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Surface plasmons in doped topological insulators
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We investigate surface plasmons at a planar interface between a normal dielectric and a topological insulator,
where the Fermi energy lies inside the bulk gap of the topological insulator and gives rise to a two-dimensional
charge distribution of free Dirac electrons. We develop the methodology for the calculation of plasmon dispersions
using the framework of classical electrodynamics, with modified constituent equations due to Hall currents in
the topological insulator, together with a Lindhard-type description for the two-dimensional charge distribution
of free Dirac electrons. For a system representative for Bi2X3 binary compounds, we find in agreement with
recent related work that the modified constituent equations have practically no impact on the surface plasmon
dispersion but lead to a rotation of the magnetic polarization of surface plasmons out of the interface plane.
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I. INTRODUCTION

In the last couple of years the classification of matter states
from a topological point of view has attracted a lot of interest.1,2

Originally this approach has been introduced to gain a better
understanding for the robustness of the Hall conductivity of
the two-dimensional (2D) electron gas in the quantum Hall
regime.3 In contrast to quantum Hall systems, in topological
insulators time-reversal symmetry is fulfilled and they exhibit
a strong spin-orbit coupling leading to an inverted band struc-
ture. Due to the bulk-boundary correspondence principle,1,2

three-dimensional topological insulators such as Bi2Se3,
Bi2Te3, or Sb2Te3 show topologically protected surface states,
rendering them robust against perturbations that are not break-
ing the time-reversal symmetry. In the long-wavelength limit
the two-dimensional electron states at the surface can be de-
scribed as massless Dirac electrons with the peculiar property
that the spin is locked to the momentum, thereby forming a he-
lical electron gas. Thus, charge transport is closely intertwined
with spin transport, which renders these systems interesting for
spintronic applications. In particular, collective charge-density
waves (plasmons) in a helical liquid are always accompanied
by spin-density waves, so-called “spin plasmons,”4 which
might be utilized in spin accumulator devices.5

The surface states of the topological insulator reveal unique
properties if an energy gap is induced in the dispersion by
breaking the time-reversal symmetry on the surface, e.g.,
by applying a perpendicular external magnetic field or by
the proximity of magnetic materials. Under this condition,
a surface quantum Hall current with a half-integer quantized
Hall conductivity arises, leading to an intriguing topological
magnetoelectric effect,2,6 in which an in-plane electric field
induces an antiparallel magnetization and analogously a charge
polarization is induced by a magnetic field. This effect can
be accounted for by modified constituent equations, or more
generally by a field theory including a θ E · B term in the
electrodynamic Lagrangian. In systems with time-reversal
symmetry, θ is quantized with θ = 0 or θ = π (mod 2π ) for
the topologically trivial and nontrivial cases, respectively.

As regarding the modified Maxwell equations, it is
interesting to study electromagnetic properties at interfaces
of media with abruptly changing θ values. Shining polarized
light onto a topological insulator leads to a small Kerr and

Faraday effect, i.e., to a rotation of the light polarization
when reflected or transmitted through a topological insulator
film.4,7,8 However, the angles are not universal and depend on
the optical constants of the involved media. To separate the
bulk contribution, a combined measurement of the Kerr and
Faraday angles has been proposed to find universal results
depending only on the quantized θ value.9 Interestingly, in
thin layers of topological insulators a “giant” Kerr angle of
π/2 has been predicted, due to the interference of multiple
reflections as in a Fabry-Perot interferometer.7,8 Recent
experiments confirm such large magneto-optical effects in
thin layers of topological insulators.10

Also the electromagnetic properties of surface plasmons
in topological insulators become modified by the topological
magnetoelectric effect. As shown by Karch11 the polarization
of the surface plasmons is rotated from the transverse magnetic
(TM) mode into the transverse electric (TE) direction by a
small angle on the order of the fine structure constant α. In
this work, the author has considered an interface between an
insulator and a doped topological insulator, with the Fermi
energy lying in the bulk conduction band, and the residual
bulk charge density has been described as a Drude gas with
negative permittivity ε(ω). The Drude gas then allows us to
fulfill the usual condition for surface plasmon modes.12

In this paper we investigate surface plasmons in topological
insulators in the case where the Fermi energy lies inside the
bulk gap of the topological insulator, which means that the only
free charges are Dirac electrons on the surface, and the bulk
contribution is completely described by its static dielectric
constant (which is typically very large, around 40–80, for
Bi2X3 binary compounds). We develop the methodology for
the classical electromagnetic fields of surface plasmons, with
the quantum properties of the helical Dirac gas being included
via its dielectric function, and compute the surface plasmon
dispersion for realistic material systems. In agreement with
Karch,11 we find that the effect of the additional θ E · B term
in the Lagrangian has practically no influence on the surface
plasmon dispersion, which is almost completely governed by
the dielectric properties of the two-dimensional electron gas,
but leads to a mixing of TE and TM field components. This
gives rise to a rotation of the magnetic polarization of surface
plasmons out of the interface plane, which could be directly
detected in experiment.
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II. THEORY

