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We demonstrate that, due to their spin-orbit interaction, carbon nanotube cross-junctions have attractive spin
projective properties for transport. First, we show that the junction can be used as a versatile spin filter as a
function of a backgate and a static external magnetic field. Switching between opposite spin filter directions
can be achieved by small changes of the backgate potential, and a full polarization is generically obtained in
an energy range close to the Dirac points. Second, we discuss how the spin filtering properties affect the noise
correlators of entangled electron pairs, which allows us to obtain signatures of the type of entanglement that are
different from the signatures in conventional semiconductor cross-junctions.
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I. INTRODUCTION

Over the last two decades, carbon nanotubes (CNTs) have
developed into a mature material that can be produced at high
purity,’~” and important steps toward mass production have
been taken.® This makes CNTs an attractive platform for
a future implementation of quantum information processing
or spintronics. In this context, CNTs have already been
proven functional for producing correlated electron pairs in
a double quantum dot Cooper pair splitter setup.'®!" Such
Cooper pair splitters'? are first implementations of a source of
entangled electron pairs on demand, complementing similar
implementations in semiconductors,'*~!> and they are related
closely to proposals for generating entangled pairs in systems
with forked geometry.'6-2

To actively control the electron spin, spin-orbit interaction
(SOI) effects have found much attention in recent years, since
they allow an all-electric local control of the electron spin.
While in semiconductors the SOI typically causes the spin to
precess during transport, in CNTs, which are hollow cylinders
different from filled quantum wires, the SOI has a different
impact. Rather than causing spin rotations, it lifts the energy
degeneracy of opposite spins and leads to distinct, fully spin
polarized bands with the polarization directions parallel to the
rotational symmetry axis,’® an effect whose consequences
were, to date, investigated theoretically mainly in quantum dot
setups.’**0 Recently the possibility of using gates to control
the spin filtering properties due to SOI in CNT quantum dots
has been also exploited.*' While the band splitting properties
of the SOI have been confirmed by experiments,**~** the spin-
projective properties still require experimental testing.

In this paper, we show that single-wall CNT cross-junctions
as shown in Fig. 1 are attractive candidates for further exper-
imental progress for both spin-resolved transport and the de-
tection of entanglement signatures. While such cross-junctions
have already attracted much interest experimentally*=>! and
theoretically,’>>’ the novel features due to SOI have never
been investigated before. Here we take the SOI fully into
account, and consider setups with weak (usually sub-tesla)
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magnetic fields B in the plane spanned by the two CNTs, often
with B parallel to one of the CNTs.

We first demonstrate that close to the Dirac points the
cross-junction operates as an efficient spin filter. Full spin
polarization for an outgoing current is obtained if only one
SOI-split subband contributes to the outgoing transport. This
polarization can be reversed to opposite, yet not perfect
polarization upon small changes of the gate potential such
that further subbands become active for the transport. At fixed
gate potential, however, a perfect reversal of the polarization
in the lowest subband can be achieved by letting B — —B.

In the second part of this paper, we investigate the transport
properties of entangled electron pairs passing through the
cross-junction, as indicated by the hourglass shaped state
in Fig. 1. We investigate the current noise correlators for
signatures of the entanglement, notably for a bunching or
antibunching behavior arising from the injection of singlet or
triplet states. This investigation is an extension of previous
work on semiconductor cross-junctions,’* in which also
SOI effects’®! were investigated. Due to the different band
structure of CNTs and SOI effects, our results are quite
different, and a comparison will be made accordingly below.

We will consider only cross-junctions of weakly coupled
CNTs, allowing us to connect the scattering theory of the
cross-junction directly to a microscopic Hamiltonian. Hence
we do not treat high-efficiency (50-50) beam splitters such
as required for proposed noise-measurement based proofs
of entanglement through, for instance, Bell inequalities,ﬁz‘64
entanglement witnesses,®> or quantum state tomography.®®
It should also be noted that a proof of entanglement does
not necessarily need a beam splitter setup. If spin filters,
for instance, as provided by the SOI-split CNT bands, are
placed close to the source of entangled electron pairs, the
current amplitude of the outgoing pairs is modulated by the
nonlocal filter settings. Hence entanglement information can
be obtained already from measuring currents only.*!

The paper is organized as follows, in Sec. II we introduce
the model for the CNT including the SOI effects, and we
provide the scattering theory description of the cross-junction.
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FIG. 1. (Color online) Two CNTs forming a cross-junction, a
four-terminal system labeled by the leads i = 1,2,3,4 with a small
contact area that allows electron tunneling between the CNTs, and an
angle 6 between the CNT axes. Any injected particle can at the junc-
tion either remain in the same CNT or tunnel into the other CNT, as
illustrated by the bent arrow for the tunneling processi =1 — i = 4.
We assume that particles are injected into leads i = 1,2 and their
current is measured at the outgoing leads i = 3,4 (orange arrows). A
magnetic field B is applied in the plane spanned by the two CNTs,
and we mostly consider the case of B parallel to the nanotube with
leads i = 2,4. This setup is explored for the combined effects of SOI
and B on spin-filtered transport and signatures of entanglement from
electron pairs, such as the incoming spin-entangled state indicated by
the hourglass shape.

We then analyze in Sec. I1I the normal state cross-conductance
and the spin filtering properties. In Secs. IV to VII we discuss
the noise properties of injected entangled pairs. Section IV
contains an analysis of different injection scenarios, Sec. V
the proper analysis of the current noise correlators, Sec. VI
the dependence of the noise on varying the external magnetic
field, and Sec. VII a discussion of the noise properties under
non-ideal particle injections. We conclude in Sec. VIII. Two
appendices A and B contain some details of the calculations.

II. CNT CROSS-JUNCTIONS
A. CNT low-energy Hamiltonian

CNTs can be considered as graphene sheets that are rolled
into a cylinder.®” They inherit from graphene the low-energy
band structure in the form of two Dirac valleys centered at
momenta commonly denoted as K and K'. Since momenta are
quantized in the transverse (circular) direction, the resulting
CNT low-energy band structure consists of cuts through the
Dirac cones, which form subbands labeled by the quantized
transverse momenta k; and described by the single-particle
Hamiltonian

Ho =hvp(kio) + ktoo), (1)

where i is Planck’s constant, vy =~ 0.9 x 10° m/s is the Fermi
velocity, k are the longitudinal momenta along the CNT axis,
7 = +,—=K,K’ labels the Dirac valleys, and o, are Pauli
matrices referring to the A, B sublattice components of the
wave functions. If the indices (N;,N>) denote the chirality
of the CNT, i.e., how the graphene sheet is rolled together,
we have k; = [n — (N} — Noymod 3)/3]/R, with the integer n
being the subband index, R = a,/N} + N3 + N;N, the CNT
radius, and a = 2.46 A the unit cell length.

