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Predictive modeling of self-catalyzed III-V nanowire growth
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We develop a quantitative model of the self-catalyzed vapor-liquid-solid growth of GaAs nanowires, that
depends on only a few a priori unknown physical parameters. The model is based on the sole consideration of
the As species and incorporates all relevant mechanisms of exchange of As between the vapor, liquid, and solid
phases, namely direct impingement of molecules on the droplet, their re-emission by the neighboring surfaces,
evaporation from the droplet, and nucleation at the solid-liquid interface. It reproduces quantitatively all salient
features of our experimental study, namely the variations of nanowire growth rate with As flux, temperature,
and nanowire radius. From these optimized fits, we extract a complete set of model parameters, in particular the
nucleus edge energy. We also determine quantities so far inaccessible to experiment, such as the As concentration
in the droplet (about 1%), supersaturation of the liquid, and nucleation barrier, for individual nanowires. The
model can then be used to predict the growth rate (and all quantities of interest) for an arbitrary GaAs nanowire
of given geometry in arbitrary growth conditions, including conditions not yet explored experimentally, provided
the fraction of the As flux re-emitted by its environment is known. Although largely ignoring group III elements,
our model captures most of the physics of self-catalyzed nanowire growth.
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I. INTRODUCTION

Free-standing nanowires (NWs), with diameters of a few
tens of nanometers and lengths up to several micrometers,
are nowadays commonly fabricated from a large range of
semiconductor materials. Most NWs, and in particular those
of As and P-based III-V compounds, are obtained via the
vapor-liquid-solid (VLS) method: Metal catalyst nanoparticles
are first deposited or formed on a substrate; atoms are then fed
from a vapor phase to the solid NW through this droplet, which
remains liquid at the apex of the NW during growth.

Growth catalyzed by a foreign metal (gold in particular) is
attractive, especially in terms of the control of the diameter
and position of the NWs, and of the variety of materials and
heterostructures that can be fabricated.1–3 However, in the
last few years, research on self-catalyzed III-V NW growth,
whereby the liquid catalyst droplet contains only the group
III constituent of the NW plus a small amount of its group V
constituent, has developed rapidly. Work has concentrated on
GaAs NWs grown by molecular beam epitaxy (MBE),4–15

possibly with heterostructures,15–17 although InP,18 InAs,19

and alloys15,20 have also been grown this way. Self-catalyzed
growth presents several advantages. Since the catalyst is made
of the same elements as the NW, the risk of introducing un-
wanted impurities in the NW during growth is much reduced.
Moreover, the crystal structure of the GaAs NWs is predomi-
nantly zinc blende (ZB)7,10–12,15 (as opposed to the more or less
random mixture of wurtzite and ZB structures that dominates
in Au-catalyzed growth) and a regime where the growth rate
of the NW is independent of its length may be attained,4–6,15

which facilitates the control of axial heterostructures.
Quite generally, and despite substantial progress in recent

years, the level at which even the most basic properties of
the NWs (such as geometry, crystal structure, or doping) are
controlled is still far from optimal. Most of these properties are
determined right at the formation of the NWs. The applicability
of NWs thus depends intimately on an understanding and
control of the basic growth mechanisms governing their

formation. A key element in this respect is the ability to model
growth quantitatively. Surely much progress has been made in
this field over the last decade.21–33 However, the coexistence
of three phases in VLS, the multiplicity of material pathways,
and the fact that when a foreign catalyst is employed the liquid
droplet is at least a ternary liquid (catalyst, group III, group
V), make accurate modeling very tricky. Actually, with one
exception,33 all models published so far have considered only
a single NW constituent, which is, explicitly or implicitly, the
group III element. This approach, adapted from the standard
models of noncatalyzed growth of III-V materials under an
excess of group V element, is unsatisfactory. Several observa-
tions indeed point to the necessity of taking into account the
group V constituent, in particular the influence of the group V
flux on the growth rate23,34–39 and crystal structure34,36,40–43

of the NWs and on nucleation statistics.44 Although steps
have been made toward a more comprehensive modeling,
such as the calculation of the chemical potential of the (Au,
III, V) ternary liquids,45 much remains to be done in this
respect. Accordingly, by confronting models and experiments,
only a limited number of quantities have been estimated,
mainly diffusion lengths for group III atoms9,21,24,26,39,46 and
supersaturation of the parent phases.21,23,27,31,39,44