In this section we derive the dispersion relation for surface
plasmons at the planar interface between a topological insula-
tor and a dielectric. Our analysis closely follows the standard
procedure for surface plasmons12 that has been recently
extended to topological insulators.11 However, contrary to the
work of Karch,11 we treat the topological insulator as a true
insulator that has a finite conductivity only at its surface.1,2

The structure under study thus consists of (i) the topological
insulator (dielectric constant ε2) for z < 0, (ii) the surface of
the topological insulator (two-dimensional conductivity σ2D)
at z = 0, and (iii) a dielectric material (dielectric constant ε1)
for z > 0. The two-dimensional conductivity is computed for
free electrons with a Dirac-like dispersion, similar to the case
of graphene13,14 (for details see discussion below).

A. Surface plasmons

Due to Hall currents at the surface of the topological
insulator, the constituent equations for the electromagnetic
response become2,11

D = ε0εr E − ε0α
θ

π
(c0 B),

(1)

c0 H = c0 B
μ0μr

+ α
θ

π

E
μ0μr

,

where D is the electric displacement, E is the electric field, B
is the magnetic induction, and H is the magnetic field. α is the
fine-structure constant and the parameter θ is quantized and
takes odd integer multiples of π for topological nontrivial
materials and zero otherwise (note that we consider for
completeness the general case where the materials at both
sides of the interface can be either dielectrics or topological
insulators). ε0 is the permittivity of free space, εr is the
dielectric function for the different materials, μ0 is the
permeability of free space, μr is the relative permeability,
and c0 is the vacuum speed of light. Below we will use the
abbreviations ε = ε0εr , μ = μ0μr , and c = √

εrμr c0.
In what follows, we are seeking for eigenmodes that are

confined to the interface. We use a general wave ansatz for
E, which allows for mixed TE (transversal electric) and TM
(transversal magnetic) modes

Ei =
[
ETE êy + ciE

i
TM

ω

(
kx êz − kz

i êx

)]
ei(kxx+kz

i z). (2)

The index i distinguishes between the two different media. ETE

is the amplitude of the TE mode, ETM is the amplitude of the
TM mode, and êx,êy,êz are the unit vectors that span our basis
system. ci , ω, and k are the speed, frequency, and wave number
of light, respectively. The relation between wave numbers and
frequency is governed by the usual dispersion relation k2

x +
k2
z = εμω2. A confined, plasmonlike mode is characterized

by evanescent fields in the z direction, i.e., Im(kz
1) > 0 and

Im(kz
2) < 0 must hold. The electric field of Eq. (2) and the

magnetic induction are related through Faraday’s law,15 and
the constituent equations [Eq. (1)] provide the connection to
the dielectric displacement and magnetic field.

To determine the unknown coefficients, we have to match
the electromagnetic fields at the boundary. The homogeneous

Maxwell equations lead to the usual relations15 E‖2 = E‖1

and B⊥2 = B⊥1, and the inhomogeneous equations yield

(D⊥2 − D⊥1) = σ, (H‖2 − H‖1) = K , (3)

where σ and K denote the surface charge and current
distributions. Ohm’s law K = σ2D E‖ connects the currents
at the surface of the doped topological insulator to the electric
field, where σ2D is the two-dimensional optical conductivity,
and the continuity equation provides the relation between K
and σ . For the electric field of Eq. (2), we obtain

jy = σ2DETE, σ = −σ2Dc1k
z
1kx

ω2
E1

TM. (4)

With these expressions, the boundary conditions of Eq. (3)
become

E1
TM =

⎛
⎝μ1

( kz
2

kz
1

) − μ2

μ1μ2
− σ2Dω

kz
1

⎞
⎠ c0μ0

α �θ
π

c1
ETE, (5a)

E1
TM = α

(
�θ
π

)
ε0c0

c1

(
ε1 − ε2

kz
1

kz
2

)
− σ2Dc1k

z
1

ω

ETE, (5b)

with �θ = θ1 − θ2. To simultaneously satisfy the two equa-
tions relating the TE and TM amplitudes, we find the plasmon
condition for topological insulators⎛

⎝μ1
( kz

2
kz

1

) − μ2

μ1μ2
− σ2Dω

kz
1

⎞
⎠ (

ε1 − ε2
kz

1

kz
2

− σ2Dkz
1

ω

)

=
(

α
�θ

π

)2
ε0

μ0
. (6)

