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Spin-orbit-interaction induced singularity of the charge density relaxation propagator
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The charge density relaxation propagator of a two-dimensional electron system, which is the slope of the
imaginary part of the polarization function, exhibits singularities for bosonic momenta having the order of the
spin-orbit momentum and depending on the momentum orientation. We have provided an intuitive understanding
for this nonanalytic behavior in terms of the interchirality subband electronic transitions, induced by the combined
action of Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit coupling. It is shown that the regular behavior
of the relaxation propagator is recovered in the presence of only one BR or D spin-orbit field or for spin-orbit
interaction with equal BR and D coupling strengths. This creates a new possibility to influence carrier relaxation
properties by means of an applied electric field.
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I. INTRODUCTION

Linear response theory is one of the fundamental concepts
of physics and serves as a powerful tool for studying carrier
transport, relaxation, and optical properties.1–3 Spin-orbit
interaction (SOI) modifies dramatically the carrier response4,5

allowing for a generation of spin currents when unpolarized
carriers flow in single6–9 or bilayer10,11 electronic systems.
Chiral spin plasmon modes are formed due to a combined
action of spin-orbit and electron-electron interaction.12,13

The interplay of the dominant Bychkov-Rashba (BR)14 and
Dresselhaus (D)15 spin-orbit fields produces such fascinating
effects as long-lived spatially periodic helical structures16–19

and magnetic spin resonances,19–21 highly anisotropic propa-
gation of electrons22 and plasmons23 with a possibility of their
directional filtering.

Recently, much attention has been drawn to the study of
the singular response of the electron liquid with a thorough
treatment of SOI effects.24–30 Particularly, the nonanalytical
behavior of the static charge density polarizability has been

exploited to predict the enhancement of RKKY
interaction26,27,30 and the SOI induced beating of Friedel
oscillations29 leading to a more reliable quantum control of
spins in potential spintronic applications.

In contrast to the polarizability, the imaginary part of the
charge density polarization function, describing dissipative
properties of the near-field optical response, vanishes in the
static limit. However, its slope remains finite at vanish-
ing bosonic frequencies and determines the charge density
relaxation propagator, which carries additional information
and in combination with the polarizability describes fully
the static response of the electron system. The relaxation
propagator K(�q,ω) at finite bosonic momenta �q and frequen-
cies ω is related to the Kubo nonlocal relaxation function
�(t,�r) describing the system relaxation to a new equilibrium
when an external force is removed at some moment.1 The
Fourier-Laplace transform of �(t,�r) determines the relaxation
propagator in terms of the charge density polarization function
�(�q,ω) as follows:

K(�q,ω) = �(�q,0) − �(�q,ω)

iω
=

∫ ∞

0
dt

∫
d�r exp(−iqr + iωt)�(t,r). (1)

In experiment, the density relaxation propagator can be
directly measured using infrared nanoscopy.31,32 Making use
of super sharp tips, the current scanning probe technique
reduces strongly the probing confinement region and allows
characterizing the density response in the regime of large
momenta and small frequencies, vF q > ω (vF is the carrier
Fermi velocity). In this regime, of particular interest is also the
density relaxation propagator at vanishing frequencies,

K(�q) = − lim
ω→0

��(�q,ω)

ω
, (2)

which, weighted by the impurity potential, determines the
momentum relaxation rate in the Born approximation in the
impurity potential.3

Here, we calculate the charge density relaxation propagator
in a two-dimensional electron system in the presence of
spin-orbit interaction and reveal its nonanalytical behavior.
Our calculations show that K(�q) exhibits a singularity induced
by the interplay of the BR and D spin-orbit fields. We find that
the position of the singularity is given by the critical bosonic
momentum, q = qc, so that the formation of electron-hole pair
excitations between the chiral Fermi contours is not possible
for q < qc (recall that the Kohn singularity of the static
polarizability occurs at much larger wave vectors q = 2kF

due to the restriction in the creation of electron-hole pairs
for q > 2kF ). Although the critical value of qc is determined
by the total SOI coupling strength, the anisotropy of the
energy spectrum in the presence of BR and D SOI makes
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it strongly dependent on the orientation, φq, of the bosonic
wave vector �q, i.e., qc = qc(φq). We find that the singular
behavior of K(�q) disappears in the limiting cases of the pure
BR and pure D SOI (the overlapping form factor vanishes at
q = qc in these isotropic cases) as well as for the SOI with
equal BR and D coupling strengths (in this case, additionally,
the critical momentum vanishes, qc = 0). Thus the predicted
singular behavior of the relaxation propagator, induced by the
combined action of BR and D SOI, can be influenced by an
external electric field and serve as a new tool for probing carrier
relaxation and screening properties in experiment.