As regards modeling, self-catalyzed growth presents a clear
advantage. When a binary NW is grown, the droplet, whose
properties and state are determining in VLS growth, contains
only two elements. Such (III, V) liquids have been widely used
in the past for liquid phase epitaxy and their thermodynamic
properties, as well as those of the vapors of the group III
and group V species, are tabulated.47 Because of the low
solubilities of group V elements (other than Sb) in group
III liquids, the droplet is mainly made of group III atoms
in which a small concentration of group V (as yet unknown
but estimated to be of the order of 1%44,45) is dissolved. The
state of the bulk liquid is fully defined by its temperature and
a single atomic concentration, for instance that of the group V
constituent.
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We develop our model for GaAs NWs grown by MBE
and confront it to series of experiments where one of the
parameters controlling growth, either the As flux or the
temperature, is varied systematically.15 We limit ourselves to
NWs whose diameters remain constant during growth, which
strongly suggests that the volume of the droplet, and hence
the number of Ga atoms that it contains, change little. On
the other hand, changing the As concentration in the liquid
may widely modify the growth rate, with very little effect
on its volume. Albeit small, the As concentration is thus
essential for growth. One of the most striking features of
self-catalyzed GaAs NW growth is indeed that the growth
rate varies quasilinearly with the As beam flux over a large
range of the latter, whereas it is more or less independent
of the Ga beam flux.4,6,8,12 Finally, we recently demonstrated
that, at least in our growth conditions, surface diffusion of As
species provides at most a minor contribution to self-catalyzed
NW growth15 (whereas diffusion might be of major import for
Ga). Diffusion introduces much complication in NW growth
modeling, since the diffusion fluxes toward the droplet depend,
and at the same time partly determine, the composition and
volume of the latter.33,48 These considerations all lead to our
proposal of a fairly simple model whereby, provided the group
III flux is sufficient for the droplet to survive with a constant
volume, growth under given conditions (temperature, fluxes)
is fully determined by the sole group V element.

To summarize, we focus on the catalyst droplet and claim
that the key point is the determination of the small amount of
As that it contains. Indeed, as will be detailed shortly, addition
of As to the droplet is determined (albeit not straightforwardly)
by the flux impinging on the sample, by the droplet geometry
and possibly by the NW environment, whereas removal of
As from the droplet, via nucleation and growth of new solid
monolayers (MLs) and evaporation, is determined (in addition
to geometry) by the As concentration in the droplet and by
temperature. Hence, if geometry and growth conditions are
given, the As concentration in the droplet entirely determines
growth.

This “As-only” approach is not exclusive of more elaborate
models taking into account both group V and group III
elements. Such a model has recently been developed.33 It
will prove essential, for instance, in describing the transient
stages of growth or in understanding how the group III flux to
the droplet may adapt to balance the As flux incorporated in
the NW while maintaining a constant drop volume. However,
the complexity of this model and the fact that it involves
many unknown quantities makes it difficult to use for deriving
values of the most important and basic material and growth
parameters (to be specified below) or for predicting the
outcome of growth experiments, which are our main aims.

II. MODEL

A. Introduction

Our As-only model couples group V material balance with
nucleation at the liquid-solid interface. We consider MBE
growth at temperature T and under a known flux of As. To
be specific and to compare our predictions with experiments,
we develop the model for GaAs NWs growing along a ZB
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FIG. 1. (Color online) Schematics of self-catalyzed VLS growth
of GaAs nanowires. The As currents that feed the (Ga, As) droplet
of composition cAs (ρd from direct beam and ρr re-emitted by
environment) are schematized by full blue arrows and those that
deplete it (evaporation ρe and solid nucleation and growth ρn) by
empty red arrows. Only ρd is directional, due to As4 beam incident
at angle α. The system geometry is defined by NW radius R, droplet
radius Rd , and contact angle β. The edge of the solid nucleus has
monolayer height h and effective energy γe.

〈111〉 direction, but it could easily be adapted to other cases
where the same hypotheses about the roles of group V and
group III atoms would hold.

