p ≡ q2

q1
. (C1)

The complex plasmon momentum qp can be derived by solving
the equality

ωp(qp) − i�p(qp) = ωph. (C2)

Equation (C2) can be solved by expanding it for small q2.
Neglecting terms of order q2�p(q1) we find

ωp(q1) = ωph,
(C3)

q2 = �p(q1)

∂ωp(q)/∂q|q=q1

.

As shown after Eq. (10), in the limit q → 0 the RPA plasmon
frequency is given by5,12 ωp(q) = √

2D0q/ε. This in turn
implies that ∂ωp(q)/∂q = ωp(q)/(2q), and that

γ̃p = 2
�p(q1)

ωp(q1)
= γp(q1). (C4)

The relation between γp(q1) and the ratio
Re[σ (q,ω)]/Im[σ (q,ω)] for q = q1 and ω = ωp(q1) can
be derived by using the following well-known relation:2

χnn(q,ω) = q2

ie2ω
σ (q,ω) (C5)

in Eq. (10), which immediately gives

�p(q) = Re[σ (q,ω)]
∂Im[σ (q,ω)]

∂ω
− Im[σ (q,ω)]

ω

∣∣∣∣
q=q1,ω=ωp(q1)

. (C6)

Since the imaginary part of the RPA conductivity scales like
ω−1 in the region of interest, we get ∂Im[σ (q,ω)]/∂ω =
−Im[σ (q,ω)]/ω, which in turn implies

γp(q1) = Re[σ (q1,ωp(q1))]
Im[σ (q1,ωp(q1))]

. (C7)
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1D. Pines and P. Noziéres, The Theory of Quantum Liquids (W. A.
Benjamin, New York, 1966).

2G. F. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2005).

3S. A. Maier, Plasmonics—Fundamentals and Applications
(Springer, New York, 2007).

4T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Phys. Today 61,
44 (2008); L. Novotny, ibid. 64, 47 (2011); M. I. Stockman, ibid.
64, 39 (2011).

195405-14

http://dx.doi.org/10.1063/1.2930735
http://dx.doi.org/10.1063/1.2930735
http://dx.doi.org/10.1063/PT.3.1167
http://dx.doi.org/10.1063/1.3554315
http://dx.doi.org/10.1063/1.3554315


INTRINSIC LIFETIME OF DIRAC PLASMONS IN GRAPHENE PHYSICAL REVIEW B 88, 195405 (2013)

5K. W.-K. Shung, Phys. Rev. B 34, 979 (1986); B. Wunsch, T.
Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006); E. H.
Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007); M.
Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A.
H. MacDonald, ibid. 77, 081411(R) (2008); A. Principi, M. Polini,
and G. Vignale, ibid. 80, 075418 (2009); M. Jablan, H. Buljan, and
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F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera,
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