The SOI and the hybridization of orbitals induced by the
curvature of the surface of the CNT lead to additions to the
Hamiltonian Hy given by?-30-32:33
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Hcv = hUF(Akivﬁl + TAk;vO'z), (2)
Hsor = (a0 + 18)S°, (3)
with $* the Pauli matrix for the spin operator

parallel to the CNT axis (all used Pauli matrices are
normalized to eigenvalues =1), AkfZ the curvature
induced momentum shifts, and «,8 the SOI interaction
strengths. The values of these parameters depend
on the precise details of the -elementary overlap
integrals between the carbon orbitals and are subject to
considerable uncertainty.®7° From a rather conservative
estimate of the resulting SOI strength one obtains*>33
hvp Ak = —7 cos(3n)5.4 meV/(R[nm])?, hvp Ak =
T sin(3n)5.4 meV/(R[nm])z, o = —0.08 meV/R[nm], and
B = —cos(37)0.31 meV/R[nm], for n the chiral angle
defined by tan 7 = v/3N,/(2N; + N»).

The application of an external magnetic field B =
(B, By,B;), with B, parallel to the CNT axis, leads to the
further terms

Hp = upgB-S+ |elvpRB,01/2, 4

incorporating the Zeeman effect and the Aharonov-Bohm flux
of the magnetic field through the CNT cross section. Here
S = (8%,87,5%) is the vector of spin Pauli matrices, up the
Bohr magneton, g = 2 the Landé g factor, and e the electron
charge. We shall consider only weak fields not exceeding one
or a few tesla, allowing us to neglect further orbital terms that
would lead to the formation of Landau levels.

Figure 2 shows a typical spectrum resulting from the
combination of SOI and the external magnetic field. The SOI
spin-splits the bands and causes a spin S polarization along the
CNT axis. Since the SOI maintains time-reversal symmetry,
the bands in the K and K’ valleys remain degenerate but
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FIG. 2. (Color online) Lowest CNT bands close to the K and
K’ points for a CNT with chirality (30,12) in the presence of a
magnetic field |B| = 0.6 T at the angle 6 = /3 with respect to
the CNT axis. The combined effects of CNT curvature, SOI, and
magnetic field fully gap the nominally metallic CNT and lead to
entirely nondegenerate, fully spin polarized bands. The arrows next
to the curves indicate the spin polarizations of the bands as a function
of momentum k, in the plane spanned by B and the CNT axis
(with the axis direction upwards in the plot). At large energies, the
polarizations become energy independent and follow the effective,
valley-dependent Zeeman fields BS" = tBgor + B. The shown SOI
induced features are generic for all chiralities, except for armchair
CNTs, including semiconducting CNTs, with the main difference
being different SOI interaction strengths.
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carry opposite spin polarizations. With the external magnetic
field, the time-reversal symmetry is broken, and the effective
Zeeman fields acting in both valleys are different. While for
any momentum k each band remains fully spin polarized, the
polarization directions are no longer opposite in the two valleys
and the spins tend to align with the transversal component of
the external field, as shown by the arrows in Fig. 2. We denote
the corresponding (k, 7)-dependent spin eigenvalues by v = +.

Away from the Dirac points, the polarizations become k
independent and the effective Zeeman field becomes B‘;ff, =
©Bsor» + B with # the band index in each valley and Bsor
the result of the SOI in band 7. In addition, the orbital effect of
B shifts the energy levels such that both valleys also become
energetically nondegenerate. In the low-energy regime close to
the Dirac points, therefore, any transport is strongly subjected
to the spin and valley filtering properties of the bands, together
with a strongly enhanced density of states due to the curved
band bottoms. Finally it should be noted that for B parallel
to the CNT axis, S° remains the good spin quantum number
for all k, and v is identified with the spin projection along the
CNT axis.

B. Cross-junction

The cross-junctions considered in this paper act as scat-
terers transferring incoming electrons between the two nan-
otubes and between different bands within each nanotube.
We describe these processes within the scattering matrix
formalism,”! for which the cross-junction forms a four-
terminal system with two incoming i = 1,2 and two outgoing
leads i = 3,4, as shown in Fig. 1. The scattering states are
labeled by the further valley and spin quantum numbers 7,v
and the energies €, and are represented by the states |i,7,v,€)
and the fermion operators ajw(e).

We denote by s, 71, r.v)(€) the scattering matrix for the
elastic process |i’,t’,v’,€) — |i,7,v,€). We do not consider
inelastic processes because the coherence length is usually
larger than the typical dimension of the junction.

Two scenarios for the scattering matrix will be considered.
First, we neglect backscattering between the incoming leads
i = 1,2 and the outgoing leads i = 3,4.°% In a basis for the
leadsi = 1,2,3,4, we then have

0 0 13 T4
_1 0 0 rns fha
§= 131 132 0 0 ’ (5)
r41 t42 0 0

where r; ; and t; ;; are matrices in t,v,€. This description is
appropriate for a larger contact area, and small 6 in which the
momentum of the incoming wave packets is approximately
preserved.

Second, we focus on a contact area between the two CNTs
with a linear extension much smaller than the size of typical
incoming wave packets, which allows us to treat the tunnel
junction as an elastic point contact scatterer. Such a situation is
typically obtained when one CNT falls over another CNT.#6->
Usually then the tunneling coupling is weak, allowing us
to retain only first-order tunneling processes and exclude
backscattering into the same lead. Scattering between leads
1 <> 2 and 3 < 4, however, must now be taken into account.
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The scattering matrix becomes

0 rpo t3 rig
21 0 3 g ©6)
Tl om2 0 nmg)

rgn tap 143 0

The consequences of both scenarios are discussed in Sec. V.

With the assumption of a weak tunneling amplitude, we
proceed to make a Born approximation to link the scattering
matrix to the microscopic tunneling Hamiltonian H,. In this
approximation, the tunneling between the two CNTs, the
scattering between theleads | <> 4,2 <> 3,1 < 2,and3 < 4
is expressed by

oy o(€) = (i, T,v,€ | Hyli', T/ v €), )

while the transmission within the same nanotube, 1 <> 3 and
2 < 4, remains unperturbed

t([,T,U),(i’,T’,U')(E) - iér,t’gv,v’- (8)

Note that if we choose these matrix elements to be purely
imaginary, we can choose real r; ; below and maintain an
approximate unitarity of the scattering matrix in the Born
approximation. The tunneling can be described by a tight
binding Hamiltonian of the form>?