The geometry is illustrated in Fig. 1. A NW of radius
R grows perpendicularly to the substrate. A droplet in the
shape of a spherical cap of radius Rd sits at the top of the
NW, with contact angle β � π/2. Appendix A 3 recalls the
relations between β, R, Rd , and the surface Sd and volume Vd

of the droplet. The direct beam of As4 molecules is inclined
at an angle α with respect to the substrate normal and the
corresponding atomic flux is Jd . In line with our experiments,15

we assume that there is no radial growth (R remains constant).
During growth, several processes continually add As atoms

to the droplet or remove As from it. Namely, As is added
to the droplet by the direct beam and by re-emission from
the nearby surfaces (see below), and removed by NW growth
and by evaporation. The crucial differences between our As-
only model of self-catalyzed growth and previous “group III-
only” models of VLS growth are that (i) diffusion need not
be considered while, on the contrary, (ii) evaporation must
be taken into account (whereas at the self-catalyzed growth
temperatures, the evaporation of Ga can safely be ignored, due
to its low vapor pressure47).

We consider the various As currents Ii (numbers of atoms
per unit time) to and from the droplet, corresponding to the
four processes listed above. The current In corresponding to
the transfer from liquid to stoichiometric solid is related to
the NW growth rate ρn = dL/dt (with L the NW length at
time t , measured from a fixed reference) by πR2ρn = ωS

pIn,
where ωS

p = a3/4 is the volume occupied by a III-V pair in
ZB GaAs, with a the lattice parameter of the crystal. Since
we want ultimately to compare the predictions of our model
to measured growth rates, we similarly express all currents in
terms of equivalent growth rates ρi :

πR2ρi = ωS
pIi . (1)
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FIG. 2. (Color online) Growth rate of NW1 (up triangles),
measured15 as a function of As4 BEP at T1 = 883 K, and its linear
approximation (full line). Dashed line: Growth rate equivalent to
direct As flux impinging on droplet. Dotted line: Growth rate
equivalent to direct flux plus minimum re-emitted flux. The circles
are the best fit to the experimental data obtained using our model.

B. Feeding the droplet

We previously showed49 that the direct atomic current
(i = d), resulting from the interception by the droplet of the
incident beam, writes Id = κ (α,β) πR2

dJd . κ is generally a
complicated function of the angles which however simplifies
to κ = 1 when β � α + π/2. Hence, using Eq. (1) and the
geometric relations recalled in Appendix A 3 [Eq. (A10)],
the contribution of the direct beam to the growth rate
writes

ρd = κ ωS
p

sin2 β
Jd. (2)

We assume here that all impinging molecules incorporate
into the liquid droplet (unit accommodation coefficient), an
hypothesis usually made in NW growth modeling.

In our previous work, we studied experimentally the growth
rates of individual NWs and discussed the various As currents
that feed the growth.15 We concluded that the surface diffusion
of adsorbed As species is negligible. However, the direct flux
impinging on the droplet is insufficient to account for the
growth rate (see also Sec. III A and Fig. 2). We attributed
the missing current to a flux of As species re-emitted by the
surfaces of the substrate (as previously proposed by Krogstrup
et al.11) and of the neighboring NWs. It seems fair to assume
that the corresponding contribution (i = r) to the growth rate
is proportional to the direct contribution via a NW-dependent
coefficient ε:

ρr = ερd. (3)

It is likely that ε depends on β but also on the distribution of
NWs around the NW considered. Even for a given NW, ε might
vary with time: As the NWs grow, the re-emitting sidewalls of
the neighboring NWs extend, but at the same time shadowing
effects50 evolve; multiple reflections also probably intervene.

This makes ε extremely difficult to calculate. Fortunately, it
may be argued that, after the NWs have reached a sufficient
length, ε should remain constant (due to shadowing, the
substrate is no longer exposed to the direct beam), and the
constant growth rate observed for individual NWs in our
experiments strongly suggests that this is the case.15 Anyway,
this contribution is far from negligible: We estimated that ε was
at least of the order of 2 for the NWs studied.15 We will show
that our model actually allows us to extract this coefficient
from experiments for particular NWs.