II. THEORETICAL CONCEPT

The Hamiltonian of BR and D SOI in quantum wells of
zinc-blende structure, grown on a (001) surface, is

HSOI = α(σ̂xky − σ̂ykx) + β(σ̂xkx − σ̂yky), (3)

where σ̂x,y are the Pauli matrices, �k is the in-plane electron
momentum with its magnitude k and polar angle φk. The
eigenvectors of the Hamiltonian H = H0 + HSOI with H0 =
�k2/2m∗ (m∗ is the electron effective mass, h̄ = 1) are ψμ(�r) =
(ie−iϕ,μ)T ei�k�r/

√
2A. They correspond to the energy branches

Eμ(�k) = 1

2m∗ [(k + μ ξ (ρ,θ,φk))2 − ξ (ρ,θ,φk)2], (4)

which are labeled by the μ = ±1 chirality quantum num-
ber. Here, A is the normalization area and the phase
ϕ(α,β,φk) = Arg(αeiφk + iβe−iφk ). The angle-dependent mo-
mentum ξ (ρ,θ,φk) = ρ

√
1 + sin(2θ ) sin(2φk), where ρ =

m∗√α2 + β2 is the total SOI coupling strength. The angle
parameter θ is defined as tan θ = β/α and describes the
relative strength of the BR and D SOI. The Fermi momenta of
the chirality subbands are also angle dependent,

k
μ

F (ρ,θ,φk) =
√

2mEF + ξ (ρ,θ,φk)2 − μ ξ (ρ,θ,φk), (5)

where the Fermi energy, EF = (πn − ρ2)/m∗, is determined
by the total carrier density n. Figure 1 shows the anisotropic
Fermi contours of the μ = ±1 chirality subbands in the (kx,ky)
plane. The intersubband scattering act, �k → �k′ = �k + �q, is
depicted, which mediates the formation of an electron-hole
pair excitation of zero energy and with a finite wave vector �q.

In Eq. (2), the polarization function in the presence of the
BR and D SOI of arbitrary strengths is a sum over the chirality
indices, �(�q,ω) = ∑

μ,ν=±1 �μν(�q,ω), with

�μν(�q,ω) =
∫

d�k
(2π )2

f (Eμ(�k)) − f (Eν(�k + �q))

Eμ(�k) − Eν(�k + �q) + ω + i0
(6)

×Fμν(�k,�k + �q),

where f (Eμ(�k)) is the Fermi distribution function. The form
factor Fμν(�k,�k + �q) = [1 + μν cos(�ϕq)]/2 determines the
overlap of the spinor wave functions of scattered particles.
Here, we define �ϕq = ϕ(α,β,φk) − ϕ(α,β,φk+q). Taking
analytically the integration over k in (6), we reduce the
polarization function to an average over the electron polar
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FIG. 1. (Color online) The chiral Fermi contours in the presence
of BR and D SOI in the (kx,ky) electron momentum plane. Arrows
indicate the direction of the spin. A bosonic excitation of electron-hole
pairs of zero energy, which is mediated by carrier scattering with
the initial, �k, and final, �k′ = �k + �q, momenta, is shown by the
open and bold dots. Depending on the orientation of the bosonic
momentum, �q, there exists a minimum value qc such that for
q < qc it is no longer possible to form zero-energy excitations
on the Fermi surface, mediated by electronic transitions between
states of different (μ = ±1) chirality subbands. Due to the spectrum
anisotropy, the form factor of overlapping spinors, in general, remains
finite for scattering with q = qc. The thick dash-dotted line is the
interchirality subband diameter, connecting maximally distant points
on the different chirality subbands along the direction of �q. The ratio
of BR and D SOI strengths and their absolute values are given by the
parameters θ = π/5 and ρ = 0.2kF .