H, = Z )\r,n;r/,a’(xn’xn’)&;,f,g,y(xn)al,r/,a’,s(xn’) + H.c.,

7,7',0,0'
8, Xp Xy

®

where x,,x, mark the unit cell positions of the two CNTs at
the contact area, and s = 1, denotes the spin projections in
a global spin basis. The tunneling amplitudes A; .1 o/ (X, X57)
preserve the spin but may be sublattice and valley dependent.
The operators al are the microscopic electron operators,

i,7,0,8

related to the scattering states by the transformation

al ©= g, al, . ),

Xp,0,8

(10)

with the transformation matrix g. It should be noted that while
the valley 7 is preserved, the sublattice, position, and global
spin coordinates are summed out. Through the summation of
the latter, together with the fact that H, is spin preserving,
the scattering matrix elements r(; ;) .,y are proportional
to the spin overlap integral (v|v’) between the states v and
V' of the two CNTs. If S; ;. , = (i,7,v,€|S|i,T,v,€) is the spin
polarization vector of band (i, 7,v) at energy ¢, this spin overlap
integral allows us to express the scattering matrix elements for
the tunneling processes as

2
7,200,070 (€)]

=T Pi,t,v,e Pi',1' Ve 1+ Si,r,v,e . Si’,r’,v’,e)s an

with " the effective tunnel rate obtained from summing out
the Az 5.r7.0/ (X4, X)) in Eq. (9), and p; 7., the density of states
in band (i, 7,v). It should be noted that close to a band bottom,
at which one of the involved densities of states diverges, this
perturbative formula is no longer accurate, and the singular
behavior is truncated by higher order processes. However,
since the bands are spin projective, the proportionality to
(1 + Sz - Sir.v.e)is maintained. As noted above, with the
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choice of purely imaginary #; ;; we can set 7 ¢ ) i".r/v)(€) =
V7.t ) (€)% and verify that any further sign in front of
the square root does not have any influence on the results.

For energies € largely exceeding the SOI energy scales,
the scattering matrix tends to an energy-independent quantity,
which we cover with the parameter R, as

R
P o). oy (€)1 ~ 1_20“ +Sicw-Seow).  (12)

Since R, o I', we shall use the condition R, < 1 to control
the perturbative expansion.

Since the two CNTs cross at an angle 6, the spin directions
v and v/, which are further affected by the magnetic field,
are generally not aligned. Therefore, the tunneling interface,
although spin preserving, acts as a spin mixer within the
local spin bases, with t-dependent mixing amplitudes that
are tunable through € and the external magnetic field. This
tunability causes the new features in the noise spectra reported
in this paper.

It should finally be stressed that with the Born approxi-
mation the scattering matrix, Eq. (5), is no longer unitary, as
unitarity imposes identities on inverse matrices and involves
expansions to infinite order. For controlled perturbative expan-
sions, therefore, the unitarity of the scattering matrix should
be used with care.

III. NORMAL STATE CONDUCTANCE
AND SPIN-FILTERING

The spin-filtering properties of the SOI on the cross-
junction first become evident when considering the normal
state cross-conductance. By the Landauer formula, the latter
is given by

2
e
Geross(€) = = D Retrn1.e0(6), (13)

7,7/, v,V

with R(4,r,v),(l,t’,v’) = |r(4,r,v),(l,1:/,v’)|2- With the definition of
R given in Eq. (12), we obtain in the large energy regime
Geross ~ (€2/ h)Ro. An example for this cross-conductance as
a function of energy (bias) is shown in Fig. 3. As mentioned
in the previous section, close to the gap the conductance is
largely dominated by the strongly varying densities of states.
This leads to the singular peaks in the figure, at which higher
order processes would need to be taken into account. Yet even
close to the peaks, the perturbative expansion remains well
controlled. The peak structure indicates that progressively
scattering channels are closed when approaching the gap.
Since the SOI causes a spin filtering, this indicates also that
the outgoing current can be spin polarized.

To make this evident, we choose the magnetic field parallel
to the outgoing lead i = 4 (see Fig. 1), such that the eigenvalues
v = = coincide for all energies with the spin projections 1,
parallel to the CNT axis. The polarization of the outgoing
current is then given by

_ YewwlRac.arw — Rara.0m)]

(14)
Yo Racnarw + Rar o]

A typical result is represented in Fig. 4. If only one single
scattering channel in the outgoing lead i = 4 is available,
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FIG. 3. (Color online) Cross-conductance G.s for a cross-
junction of two (30,12) CNTs at an angle & = /3 in a magnetic field
B = 0.6 T parallel to the outgoing lead i = 4. Displayed is a zoom
on the valence band close to the Dirac points. The peaks indicate the
van Hove singularities delimiting the various spin-polarized bands in
both CNTs. These singularities are rounded off in the numerical
implementation. The dashed vertical line marks the gap for the
tunneling process (the larger gap of both CNTs; see the band structure
in Fig. 2). The tunnel coupling between the CNTs is chosen such that
Geross — (€2/ h) R, at large energies with R, = 0.05.

full spin polarization is obtained. Yet quite remarkably, when
crossing with the energy through a band bottom, the strongly
enhanced density of states at the band bottom causes, within
a fraction of a meV, a reversal of the polarization with a
final amplitude that can exceed 80%. On the other hand,
by reversing the magnetic field B — —B, an energetically
degenerate situation is obtained, yet with switched valleys and
spins, such that the full polarization in the lowest band becomes
a full polarization of opposite spin.

This use of the cross-junction as a versatile spin filter at high
efficiency complements a previous suggestion of exploring
bound states in SOI-split CNTs for perfect spin filtering.>*7? It
also complements the alternative of SOI induced spin-filtering
in CNT quantum dot setups.*!

IV. INJECTION OF ENTANGLED ELECTRON PAIRS

We now turn to the injection of spin-entangled electron
pairs into the cross-junction, such as achieved by a Cooper

-2 -1.8 -1.6 -1.4 -1.2
€ (meV)

FIG. 4. (Color online) Spin polarization p for electrons in the
outgoing lead i = 4 for the same conditions as in Fig. 3. Near the gap
for the tunneling process (vertical dashed line), only one outgoing
channel is available and the electrons are perfectly spin polarized.
Small variations of the gate potential allow effective switching to
the opposite spin direction with high (yet not perfect) efficiencies. A
reversal of the magnetic field B — —B reversed all spin directions
and can be used for perfect spin filtering of the opposite spin direction.
The dashed horizontal lines are guides for the eye at p = —1,0,1.
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pair splitter.'*"'? The spin-filtering characteristics of the CNTs
require a careful analysis of how the electrons are injected into
each CNT, and how they are transported to the cross-junction.
Indeed, if the two CNTs are nonparallel at the injection region,
afirst nonparallel spin projection between both CNTs becomes
effective already at injection and affects the entanglement. If
the CNTs are strongly curved in the longitudinal direction,
the eigenstates (7,v) of a straight CNT can hybridize and the
entanglement information of the injected particles can get lost
(see Fig. 5).