C. Emptying the droplet: Evaporation and nucleation

The evaporation current (i = e) of a given atom or molecule
is customarily assumed to be proportional to the equilibrium
pressure of this species with the liquid. For arsenic, the most
common species are As atoms and molecules Asn, n = 2,3,4.
For bulk phases, the equilibrium pressure of each species,
which is calculated in Appendix A 2, depends only on T and on
the atomic concentration cAs in the liquid. At the typical self-
catalyzed growth temperatures, the pressures of the various
As species in equilibrium with a liquid, itself in equilibrium
with solid GaAs, are very different from each other: The As2

pressure is by far the largest one.47 This remains true for the
nonequilibrium concentrations cAs that we determine below.
Considering this single As species, the evaporated atomic flux
writes

Je = ke

2 p2√
2πMkBT

. (4)

Here the factor 2 stems from the fact that each As2 molecule,
of mass M , comprises two atoms, kB is the Boltzmann
constant, and p2 (cAs,T ) the equilibrium pressure. Following
Knudsen,51 we have introduced an evaporation coefficient
ke � 1 to account for possible barriers hindering evaporation.
The values of such evaporation coefficients remain largely un-
known. The evaporated current is Ie = SdJe and the equivalent
growth rate is

ρe = Je

Sdω
S
p

πR2
= ke

1 − cos β

sin2 β

4ωS
pp2√

2πMkBT
. (5)

Finally, we turn to the formation of the NW itself. It is
widely acknowledged that VLS growth of NWs of small
enough radii proceeds ML by ML, via the formation of a
single two-dimensional (2D) critical nucleus at the liquid-solid
interface, followed by the rapid completion of the ML. This
has been demonstrated for VLS growth catalyzed by foreign
metals.22,23,44,52–55 We assume that this is also the case for
self-catalyzed growth although, to our knowledge, it remains
to be verified. If, after nucleation, the complete ML forms in
a time short compared to the mean time between nucleation
events,44,52–54 so that growth is mononuclear (one nucleation
event per ML), the growth rate is set by the nucleation rate.
Using the classical nucleation theory (CNT) for a solution of
concentration cAs, the 2D rate of nucleation writes56

Jn = A(T ) cAs

(

μ

kBT

)1/2

exp

(
−
Gc

kBT

)
. (6)
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In Eq. (6), A is a prefactor which depends on temperature
but neither on cAs nor on NW geometry, 
μ (cAs,T ) is the
difference of chemical potential per III-V pair between the
liquid of composition cAs and solid ZB GaAs, and 
Gc is
the nucleation barrier. 
μ is calculated in Appendix A 1 for
bulk phases and the modification for a small droplet is given
in Appendix A 3. The hypothesis underlying the presence of
factor cAs in Eq. (6) is that attachment to subcritical nuclei
is limited by As present in the liquid droplet and not by Ga,
which is available there in abundance; however, this hypothesis
is not crucial since the main dependence of Jn on cAs is via the
nucleation barrier (see below). We consider, as usual in CNT,
the formation of nuclei of fixed shape with linear dimension r ,
perimeter α1r , and area α2r

2 (α1 = 2π , α2 = π for a disk of
radius r; α1 = 3, α2 = √

3/4 for an equilateral triangle of side
r). If γe is the effective surface energy of the vertical edge of the
2D nucleus23 (Fig. 1), the change of free energy of the system
upon forming a nucleus of size r is 
G = −α2r

2h
μ/ωS
p +

α1rhγe. Minimizing 
G gives the nucleation barrier


Gc = χωS
ph

γ 2
e


μ
, (7)

with χ = α2
1/(4α2) (χ = χd = π for disk-shaped nuclei and

χ = χt = 3
√

3 for equilateral triangles). For ZB NWs growing
along 〈111〉, h = a/

√
3, and ωS

ph = a4/(4
√

3).
The formation of the ZB structure in self-catalyzed growth

suggests that nucleation occurs not (or not only) at the triple
phase line23 but anywhere else on the top facet of the NW.10

Then, the probability of forming a critical nucleus, per unit
time, is πR2Jn. Since we suppose that nucleation is quickly
followed by the completion of the full ML, the corresponding
current is In = h(πR2)2Jn/ω

S
p and the equivalent growth rate

is

ρn = πR2hJn. (8)

In all calculations we account for the effect of the small
size of the droplet on p2 and 
μ (Appendix A 3), but this
hardly modifies the results. On the other hand, we ignore
the variations of group V concentration induced by the fast
stages of nucleation and growth of new MLs that suddenly
deplete the droplet and are separated by long refill periods.
We showed that this effect leads to sub-Poissonian nucleation
statistics (anticorrelation of nucleation events).44 However, it
generally affects little the average growth rate. Namely, based
on our simulations of Au-catalyzed growth44 (we have not
yet studied self-catalyzed growth in this respect), the growth
rate calculated in the sub-Poissonian regime by averaging
over a sequence of simulated nucleation events is close to the
constant (Poissonian) growth rate calculated for a fixed droplet
composition equal to the average composition observed in the
simulations of the sub-Poissonian case (provided of course that
we use the same model parameters for the nucleation rate).
Thus, we do not describe the short term fluctuations of the
nucleation rate, and ρn and cAs should be understood as values
averaged over several nucleation cycles. This is consistent with
fitting our model to experiments which average the growth rate
over many such cycles.15