Note that for normal dielectrics with σ2D = 0 and �θ = 0 this
expression yields the usual surface plasmon conditions.12 We
can use Eq. (6) to derive the dispersion relation for surface
plasmons, which, however, cannot be expressed analytically,
in contrast to metals12 or topological insulators without
surface charges.11 To obtain the dispersion, we (i) use the
light dispersion k2

x + k2
z = εμω2 to express kz

1,2 in terms of
the parallel momentum kx and the light frequency ω; for
evanescent fields, the sign of kz

1,2 has to be chosen such that the
waves decay exponentially away from the interface. For a given
parallel wave number kx , we then (ii) scan over frequencies
ω in order to find those values where the plasmon condition
of Eq. (6) is fulfilled. Within our computational approach this
solution scheme is implemented within the software package
MATHEMATICA.

B. Dielectric function of 2D electron gas

The calculation of the dielectric function for a two-
dimensional electron gas with a lightlike dispersion closely
follows Refs. 13 and 14. We first show how the optical
conductivity σ and the dielectric function are connected. Quite
generally, σ can be related to the current-current correlation
function,16 which, within the random-phase approximation,
only depends on the genuine electron-gas properties (without
any Coulomb couplings). However, to connect to the literature
results13,14,17 we will first compute the dielectric function ε

for a two-dimensional electron gas embedded in a dielectric
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background with constant εb, and will then extract the optical
conductivity from ε. This procedure assumes a specific
dielectric environment for the calculation of ε, but finally
extracts the conductivity part which depends on the genuine
electron gas properties only (all Coulomb coupling effects are
properly included in our electrodynamic approach described
above).

We start from Ohm’s law J = σ E. With the Fourier-
transformed expressions for the continuity equation ωρ =
q · J and the electric field E = −iqV , we can relate the
induced charge distribution to the potential,

ρ = q · J
ω

= σ

ω
q · E = −i

σq2

ω
V. (7)

On the other hand, we can also use the dynamic polarization13

P (1)(q,ω) to relate these quantities through ρ = P (1)V . The
dynamic polarization is related to the dielectric function
according to εr = εb − ν(q)P (1)(q,ω), where ν(q) = 1/(ε0q

2)
and ν(q) = 1/(2ε0q) are the Coulomb potentials for a three-
or two-dimensional Fourier transform, respectively. We thus
find for the relation between the two-dimensional conductivity
σ2D and the dielectric function the expression

σ2D(q,ω) = −i
2ε0ω

q
[εr (q,ω) − εb]. (8)

For the free, massless Dirac electrons confined to the
geometry of the topological insulator, the Hamiltonian is of the
form2,11 H = h̄vF σ · k, where vF is the Fermi velocity, σ =
(σx,σy)T is a Pauli-vector matrix, and k is the two-dimensional
wave vector of the electrons. The eigenstates |k,±〉 with energy
E±

k = ±h̄vF k result from the diagonalization of the Hamilto-
nian, and can be associated with two cones above and below
the Dirac point at k = 0.2,11 Throughout we ignore effects of
a “mass term” due to the symmetry-breaking magnetic field,2

which is responsible for the novel constituent equations of
Eq. (1). This approximation is expected to hold for dopings
where the chemical potential μ (measured with respect to the
Dirac point) is much larger than the gap energy. Below we will
also need the overlap fss ′ (k,q) = |〈k,s|k + q,s ′〉|2 between
two states, with s = ± labeling the upper and lower cone,
which can be evaluated to

fss ′ (k,q) = 1

2

(
1 + ss ′ k + q cos(θ )√

k2 + 2kq cos(θ ) + q2

)
. (9)

Here θ is the angle between k and k + q.
The polarization within the random-phase approximation

can be computed from Lindhard’s equation13,18

P (1)(q,ω) = 1

4π2

∫
d2k

∑
s,s ′=±

f ′
ss ′ (k,q)nF

(
Es

k

)

×
[

1

h̄ω + Es
k − Es ′

k+q + i0

− 1

h̄ω − Es
k + Es ′

k+q + i0

]
. (10)

Here nF is the Fermi-Dirac distribution function and i0
is an infinitesimal quantity that ensures causality. In the
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FIG. 1. (Color online) Plasmon dispersion for a planar interface
between a normal dielectric (εr1 = 1) and a topological insulator
where the Fermi energy lies inside the bulk gap of the topological in-
sulator, leading to a two-dimensional charge distribution of free Dirac
electrons at the surface. We use material parameters representative for
Bi2X3 binary compounds, namely a dielectric constant εr2 = 50 and a
Fermi velocity vF = 106 m s−1. The plasmon dispersion is computed
from Eq. (6) for two doping levels of μ = 0.1 eV and μ = 1 eV,
and the influence of the additional θ E · B term in the Lagrangian is
investigated by setting θ = π for the topological insulator and θ = 0
for a normal insulator.