To minimize the latter effect, the energy scale associated
with the longitudinal bending ¢;, must be smaller than the
sub-meV scales due to the SOL.7>77 Since the bending affects
mainly the hopping integral between neighboring carbon ions,
arough estimate gives €;, ~ tR/r with t ~ 3 eV the hopping
integral, R the CNT radius, and r the bending radius. A further
reduction of this estimate by averaging over the CNT cross
section can be expected. Since usually R ~ 1 nm, therefore, a
bending radius larger than » ~ 1 pum is certainly required.

If such large enough radii can be maintained, the states
arriving at the cross-junction correspond to the states at the
injection region. Figure 5 shows different possible setups
of connecting the CNTs to a superconducting entangler. In
the following, we shall focus mainly on the situation of an
adiabatic electron pair injection, in which the spin-correlation
state arriving at the cross-junction in the /ocal spin-eigenbasis
v bound to each CNT is identical to the state in the global
spin-eigenbasis in the superconductor. Corresponding possible
setups are shown in Figs. 5(a) and 5(b). We assume furthermore
that both CNT branches between the entangler and the cross-
junction are of comparable length, such that the wave packets
of the injected particles strongly overlap at the cross-junction
and the fermion statistics is of importance. We also focus on
small injection rates such that the injected particles have a well
defined energy spread.

—~ b N/
(b) (c)

FIG. 5. (Color online) Possible scenarios for the connection of
the CNTs (thick lines) to the entangler (boxes). If the entangler is
a superconductor expelling the magnetic field in the parts of the
CNTs it covers, the spin eigenstates in the CNT parts below the
superconductor are parallel to the CNT axes. In situations (a) and
(b) the spin eigenvalues in the left and right CNTs are then parallel.
This allows for an adiabatic injection, in which any spin correlator
of injected electron pairs remains identical in the /ocal spin bases
bound to the CNTs. After adiabatic transport to the cross-junction
an injected spin singlet, for instance, arrives as a spin singlet in
the local bases at the cross-junction. Situation (c) corresponds to a
nonadiabatic injection, in which the local spin bases of the left and
right CNT are nonparallel below the superconductor and the injected
pair decomposes into v = £ eigenstates according to the angle
between the two CNTs below the superconductor. This introduces
a deterministic mixture of singlet and triplet states in the local spin
bases at the cross-junction.
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A nonadiabatic situation, in which the local spin bases
at injection are nonparallel and a deterministic singlet-triplet
mixture is obtained, is displayed in Fig. 5(c). Its consequences,
as well as the consequences from nonoverlapping wave packets
and a larger energy spread, are discussed in Sec. VII.

V. CURRENT NOISE

Information on the entanglement of the injected electron
pairs can be drawn by measuring the current noise correlators
of the cross-junction. Within the scattering matrix formalism,
the current operator in lead i at time ¢ takes the form’!

. e i
i _ i,7,v; /
o=y Do AT G (€€
IV RA
vi, v,V €€
X a-]r',r,v(f)aj’,r’,v’(el) ei(e—e’)t/h s (15)
with
Al(}rql;,vli).(j’,t’,v’)(e’el) = S(i,fnvf),(j,fyv)(s(i,fi,Ui)«(j/sf'~‘)/)85a€/

A
= SG i 0, (e (E)SG00, G, 7/ ) (€.
(16)

Since we neglect backscattering into the same lead, the lead
indices are restricted to outgoing leads i = 3,4 and incoming
leads j,j” = 1,2, such that the Kronecker symbols in the latter
equation drop out.

If |W) is the state containing the injected particles, the
symmetrized noise correlators for these current operators read

STt = HWHS I (1),817 (0)}| W), a7

with 81’ = I' — (W|I'|W). The corresponding zero frequency
(w = 0) noise is obtained by time averaging this quantity as

hn o7
S = lim —f dt Re S (1). (18)
T J)o

T—00

The evaluation of these correlators is carried out in

Appendix A.
Let |W) describe the injection of two particles, one in lead
1 and one in lead 2, in either a singlet state |¥) = |—) or a

spin-zero triplet state |V) = |+). If we assume an adiabatic
injection as explained in Sec. IV, we have

£) =Y Wi ermual,, (€0)a] ,, 5(€0)I0),

71,72,V

19)

with |0) the equilibrium ground state (we assume temperature
T = 0), and the pair of particles being injected with certainty
into unoccupied states just above the Fermi surface, such
that €y 2 €r, with €r the Fermi energy of the CNT. We use
the convention ¥ = —v, and will use it below also for the
valley indices, T = —t1. The symbol (v)+ defines the signs
(+)+ = + and (—)4 = &, distinguishing between triplets and
singlets. The wave function amplitudes c;, r,., are normalized
0 o |cz,.0w|> = 1, where it should be noted that only
those ¢y, 1, are nonzero for which any of the pairs of
states {(1,71,v,€),(2,72,V,€9)} or {(1,71,V,€),(2,72,V,€0)} has
a nonvanishing density of states. If both pairs exist, the
amplitude is independent of v to maintain the distinction
between singlets and triplets, ¢y, 7.0 = Cr,.1,-
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In an ideal situation, the only constraint on the energy €
is to be larger than €. Realistically, however, a controlled
injection of entangled electrons requires that €, lies close to
€r to minimize decay processes. Yet for optimal operation
of the entangler, maintaining still an offset €y — € may
be favorable.”” Exploring the €y dependence of correlators,
therefore, corresponds to tuning € through the electron
density in the CNTs, for instance, through a backgate, while
maintaining a very small bias €y — € for the pair injection.

From Egs. (A11)-(A14) we obtain the following result for
the cross-correlators over the states |+), assuming henceforth
implicit summation over repeated indices (summation within
the brackets for the last term),

2
34 4 4 3
Si ZhC)‘l rC)L] )\'Z[A)\. VAV)LZ+A ’ VA}/)»z]
e2
4 4 3
+ 2 S AL AL AL AT
62
% 4 3 4
+ Eckﬁvk/zc)”’)”z[AN )»zA ’ —A ;,MA ’],)»2]
+£c* AL LAY L — AL A ]
BMM A [0S 00 A SRy Ve

2
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62[
h

* 4 * 4
X [CAQ.AZCAI,AZAM,A] + C,\,,,vzckl.szxZ,xz]’ (20)

where the A; = (i,7;,v;), A} = (i,7/,v]) are labels bound to
lead i = 1,2, but y = (j,7,v) includes the unrestricted sum-
mation over j = 1,...,4. The wave functions are c,, ,, =
(V1)+Cr, 120, 00,5, and we have used the notation Afu, =
Y., AL (€o.€0).