III. MODELING EXPERIMENTS AND EXTRACTING
MODEL PARAMETERS

Our aim in Secs. III and IV is fourfold. We first demonstrate
that our model can fit accurately the NW growth rates measured
in a series of experiments where either the As beam pressure
or the temperature are varied systematically (Sec. III B). By
optimizing these fits, we extract precise values of the few
unknown parameters that specify the model (Sec. III C). We
then show that values of quantities pertaining to the growth of
individual NWs but so far inaccessible to experiment can be
straightforwardly obtained by applying our model (Sec. III D).
Finally, in Sec. IV we show that our model predicts the growth
rate of any self-catalyzed GaAs NW of known geometry, in
given growth conditions.

A. Method and general considerations

We want to find the best values of the parameters γe

and A (T ) that specify the nucleation rate in our model by
fitting this model to series of measurements of the growth rate
of single NWs of known geometry in precisely determined
growth conditions, taken from our previous work15 (where
α = 35◦). We suppose known the values of several secondary
parameters. Namely, we take χ = χt , ke = 1 and assume
perfect accommodation of the As gaseous species by the
droplet (see above). These choices are discussed in Sec. V A.

Then, from Eqs. (6)–(8), the nucleation-mediated growth
rate of a NW of known radius is fixed by the two model
parameters γe and A (T ), which depend only on the material
system considered. In addition, the nucleation rate also
depends on the difference of chemical potential 
μ, which
itself depends on temperature and As concentration cAs in
the liquid (see Appendix A 1). This concentration, which
must change with growth conditions and is also likely to
be different for each NW in given conditions, is unknown.
Hence, the problem cannot be solved by the sole consideration
of nucleation since the number of experimental data points
(growth rate in given growth conditions) is always less than
the number of unknowns (model parameters plus one As
concentration per data point).

However, cAs may be determined for each data point of
a given series by assuming material balance, i.e., that the
currents adding atoms to the droplet exactly compensate
for those that deplete it (in doing so, we do not restrict
ourselves to stationary growth; we simply average the short-
term fluctuations of the As concentration due to random
nucleation and ML growth mentioned above44). This will
be shown in Sec. III B. There we will first model the data
of Fig. 2, which consist of measurements of the growth
rate of a single NW (NW1) at temperature T1 = 883K, as
a function of the incident As flux,15 expressed as a measured
As4 beam equivalent pressure (BEP) pAs4 (lower scale). We
previously determined15 the conversion factor between BEP
and actual atomic flux Jd (valid for our MBE setup) to
be η = Jd/pAs4 = 2.3 × 1024 atom m−2 s−1 Torr−1 (see upper
scale).

This pressure series displays features which have become
familiar for self-catalyzed GaAs growth.6,15 Before modeling
it, we briefly discuss these features and their implications
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for our model. First, the growth rate increases quasilinearly
with incident flux. From Eqs. (6)–(8) and from the calculation
of 
μ (Appendix A 1, Fig. 10), any increase of the growth
rate at fixed T and for a NW of given radius implies an
increase of cAs. However, since the nucleation rate depends
in an a priori strongly nonlinear fashion on As concentration,
the observed quasilinearity suggests that cAs and 
μ do not
vary much over the entire experimental range. Second, the
linearly extrapolated growth rate (full line in Fig. 2) cancels
at a nonzero pressure. This was rightly interpreted as related
to the As vapor pressure at the droplet surface.6 In the terms
of our model, there is a minimal BEP for which cAs is such
that the evaporated current [Eq. (5)] just balances the sum
of the direct current [Eq. (2), dashed line in Fig. 2] and
re-emitted current [Eq. (3)]; however, this flux is not equal
to the zero growth rate linear extrapolation since the growth
rate is nonlinear at low As flux (see Sec. IV B). Third, since the
sum of the direct and re-emitted currents scales as (1 + ε)Jd ,
the nonzero intercept implies that there is a minimum value
εm of ε, given by the slope of the line passing by the origin
and parallel to the quasilinear experimental curve (dots in
Fig. 2). For this particular ε (about 2.6 for the present data), the
evaporation equivalent growth rate, read as the vertical distance
between the full and dotted lines, would be the same for all
incident fluxes. This cannot however be the case, since the
increase of growth rate with BEP (at fixed R and T ) has to be
induced by an increased cAs, which itself enhances evaporation
(Appendix A 2, Fig. 10), so that the available current (direct +
re-emitted) actually has to increase faster than the experimental
growth rate; this corresponds to ε > εm.