angle as

�(�q,ω) = − g

4π

∑
μ,λ=±1

∫ 2π

0
dφkPμ,λ(�q,ω|φk) (7)

FIG. 2. (Color online) The static polarizability vs the orientation
φq of the bosonic momentum �q. Different curves are calculated for
the values of parameter θ shown in the inset and for fixed momentum
magnitude, corresponding to x = 1. Here, ρ = 0.1kF .
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FIG. 3. (Color online) (left) The relaxation propagator K(�q) as a function of the bosonic momentum q for three different orientations
φq = π/8, π/6, and 2π/9 corresponding, respectively, to the dotted, dashed, and solid curves. The positions of the singularity are shown by
the large ticks, respectively, at the momentum values of qc/2kF = q1/2kF = 0.124, q2/2kF = 0.173, and q3/2kF = 0.254. (mid) The absolute
value of the bosonic momentum q as a function of the electron momentum direction φk for the orientations of the wave vector �q corresponding
to the (left) figure. For each curve, the minimum value of q, shown by the grid lines at qc = q1, q2, and q3, gives the position of the singularity
of K(�q). (right) The positions of singularities of the relaxation propagator K(�q,ω) in the (ω,q) plane. The solid curves starting from the origin
show the singularities at the boundaries of the intrachirality subband electron-hole continuum. The format of other curves in the (right) figure
and the curves in the (mid) figure corresponds to the same values of φq in the (left) figure. The SOI parameters used here are the same as in
Fig. 1.

with g = m∗/2π denoting the density of states at the Fermi
level and

Pμ,λ(�q,ω|φk) = vF d

a
+ 1

a (v+ − v−)[
v+(e − dv+) ln

v+

v+ − vF

− v−(e − dv−) ln
v−

v− − vF

]
. (8)

We have introduced the dimensionless Fermi wave vec-
tor vF,μ =

√
1 − r2 + ξ

2
k − μξk and the functions v±

μ,λ =
(−bμ,λ ±

√
b2

μ,λ − 4aμcλ)/2aμ together with the coefficients

aμ ≡ x cos(φk − φq)[x cos(φk − φq) − μξk], (9a)

bμ,λ ≡ −x{[r2 + 2(λy − x2)] cos(φk − φq)

+ r2 sin(2θ ) sin(φk + φq)} + μ(λy − x2)ξk, (9b)

cλ ≡ (λy − x2)2 − x2ξq
2, (9c)

dμ ≡ x cos(φk − φq) − μξk, (9d)

eμ,λ ≡ λy − x2

+ μr2x

ξk

[cos(φk − φq) + sin(φk + φq) sin(2θ )]. (9e)

We use the following dimensionless quantities x =
q/2kF , y = ω/4εF + i0, v = k/kF , r = ρkF , and ξk =
ξ (ρ,θ,φk)/kF with εF = k2

F /2m∗ and kF =
√

2m∗EF + ρ2.
For brevity, on the right-hand side (rhs) of Eq. (8) we have
omitted the indices μ and λ.

III. RESULTS AND DISCUSSION

In Fig. 2, we demonstrate the strongly anisotropic behavior
of the static polarization function �(�q), plotting its dependence
on the bosonic momentum orientation φq for several values
of the relative strength of the BR and D SOI given by the
parameter θ and for fixed momentum magnitude correspond-
ing to q = 2kF . The two singular points of the polarization

function separates the φq range into regions where �(�q)
behaves qualitatively different. Depending on whether or not
electronic transitions on the chiral Fermi contours mediate
bosonic electron-hole excitations with zero energy and finite
momenta, the character of variation of �(�q) is, respectively,
smooth or with a larger amplitude. Notice that the combined
effect of BR and D SOI with equal strengths (θ = π/4 or 3π/4)
cancels each other and we have �(�q) = 2 for all orientations
of the bosonic momentum.