The first two lines in Eq. (20) correspond to single-
particle-like noise, expressed by the quantities C; and S; in
Appendix A, which is independent of the type of entanglement
between the two injected electrons. It turns out that at
large energies € these terms vanish. The following two
lines result from the full interference of both electrons at
the junction and are sensitive to the entanglement and the
fermion statistics. The last term expresses the subtraction of
the uncorrelated background current from the product of the
currents (£|13|4) (£|14]+).

Using Ai’)\, = =2 v 5G.ea5Grw.w and the Born ap-
proximation of the scattering matrix, the latter result becomes

* 3 * 3
C;\’l.xzcll,le,v,,,\, + CAI,A’ZCM-MA/\;,/\J

e
34 * * * *
S& = gRe{Cn,wCr;,n;v[T3nvr(4,m,v4),(1.zl,U)r<4,r4,u4),(1,r,’,v> +fa,n,uf4,f4,v4r<3.n,v>,(2,u,u4>r(4,r4,v4),<1,r{,v)]

+ €3y 0Crr T [T4 ST Grry )2 B3, 2530) T B s a1y 0T Gz vn). . 2hn) o) (1,73, u;)]}

2
+ %Hcﬂ,fz;v |2T3,rl,uT4,r2,a -

2

* * *
2Re[ €}, el v By gy Hh 57 Gorr ). g ) ). (1t} (Sur T 807) ]}

e
= A leamal T an]llen ol Tons] + [leamn| Toan]lel, maen ol nm s amo]

+ [|CTI’72§V i2T4’TZ,‘j][C:,rz;vcfl,fz’ﬂ)ré,r3,V3),(2,12,E)r(3»T3,U3),(2»T2/,17)]}’ (2D

where the order of terms is the same as in Eq. (20), and
where we have used the notations 3 ¢, = £3,7,v).(1,z.v)> t,0.0 =
t(4,1',v),(2,r,v)’ T3,‘L',v = |t3,1:,v|2, and T4,r,u = |t4,'1,',v|2- All parts
of the scattering matrix are evaluated at the energy €. For
consistency with the Born approximation, we have neglected
in the latter expression any term on the order of |r|*.

We emphasize that this result for the cross-noise holds
for both scattering matrices (5) and (6). For a scattering
matrix of the form of Eq. (5) we furthermore have §3° =
—§3% = —§% = §* as a consequence of particle conser-
vation, independently of the state |W) (see Appendix B).
Although the Born approximation violates the unitarity of the
scattering matrix, we have checked by direct comparison of
the approximate results that S3° = —S3* is indeed maintained.
For a scattering matrix of the form of Eq. (6), however, the
latter equality no longer holds. Indeed, $3* acquires then an
extra term involving the additional scattering between leads 3
and 4, such that

33 u, @
Sy = _S:t + zcrl,rz;vcff»fz;v
X t3*,t1,vt3,f1’»Vr(*3,rl’ﬁv),(4,r4,V4)r(3,Tl,U)~(4,f4»\14)' (22)

This extra shift is independent of the entanglement and
corresponds to a self-energy-like renormalization of the single-
particle part of the noise correlators (adding to parts C; and S
in Appendix A). Since such a term tends to obscure the clean
signatures of the entanglement, we will focus henceforth on
the cross-correlators only.

Since from the unitarity of the scattering matrix it follows
that (I%) = (£|I3|%) = e/h (not invoking any further Born
approximation), the Fano factor F3* = S3*/2¢(I3) is, up to a
constant, the same as S3*. In Fig. 6 we plot F3* as a function of
the energy € of the injected particles. For comparison, we also
show the Fano factor resulting from the incoherent injection
of single particles, F34 S34/2e(13 + 1Y = SS;‘/(Zez/h),
obtained from S33(1) = Z,»,V( z,v|{513(t)’814(0)}|\pi,v>/47 for
i =1,2with |¥; ) = % >, air,v(e())'())' The corresponding
expressions have been derived in Appendix A 3. Note the factor
1/2in F_}, which causes an identical normalization as for F}*.

We observe in Fig. 6 that at large energies |ey| the
signature of bunching and antibunching of a structureless
conductor, F3* ~ 0 (yet see Sec. VI for B-field corrections)
and F3* ~ TR is recovered.”® Close to the gap at the Dirac
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FIG. 6. (Color online) Fano factors for the triplet and singlet noise
F3* and the incoherent single-particle noise Fy' for the conditions
as in Fig. 3, for the wave function ¢, r,,, = ¢, corresponding to
an equal valley mixing of the injected particles, with |c|> = 1/N
for N the number of available scattering channels for injection
[see the discussion following Eq. (19)]. As explained in the text,
the dependence on €, reflects usually a dependence on a backgate
potential. The curves are normalized to R, = 0.05 [see Eq. (12)]. The
noise correlators show a similar peaked behavior as the conductance
shown in Fig. 3. All curves are clearly distinct, yet their finer structure
is better visualized through the modified Fano factors shown in Fig. 7.
The dashed vertical line marks the gap for the tunnel junction.

points, however, the Fano factors are dominated by the strongly
varying densities of states close to the band bottoms, similar
to the behavior of the cross-conductance. A better resolution
of the structure of the correlators close to the gap is therefore
obtained by dividing the noise correlators by the normal state
cross-conductance G, defining a modified Fano factor
F3* = 83/ Gross With much suppressed singularities at the
band bottoms. Figure 7 shows F3* and 73} as a function of
energy.