B. Modeling experimental growth series

We first model the pressure series of Fig. 2. NW1 has
radius R ≈ 32 nm and the droplet contact angle is β1 ≈ 125◦,
hence κ = 1 (Sec. II B). Material balance dictates that the
measured growth rate ρm equals the algebraic sum of the
direct, re-emitted, and evaporated contributions, calculated
respectively from Eqs. (2), (3), and (5): ρm = ρd + ρr − ρe.
This is obviously independent of the hypothesis that growth
occurs via nucleation. Rates ρd , ρr , and ρe depend on NW
geometry, which is supposed to be known. Actually, the NW
radius R is precisely measured in our transmission electron
microscopy (TEM) images. The contact angle β is also
measured precisely but the post-growth value might differ
from the value during growth. In Sec. V A we evaluate the
effect on our results of a plausible error on β.

In the material balance equation, only ρe depends on
cAs [Eqs. (5), (A8), and (A9)], whereas ρd depends only
on the known direct As flux [Eq. (2)]. In addition, the re-
emitted contribution ρr depends on unknown and NW-specific
parameter ε (which nevertheless, as discussed above, is not
expected to change with growth conditions). The equation
thus involves two NW-related unknowns, ε and cAs. Hence, if
one fixes an arbitrary value of ε for the whole series, one
can deduce the As concentration cAs,q from the measured
growth rate ρm,q for each data point q (q = 1, . . . ,Q, Q = 7),
using solely material balance. Introducing the extra unknown
ε effectively eliminates all unknown concentrations and makes
the problem tractable. In practice, for each ε arbitrarily chosen
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FIG. 3. (Color online) Bottom: Variations with test value of re-
emission constant ε, of the normalized errors σ̃ and σ̃ ′ (up and down
triangles) for the fits of NW1 and NW2, respectively. Top: Variation
with ε of the optimal values of nucleus edge energy γe (disks) and
prefactor A(T1) (empty squares). The fits made with ε � εm lead to
large errors and unphysical values of γe and A(T1).

in a wide range of values, we get the set of concentrations
cAs,q . We then calculate the normalized error σ (ε,A,γe) =
[Q−1 ∑Q

q=1 {ρm,q − ρn,q(ε,A,γe)}2]1/2, where ρn,q is the
nucleation-mediated growth rate calculated using model pa-
rameters A(T1) and γe and concentration cAs,q [Eqs. (6)–(8)].
Figure 3 (bottom) gives the variation with ε of the minimum
σ̃ (ε) of σ , taken over all values of model parameters A(T1)
and γe. We call Ã(T1,ε) and γ̃e(ε) the values which realize
this minimum. Clearly, although we can safely exclude values
of ε less that about 2.65 (for which the error is very large
and γe takes unphysically low or even negative values, thereby
confirming the minimum value of ε discussed in Sec. III A),
our test does not discriminate among a wide range of values
and does not even exclude unreasonably large values. Hence,
the best model parameters cannot be determined at this stage.

Fortunately we can lift this indetermination by combining
the previous results with the analysis of series of growth
rate measurements on single NWs, at fixed incident flux but
variable temperature. We use the data15 for NW2, obtained
under pAs4 = 4.8 × 10−6 Torr (Fig. 4). For this NW, R ≈
37 nm and β = β2 ≈ 125◦. We use the information gained
in modeling the pressure series to calculate the nucleation-
induced growth rate for this series. Namely, in Eqs. (6)
and (7) we restrict ourselves to the best couples of model
parameters Ã(T1,ε) and γ̃e(ε) determined previously, each
associated to an arbitrary value of ε (not being a basic model
parameter, ε is not of primary interest; it is merely used as an
index for this particular couple of parameters). However, we
must now account for the variation of prefactor A [Eq. (6)]
with temperature. Following CNT for 2D nucleation,56 we
write A(T ) = A′ exp [−Ea/(kBT )], where A′ is a temperature-
independent parameter and Ea is an energy barrier for the
transfer of an As atom from the liquid phase to the edge of the
nucleus. Ea is a priori unknown; however, since the prefactors
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FIG. 4. (Color online) Growth rate of NW2 measured as a
function of growth temperature (triangles). The disks give the
differences between the growth rates equivalent to total incoming
(direct + re-emitted) and evaporated currents corresponding to the
best fit by our model (see text).