In Figs. 3 and 4, we study the singular behavior of the
charge density relaxation propagator. In Fig. 3(left) we plot the
relaxation propagator as a function of the bosonic momentum
q for three different orientations, φq = π/8, π/6, and 2π/9.
In addition to the conventional singularities at vanishing q and
at large momenta near 2kF , the relaxation propagator exhibits

FIG. 4. (Color online) Density plot of the charge density relax-
ation propagator K(�q) as functions of the parameter θ and of the
bosonic momentum q/2kF . The total SOI strength ρ = 0.2 and the
orientation of the momentum φq = π/6. The color output plot range
is from 5.3 (blue) to 20.5 (red).
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a small-q singularity. The position of this new singularity,
qc, is determined by the total SOI coupling strength ρ. As
seen, qc depends on the orientation of the wave vector �q. To
identify the origin of the relaxation propagator singularity in
terms of the single-particle electronic transitions, we plot in
Fig. 3(mid) the dependence of the absolute value q of the
bosonic momentum as a function of the polar angle φk of the
electron momentum �k for the respective orientations of �q from
Fig. 3(left). At the same time, it is assumed that the wave
vectors �k and �k′ remain, respectively, on the Fermi contours
with the chirality μ = +1 and μ = −1. It is seen in Fig. 3(mid)
that the three curves, corresponding to the three different
orientations of �q, exhibit clear minima at some values of φk
and the obtained minimal values of q, labeled as qc = q1, q2,
and q3, determine the positions of the respective singularities of
K(�q) in Fig. 3(left). The existence of the singularity reflects the
fact that the formation of interchirality electron-hole bosonic
excitations of zero energy is no longer possible for q < qc.
In contrast, the large-q singularity of K(�q) in Fig. 3(left) is
determined by the length, qmax, of the diameter of the chiral
Fermi contours shown in Fig. 1 by the thick dash-dotted line.
This is because interchirality subband electronic transitions
on the Fermi contours are not possible for q > qmax. The
dependence of qmax on the orientation of �q for these values
of parameters is so weak that the respective changes of the
peak position are not visible on the scale of Fig. 3(left). In
Fig. 3(right), we study the SOI induced singularity of the
relaxation propagator at finite frequencies, where we show the
critical momenta qc = q1, q2, and q3 in the (ω,q) plane along
the boundaries of the inter chirality subband particle-hole
continuum as induced by the interplay of BR and D SOI.
Notice that at small values of frequencies there exists also
particle-hole continuum formed due to intrachirality subband
electronic transitions so that the relaxation propagator exhibits
singularities also along the respective boundaries shown by
the solid curves starting from the origin.

Figure 4 shows a density plot of the relaxation propagator
K(�q) with the parameter θ , describing the relative strength
of the BR and D SOI, and with the absolute value of the
bosonic momentum q for its orientation fixed at φq = π/6.

The singularity of K(�q) for vanishing values of q is not
shown. Although it is stronger than the SOI induced small-q
singularity, its contribution to the momentum relaxation rate,
τ−1
i,j ∝ ∑

�q qiqj |U (q)|2K(�q), is suppressed by an additional
factor of q2. Here, i,j = 1,2 are Cartesian indices, U (q)
is the impurity potential. Note that the anisotropic singular
contribution of K(�q) to the relaxation rate will be differently
weighted, depending on the range of the impurity potential,
which can be treated as isotropic in contrast to the relaxation
propagator in the presence of the BR and D SOI.33 The
singularity of the relaxation propagator disappears at finite
values of the bosonic momenta q for equal BR and D SOI
coupling strengths (θ = π/4). As seen in Fig. 4, the singularity
disappears smoothly also in the limits of θ = 0 or π/2
corresponding, respectively, to the cases of pure BR SOI or
pure D SOI. Thus, the BR and D SOI induced anisotropy of
the single-particle spectrum is responsible for a finite overlap
of the electron and hole spinor wave functions at q = qc and
thereby for the appearance of the small-q singularity of the
relaxation propagator.

IV. CONCLUSIONS

In conclusion, we predicted a singular behavior of the
charge density relaxation propagator, which is an important
density response function of a quantum gas of electrons. An
intuitive understanding has been provided for this small-q
nonanalyticity in terms of electronic transitions between the
chiral electronic subbands induced by the combined action of
BR and D spin-orbit fields. The relaxation propagator recovers
its regular behavior in the limiting cases of pure BR and
pure D SOI and in spin-orbit fields of equal strengths. This
puts forward a new mechanism to tune electrically the carrier
relaxation properties by adjusting the relative SOI strength.
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