This figure reveals some remarkable features resulting from
the spin-filtering properties. We notice first that the gap for
spin-correlated pairs is larger than for single-particle transport.
Indeed, if we compare with the conductance in Fig. 3 and the
polarization in Fig. 4 we notice that 73* = 0 in the full range
where p = 1, and transport is governed by a single outgoing
channelinlead i = 4, while .7-'3: remains nonzero. Even larger
is the gap for the exchange part depending on the £ sign
in the noise expressions, and we see that S3* = 5>* over a
larger energy range. While for large energies ]-"14 ~ 0 (up to
B-dependent corrections; see Sec. VI) and F3* exceeds the
single-particle noise, the structure of the curves in the energy
range dominated by the proximity to van Hove singularities
strongly depends on the CNT chirality, the angle 6 between the
CNTs, and the magnetic field strength. However, for any choice
of the latter values, a similar shape of the curves is obtained.
We notice furthermore that the variations and jumps in the
correlators F3* are more pronounced than those of 7}, which
remains always close to }"53: ~ (.5. This behavior is closely
connected to the large jumps in polarization p upon varying
€y (see Fig. 4), which affects a spin-correlated state much
more than an incoherently spin-averaged single-particle state.
It should also be noted that the value ]—'33: ~ 0.5 results from
the3:4spin averaging procedure and the chosen normalization of
Fo-
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FIG. 7. (Color online) Modified Fano factors F2* and F}
corresponding to the curves shown in Fig. 6. The dominating
peak structure by the van Hove singularities is largely suppressed.
Notable distinctions between the triplet, singlet, and uncorrelated
single-particle noise correlators are: (a) Correlated spin-zero particle
pairs have a larger gap in the transport than single particles (vertical
dashed line) as a result of the spin filtering. (b) The asymptotics
represent the bunching—antibunching behavior with vanishing triplet
noise F3* — 0 and a singlet noise 7> exceeding the single-particle
noise ]-'53: . (c) The structure between the gap and the asymptotics is
nonuniversal, depending on chirality, 6, and B, yet is similar for any
CNT. The spin filtering effect causes larger variations of the curves
for spin-correlated electrons than for the uncorrelated single-particle
noise (the value .7?‘)4 ~ (.5 is a consequence of the normalization and
the averaging of this noise).

VI. MAGNETIC FIELD DEPENDENCE

At energies |e| far away from all the SOI induced gaps,
the spin polarizations of the various bands become constants,
parallel to the effective valley-dependent fields BT = tBgor +
B (we restrict to the lowest band and drop the band index n).
Since furthermore the densities of states tend to a constant, we
see from Eq. (11) that the tunneling matrix elements become

1 + Si,r,v : Si’,t’,v’

> . (23)

2
|r(i,r,v),(i’,r’,v’)| — R

with, for convenience, R = R.,/16 [see Eq. (12)] and spin
polarizations independent of €.

To facilitate the discussion, we assume that the magnetic
field is applied parallel to CNT 2 (leads i = 2,4, see Fig. 1),
such that B¢ is parallel to B in this CNT, and makes an angle
6, with the other CNT (leads i = 1,3), given by

T BSOI sin(@)

tan(6;) = —————,
an(6:) B + t Bsoy cos(9)

(24)

with 6 the angle between the CNTs, Bso; = |Bsor], and B =
|B|. Consequently

1 0,
ool — RO _ g o260, /2), 25)
1 + sin(6,) ,
Iraes.coml” = R———— =R sin®(6, /2). (26)

For CNTs with radii of ~1 nm, we find that Bso; = 1 T.
For external fields up to the tesla range, we then can expand
the noise correlators as a function of B/Bsor < 1. With
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|t(j.e).(.em|* — T for j = 3,4 we obtain from Eq. (21)

2
e
34 * *
S:t == h 2TR {Crl,n;vcff,fz;v +Crl.rz;vcfl~l’2';v

* 8 : 2 9 Z|:8 2 9
= €,y Crl ty' | O,y SIN 3 v, COS 3

&2 sin? 6 B2
+ —TR—2{2cj HoCEmw
h 2BSo; R
+ Ctl,rz;ucrl,tz’;us Ccos 0[81),1)’ + 8\1,17’]
+ ¢t Cam [800(2c080 — 1) F 8, (2 cos 6 + D]}
(27)

If a valley-independent injection is assumed, ¢y, ;0 = 1/ V8,
this expansion becomes more transparent. Resolving it explic-
itly for triplet and singlet injection we have, up to quadratic
order in B,

&? sin?(0) B2

SH~——TR——, (28)
h B?
A é? 5 sin2?2;32
§3 ~ ——TR{16cos 0/2) — —5—I1+ 10003(9)]}.
h BSOI

(29)

Let us consider first the result at B = 0. The factor 16 in $3*
is proportional to the number of scattering channels and must
be compared with the result $** = (¢?/h)4T R for the single-
channel case.’® Moreover we note the angular dependence on
cos?(6/2) for the singlet case as a consequence of the spin
projections during the tunneling process.

A similar angular dependence is obtained from the SOI
in semiconductor beam splitters.C Yet in the latter the angle
originates from the precession of the spins when traveling
through a SOI region before reaching the beam splitter and
as such is tunable by side gates, while for the CNTs it is
a consequence of the crossing angle at the junction and the
projective nature of the SOI and is fixed.

The main tunability in CNTs arises from the magnetic
field dependence. At nonzero but small B, the first B-field
corrections are quadratic in B/Bso;. Remarkably, they have
opposite signs for singlet and triplet cases, with the triplet
increasing from O and the singlet decreasing from its B = 0
value. This behavior should be further compared with the
B-field dependence of single particle noise. From the results of
Appendix A 3 we obtain the expansions, up to order B2, when
injecting any spin v into lead i = 1,2, with equal amplitudes
in both valleys 7,

2 22 9 BZ
s~ S R|a- SOBT (30)
. h 2B,
2
34 €
Siia ~ —ATR. 31)

We note that for particles injected into lead i =2 the
noise correlators are independent of the magnetic field for
a scattering matrix of the form of Eq. (23), yet a weak
dependence can remain through the field dependence of the
densities of states. On the other hand, the B> dependence of
the noise correlators for injection into lead i = 1 is similar to
the singlet case. Yet for the incoherently averaged single-

particle injection S} = (S, + S,)/2 the overall amplitude
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‘}‘34‘

FIG. 8. (Color online) Magnetic field dependence of the modified
Fano factors for the (30,12) CNT cross-junction with 6 = 7 /3 as for
Fig. 3. The energy is fixed at ¢ = —30 meV. The thick curves display
the full expressions for F2* and F_. The thinner, darker lines show
the corresponding expansions to order B>/ B3,

of the B*-dependent terms is much reduced compared with
§34. This behavior is visible in Fig. 8, in which we display the
B-field dependence of F3* and .7-"3; .

VII. INFLUENCE OF DEVIATIONS
FROM ADIABATIC INJECTION

In a realistic implementation, the previous result can be af-
fected by several effects that we discuss in the following. Such
effects generally perturb the clean entanglement signatures,
and we provide here estimates of their influence.

Nonadiabatic pair injection. In the case of a nonadiabatic
spin injection, the electron pair decomposes in nonparallel
local spin eigenstates at the injection. As a consequence, the
local triplet and singlet states |+) have further “local-spin-
1”” wave function components |£,£) a;r,ia;_f’ilm. If the
injection is spin independent, however, there is no mixing
between the local |£) states. All averages between any of these
wave function components are generally nonzero, and all the
further contributions have a similar form as Egs. (20) and (21),
with the effect of washing out the derived distinctions between
the singlet and triplet states. To gauge the amplitude of this
perturbation, let 6,,, be the angle between the spin eigenaxes at
injection (6,, = O for adiabatic injection). This angle plays a
similar role as @ for the cross-junction and, for instance, for a
situation as in Fig. 5(c), 8,, = 6. Hence the previously derived
correlators are weighted by cos6,,, and the further terms
have amplitudes proportional to sin6,, cos6,, and sin®6,,.
For clear entanglement signatures, therefore, tan 6,,, should be
kept small.