in the nucleation rate must match for T = T1, the choice of Ea

fixes that of A′, according to A′ exp [−Ea/(kBT1)] = Ã(T1,ε).
Now, for each arbitrary couple of values of ε [i.e., Ã(T1,ε),

γ̃e(ε)] and Ea , we first find the As concentration cAs,q for
each data point q (q = 1, . . . ,Q′, Q′ = 6) of the temperature
series by equating the measured growth rate ρ ′

m,q to the
nucleation-induced growth rate ρ ′

n,q calculated for cAs,q . Since
p2 is a known function of cAs and T (Appendix A 2), this
concentration also produces a certain evaporation rate ρ ′

e,q

[Eq. (5)]. We now invoke As material balance. Namely, we first
choose arbitrarily the unknown re-emission constant ε′ pertain-
ing to NW2 and calculate the normalized error σ ′(ε,ε′,Ea) =
[Q′−1 ∑Q′

q=1 {(1 + ε′)ρ ′
d − ρ ′

e,q − ρ ′
n,q}2]1/2, with ρ ′

d the
direct growth rate, which is fixed for this series. We then
minimize σ ′ over all values of Ea and ε′ to obtain the quantity
σ̃ ′ (ε), shown in Fig. 3. The variations of σ̃ ′ with ε are much
more pronounced than those of σ̃ . In particular, σ̃ ′ shows
a marked minimum around ε� ≈ 3.25, a value only slightly
larger than εm (this minimum is realized for ε′ = 3.15 and
Ea = 0; see below). Around ε�, the normalized errors are less
than 0.1 nm/s for both pressure and temperature series. Again,
the value of ε� (a priori valid only for NW1) is of less interest
than those of the associated model parameters Ã(T1,ε

�) and
γ̃e(ε�), to be given in the next section. The quality of the fits
is illustrated in Figs. 2 and 4 for the pressure and temperature
series, respectively.

C. Recommended values of the model parameters

We have just determined ε� as the best value of the
re-emission constant for NW1 and consequently Ã(T1,ε

�)
and γ̃e(ε�) as the best values of the model parameters A

(at temperature T1) and γe. The analysis of the temperature
series involves an additional optimization over parameter Ea .
Although the quality of the fit is rather insensitive to the value
of Ea (we explored the range from 0 to 1 eV), smaller values
consistently give marginally better fits (at least for the preferred
ε). We thus take Ea = 0; then, A(T ) = A′ is independent

of temperature and must be taken equal to Ã(T1,ε
�). In the

following, we fix the model parameters to their best values
and simply note them γe and A. These best values are

γe = 0.123 J m−2, A = 7.01 × 1018 m−2 s−1. (9)

Using these values in Eqs. (6)–(8) (with A independent of T )
gives the nucleation rate in units of m−2 s−1. Recall that, in
Eq. (6), cAs (∼1%) is the atomic concentration and that, in
Eqs. (6) and (7), 
μ (cAs,T ) is calculated per III-V pair (see
Appendixes A 1 and A 3).

D. Evaluating experimentally inaccessible quantities
for individual NWs

From the preceding analysis, we can also obtain extra
information pertaining to actual growth experiments. Indeed,
for both pressure and temperature series, the procedure
of Sec. III B involves the determination of cAs for each
set of growth conditions (As flux, temperature). Because
it is extremely low, this concentration seems inaccessible
to experiment and has indeed never been measured. Our
determination of cAs is thus very welcome, all the more so
that several thermodynamic quantities of key importance in
the theory of NW growth, and so far at best roughly estimated,
are readily calculated from cAs, in particular the difference
of chemical potential 
μ (cAs,T ) between liquid and solid
ZB GaAs (Appendix A 1) and the nucleation barrier 
Gc

[Eq. (7)] (note for instance that for Au-catalyzed growth the
estimates of 
μ span a range extending from a few meV or
tens of meV22,27,57 to several hundreds of meV23,31,43,44 per
pair). These quantities are plotted in Fig. 5 for each data point
of the experimental series analyzed in Sec. III B.