following we consider a doped topological insulator at zero
temperature, where the electron states are filled up to the
energy μ in the upper Dirac cone. To evaluate the integrals,
one conveniently sets nF = n0

F + δn, where n0
F and δn denote

the distributions for the undoped insulator and the doping
contribution, respectively, which allows us to convert the
integrals into contributions for n0

F and δn solely.13,19 The
Lindhard dielectric function of Eq. (10) can then be solved
analytically, and we obtain in accordance to Eqs. (9)–(11) of
Ref. 13 the final result (we set g = 1)

P (1)(q,ω) = − μ

2πh̄2v2
F

+ F (q,ω)

h̄2v2
F

{G(x) − iπ

−�(−x − 1)[G(−x) − iπ ]

−�(x − 1)G(x − 1)}. (11)

Here x = (h̄ω + 2μ)/(h̄vF q), � is the Heaviside step function,
and we have introduced the two complex functions F (q,ω) =
(h̄v2

F q2)/(16π

√
ω2 − v2

F q2) and G(x) = x
√

x2 − 1 − ln(x +√
x2 − 1).

III. RESULTS

We now apply the formalism developed in the previous
section to a system with material parameters representative
for Bi2X3 binary compounds, namely with dielectric constant
εr2 = 50 and a Fermi velocity vF = 106 m s−1. For the
medium in the upper half space we set εr1 = 1. Figure 1
shows the plasmon dispersion computed from Eq. (6) for two
doping levels of μ = 0.1 eV and μ = 1 eV. We investigate
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FIG. 2. (Color online) Same as Fig. 1, but for a dielectric constant
εr2 = 4 for the topological insulator.

the influence of the additional θ E · B term in the Lagrangian
by setting θ = π for the topological insulator and θ = 0 for a
normal insulator.

As can be clearly seen from Fig. 1, the influence of the addi-
tional θ term on the dispersion relation of the surface plasmons
is completely negligible. The dispersion relation of surface
plasmons is almost completely governed by the properties of
the two-dimensional gas of Dirac electrons at the surface of
the topological insulator (see Ref. 20 for a recent experimental
study). Such plasmons have been studied in great detail
for graphene, both theoretically13,14 and experimentally.21,22

As for graphene,13,14 the surface plasmon modes are not
damped for sufficiently small frequencies, at least within the
random-phase approximation under study. The same is true for
topological insulators and for the terahertz frequency regime.
Figure 2 shows the plasmon dispersion for a topological
insulator where the background dielectric function has been
artificially reduced to a value of εr2 = 4. Some weak effect
due to the θ term is visible at larger wave numbers, where the
dispersion curves with and without the θ term start to deviate.

We finally comment on the mode character of surface
plasmons in graphene and topological insulators. In graphene,
surface plasmons are either purely TM or TE polarized, but

become mixed when an external magnetic field is applied,
resulting in very similar surface plasmon dispersions and
mixing parameters as derived in this work.23,24 In topological
insulators the mixing between TM and TE components [see
Eq. (2)] is governed by the modified constituent equations,
see Eq. (1). For εr1 = 1 and εr2 = 50 we find on the vacuum
side a ratio between TM and TE modes of E1

TM : ETE ≈ 1 : 2,
whereas for the reduced εr2 = 4 value we find modes with a
strong TM character E1

TM : ETE ≈ 10 : 1.

IV. SUMMARY

To summarize, we have investigated surface plasmons at a
planar interface between a normal dielectric and a topological
insulator, where the Fermi energy lies inside the bulk gap of
the topological insulator leading to a two-dimensional charge
distribution of free Dirac electrons at the surface. We have
developed the methodology for the calculation of plasmon
dispersions, using the framework of classical electrodynam-
ics together with a Lindhard-type description for the two-
dimensional charge distribution of free Dirac electrons. The
primary motivation for our study has been to investigate effects
caused by the modified constituent equations, originating from
an additional θ E · B term in the electrodynamic Lagrangian,
which leads to small Kerr and Faraday rotations. For a system
representative for Bi2X3 binary compounds, we have found
that this additional θ term has practically no influence on
the surface plasmon dispersion, which is almost completely
governed by the dielectric properties of the two-dimensional
electron gas, but leads to a mixing of TE and TM field
components. We have shown that modified dispersion relations
might occur in other material systems, e.g., with strongly
reduced background dielectric constants. The methodology
for surface plasmons in topological insulators with modified
constituent equations due to surface Hall currents, which has
been developed in this paper, is quite general and could be also
used for the description of layer or multilayer systems.
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