Same lead injection. In any setup, a part of the injected
pairs does not split but enters the same lead. In a CNT, the
Pauli principle is a weaker inhibitor for same-lead injection
than in semiconductor wires, because of the further valley
quantum state 7, allowing even an equal energy injection.
This favors the transfer of spin entanglement onto an orbital
entanglement, and again the resulting correlators have a similar
shape as for the split pairs. However, since two particles
are transmitted within the same CNT, the overall amplitude
is proportional to the square of the transmission amplitude,
~T?, and therefore is much larger. Such contributions produce
a large background on the noise from split electron pairs,
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which should be detectable and may be subtracted from the
measurement data. High splitting efficiencies generally require
further interaction effects such as the Coulomb blockade.'""'?

Different arrival times. If the two branches of the CNTs
between injection points and the cross-junction are of different
length, such that at arrival the wave packets of the two injected
particles do not overlap, the bunching and antibunching
behavior is suppressed. This corresponds to the case in which
the terms C, and S, in Eqs. (A9) and (A14) vanish. The
averaged noise then maintains some information on the spin
correlations, but the information on the entanglement arising
from the exchange part of the correlators proportional to the
*signs is lost.

Energy spread of the injected wave packets. It was assumed
in the calculation that the energy levels of the injected particles
are fixed to €p. This requires the limit of low temperatures
T and small tunnel rates for the injection I'jyj, such that
kT Ty < Ae, with Ae the level spacing of the CNTs. While
maintaining kg7 < A€ is desirable to avoid covering the
signal behind the thermal noise ~ T, the smallness of I'jy; is
less critical if the scattering at the cross-junction is elastic. In
this case, all displayed curves are just smeared out over energy
windows of the width I'iy;, centered about the values €q. This
is different from a mesoscopic beam splitter that allows for
inelastic processes, for which I'iy; > Ae has a larger impact.®

Valley-selective tunneling. In the shown figures for the
noise correlators we have considered wave function amplitudes
€7, = c that contained an equal distribution of the injected
electron over the two valleys. Such an equal distribution
is obtained when the tunneling into the CNTs is mostly
local. Different contacts, however, are perfectly possible: for
instance, some specific T bound injection into a CNT, or the
situation in which the opposite momenta of Cooper pairs in the
superconductor are maintained in the form of tunneling into
opposite valleys (i = 1,7) and (i = 2,7) only. Such situations
impose further constraints on the correlators, and overall just
reduce their amplitude, yet do not affect them qualitatively.
More subtle is the case in which the wave functions in
different valleys pick up different (deterministic or random)
phases during transport to the cross-junction. This leads to an
orbital interference effect that competes with the singlet—triplet
signatures, and as a general rule produces correlators that lie
somewhere between the singlet and triplet results.

VIII. CONCLUSIONS

In this paper we have shown that CNT cross-junctions have
rich and tunable spin-dependent properties due to the SOIL.
First, this turns such cross-junctions into versatile spin filters,
allowing generically to obtain perfect spin polarizations at
low energies. By reversing the magnetic field B — —B, the
polarization is reversed as well. Opposite polarizations that
can exceed 80% are also achievable by small changes of the
backgate potential.

Second, the SOI adds further possibilities to obtain infor-
mation on the entanglement of injected pairs of spins. In
particular, it strongly affects the bunching and antibunching
behavior of injected singlet and triplet states. At energies
in which the number of scattering channels is reduced, the
spin projective properties allow us to distinguish between spin
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correlated and spin uncorrelated pairs, notably with correlated
pairs of opposite spin having a larger gap in transport. At
larger energies, at which the densities of state become constant,
the spin exchange parts of the noise correlators acquire a
dependence on 0 similar to the dependence on the SOI-angle
in the semiconductor setup described in Ref. 60. However,
for the CNTs the angle 6, which is the crossing angle of the
junction, is not tunable, in contrast to the semiconductor case.
Tunable instead is the magnetic field B, and we have shown that
singlet and triplet correlations lead to a qualitatively different
B dependence, clearly distinct from the dependence of noise
of uncorrelated particles.

The described effects are pronounced in all types of CNTs,
with the exception of armchair CNTs which do not have the
gap induced by SOI and curvature.

To conclude we note that the use of ferromagnetic contacts
on the outgoing leads could provide further indicators for
entanglement. Indeed, the most sensitive part of the noise
correlators to magnetic filtering are the exchange terms
distinguishing between singlets and triplets. By rotating, for
instance, the magnetization direction of the contacts through
various angles, we expect therefore a modulation of the noise
correlators with opposite sign for the singlet and triplet cases,
on top of the behavior investigated in this paper. A systematic
study of this effect is left for future work.
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APPENDIX A: EVALUATION OF THE CORRELATORS

1. General form of correlators

The noise correlators are obtained by evaluating expectation
values of the general form

C(t) = "= (0 dola) ayalay |1).00),

with the labels A,y, ... covering all internal quantum states
for the scattering states, including leads, valleys, and spin
eigenstates, and where we have used a, () = e~iert/ hay. The
time averaging done by a measurement is expressed by the
integral

h T n o7
= — R -
C Tfo dt Re C(1) ZT/_TdtC(t),

in which we let 7 — oo. Through the normalization by the
Planck constant / the resulting noise has the dimension of
e’/ h. Since the only time-dependent quantity in C(¢) is the
phase factor, the time averaging gives a factor J, . ,, such that

(AD)

(A2)

C = hbe, ., (M. hala) ayafay |3 05), (A3)
By Wick’s theorem we can write C = h&y,gy, Zi:o C,, where
n denotes the number of contractions between the operators
of the injected particles A, and the operators related to the
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current operator, y,y’,8,8. Since |A1,A2) = ail aiz |0), we have

Co = (&\,,A’, 3xz,xg + r%,x;%,x;)(OIaiay/agas/I()), (A4

in which the remaining average corresponds to the usual noise
at thermal equilibrium. In the low-temperature limit kg7 <
Ae, with Ae the level spacing, these contributions vanish.
Indeed,

(Ola}a, alay|0)
=368,y 85.5 f(€,)f(€5) + 8,58, [1 — f(e)]f(€5), (AS)

where f(¢) is the Fermi function. The first term corresponds to
product of current averages and eventually will be subtracted
in the noise correlators. For elastic processes we have €, = €5
and the second term vanishes because f(€,)[1 — f(e,)] = Oat
low temperatures for discrete levels. For kT > Ae, it would
produce the usual ~7" dependence of thermal noise.

Since the injected particles are placed above the Fermi
surface with certainty, their contractions are not weighted
by the Fermi distribution and are equal to 1. Therefore,
the contribution including one contraction with the injected
particles is

Ci = 8, (Malalay alay|1s)com
+ 80, (Aala) ayalag 2] con
+ 8,04 (M lab @y alas |15 com
+ 8,05 (M lal @y atay |A]) comn, (A6)

in which the fully connected correlators of a single injected
particle are given by

<)\ |a;£ ay’agaﬁ’ |)\,)conn

ol 0% 1y
=a,a ayragaya}\, “+ aja

+a a,T_c|z raTc,z_JzT +a ala aTa aT
Ay Gy Qglisthy Ay Uy Qstis &y

= Sk,ysy’,BSS’,)\’[l - f(ey)] + 8A,y8y’,k’88’,8f(68)
+ 83,58y 85 50 f(€,) — 83,58, 05 5 f(€5).  (AT)

ay/asag/ak,

Since low temperatures kgT < A€ and elastic scattering are
considered, all the Fermi functions in the latter equation
vanish, as their energy is pinned to the energy of the injected
particles above the Fermi surface. The remaining term gives
the result

(Maayatay |\ )com = 8., 8,585 . (A8)

Finally, the fully contracted part reads

C _Cll a ClTa aja atﬂl +a a aTa Clj-a a.*— Clj-
2 = d)dy, y'éstardy Gy Ay yrestharthy &y

+L|l a,.ala raTa /aT aIT —i—(lz a,.ala raTa /aT aT
Ao G Gy Cyr s 8150 Cy Ao Gy Gy Cyr s 81650 E5

= 8n.y 90,860 83580 — 8ay.800,5,y 00,008
+ 85,803,y O0 5835, — Oy, 835,801, 800,y (A9)
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By a similar investigation we obtain the expectation values for
the current operator,
I = (Ap.holala, |)),4%)
= leg + 6)\1,)\’[ S)Lz,ygy’,)\’z + SAI,)\’ZSAZ,)/(S)/’,)\’I
+ 8350, 601.9 8y 0+ 83,058,987 01 s (A10)

where 1., contributes to the background current that is
independent of the injected particles and vanishes in the
zero-bias, low-temperature limit considered here.

2. Pair injection in two leads

The situation of injecting each particle in a different CNT
is expressed by a wave function |W) =3, ; ¢i,1,|A1,42)
with A; restricted to lead i = 1,2 and c;, », the wave function
amplitudes. From the latter results, the current in lead j is

(1) = (W[ |w) = Z i AL
xl NAa
> AL (A11)
PRI )
with A{, = Zw A{‘;’,v. The noise correlators, on the other
hand, are
L 1 . ., e2 . .
§7' = SWHOT 317 )W) = (1 + $2) — NI,
(A12)
with
1 . ;
Sl =5 Z C)LI»)VZC)‘I*)‘IZ [A;Lz V4 A/ + A)v; Yy, )»/]
AiA2,05,Y
1 *
+ ) Z Chian 0k Am y yA’ + AM y )/)J]
A A2,y
(A13)
and
_ * J’ j i’
S = Z O aa On2y [AA2 A~ A A, A2]
M2,
+( < i) (A14)

3. Single-particle injection

The noise of a single particle that is injected into lead
i = 1,2 is determined by averaging over the wave func-
tion |W;) =) | ci,,,vait’v(eo)w), for) cicw|? = 1. The
noise correlators for this state are straightforwardly obtained
from the previous results by setting C, = 0 and by retaining
only the term proportional to (A}| ... |A;) in C;. It follows that

2
e

ji' _ * 7 J

Soi = 37 cf en[AL AL +A] yAM,]
hi ALy
ez . .
* J * J
_E<§ CA;CKEAM,A;)<§ :CA;CI\[AM,,\;)* (A1)
i i

with indices A;,A! bound to lead i.
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Within the Born approximation we obtain for the cross-correlators, with implicit summation over all indices (summation

within each bracket in both second lines),

S34 e_R { * , [T * , +l* [* , ]}
sl T Ll el v [ L300 v 4 7y v, (1r ) @ravn). (LT ) T L3 4 )@, 1,007 Bo11.v). 2,12, 0) T (4, 12.00). (L] )

“n [|Clefl»" |2T37Tl~v] [CT,n,vclsff»"ra,m,w),(l,fl,U)r(4’f4»"4)’(l’ff")]’

2

(A16)

e
34 * * * *
Sepp = gRe{Cz,fz,ucz,r;,v[T4,rz',vr(a,13,ug),(z,rz,u>r<3,r3,v3>,<2,r2’,v> 5yl 1y TGt 2ot ) (L) | |

e 2T % *
_;[’C2~rz,v| 4,rz$v][02,rz.vCZré,vr<3,r3,u,o,(z,rz,u>r(3,rs,vs),(2,rﬁyv>]’

13,00 = I3,7,0),(1,t,v)> 4,70 = Ld,7,0),2,7,0)5 T3,r,v = |t3,r,v|2, and
_ 2
T4.1:,u - |t4,r,v| .

Specializing, for instance, to the wave functions |¥;,,)
defined by the amplitudes c¢; ., = 81,7”0/«/5 allows us to
capture the injection of a spin vy into lead i with equal weights
in both valleys.

APPENDIX B: DEMONSTRATION THAT $* = —$* IN THE
ABSENCE OF BACKSCATTERING

In the absence of backscattering into the incoming
leads i = 1,2, described by a scattering matrix as in
Eq. (5), any injected particles are fully transmitted

(A17)

into the outgoing leads i = 3,4. Hence,
conservation (the unitarity of the
P+1t= _Nin’ where Nin = Zi:l,Z,rAv,e ai]tr,v,eaiafs"f
counts the number of incoming particles. Therefore, for any
state |¥) with a number N of incoming particles, Nip| W) =
N|W) and  (W|{I3,(I° + IH}|W) = 2N (Y |?|¥) =
20U | P |W)(W|(I? + IH|¥). Consequently S33 4+ §3* =
SOV (P + YY) — (WP W) (WP + 1) = 0.
By precisely the same argument S** 4 §3* = 0, and therefore
S33 — S44.

These identities are independent of whether |W¥) is entan-
gled or not, but the provided proof depends on the absence of
backscattering in the scattering matrix, Eq. (5).
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