As for the pressure series [Fig. 5(a)], the As concentration
increases with the direct As flux. This was expected since,
at constant NW radius and fixed temperature, according to
Eqs. (6)–(8), the observed increase of the growth rate must
be due to an increase of 
μ, which itself can only be due to
an increase of cAs (Appendix A 1 and Fig. 10). As forecast in
Sec. III A, cAs is not far from varying linearly with the As4 BEP,
although a slightly negative curvature can clearly be seen. cAs

is of the order of 10−2 but varies by more than 50% over our
pressure range. This gives differences of chemical potential
increasing between about 115 and 150 meV/pair.

The results for the temperature series [Fig. 5(b)] are far
less intuitive. We predict that, despite the observed decrease
of the growth rate, the As concentration in the droplet should
increase with temperature. However, Fig. 5(b) shows that this
increase of cAs does not induce an increase of 
μ with T . 
μ

actually decreases, due to the dominating effect of temperature
(Appendix A 1 and Fig. 10), which correctly induces a decrease
of the growth rate. At the same time, the increases of cAs and T

concur to enhance evaporation. For more details, see Sec. IV B.

IV. PREDICTIVE MODELING

In this section we show how, using the model parameters de-
termined in Sec. III, we can predict the growth rate of any NW
of given geometry in given growth conditions. Our predictions
stand the test of all comparisons with our experimental data
(including those not used in the determination of the model
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FIG. 5. (Color online) (a) Bottom panel: Growth rates measured (triangles) and calculated (disks) for NW1, as a function of incoming As
flux, at temperature T1 = 883 K (as in Fig. 2). Three upper panels: As concentration in the droplet, difference of chemical potential between
liquid of composition cAs and solid ZB GaAs, and nucleation barrier, calculated for each discrete data point of bottom panel. In the two bottom
panels, the dashed lines are calculations extended to the whole pressure range, made for NW1 using the best model parameters (Sec. III C) and
the method of Sec. IV. The As flux is expressed as BEP (lower scale) and as absolute atomic flux, using the value of η given in text (upper
scale). (b) Same as (a) for NW2, as a function of growth temperature.

parameters). In addition, we predict the behavior of the NW
growth rate and related quantities in growth conditions as yet
unexplored.

A. Method

Let us consider a NW of given geometry (radius R, droplet
contact angle β) in given growth conditions, in particular
temperature T and As4 flux. Since the model parameters γe and
A(T ) are now fixed (Sec. III C), the nucleation-induced growth
rate ρn of this NW depends only on the As concentration in
the droplet [Eqs. (6)–(8)]. As in the experimental case, cAs is
a priori unknown, but it may be determined by invoking once
again As material balance, which prescribes that

(1 + ε) ρd = ρe (cAs,T ) + ρn (cAs,T ) . (10)

This equation features the re-emission constant ε pertaining
to the modeled NW. Since ε accounts for As re-emitted by
substrate and neighboring NWs, a NW cannot in general
be modeled in isolation. Instead, we must picture it as part
of an ensemble of many NWs. Two types of such samples
are conceivable. Either the NWs are fairly closely packed
and distributed more or less randomly; then, ε is likely to
vary with the environment of the NW considered. Simulating
such an assembly of NWs and modeling their growth goes
beyond the scope of the present work, and calculating the
re-emission seems very difficult. The simplest is thus to

count ε as an additional (unknown) growth parameter. On
the other hand, we may imagine two categories of samples
where the re-emission coefficient could possibly be calculated:
low density samples where a given NW would be exposed to
re-emission only from the substrate, or else periodic arrays of
NWs. For all categories of samples, it might also be possible
to determine ε experimentally and use its value as an input
parameter. For random samples, this would have to be done
as a function of NW density, without however accounting
for local fluctuations. Such density fluctuations would not
occur for regular arrays or isolated NWs. In the future,
ε might thus become a known quantity but, despite some
preliminary calculations,58 this is far from being achieved.
We thus consider ε as an input parameter (an extra growth
condition) depending on the NW considered. However, our
experiments and modeling indicate that ε might not vary much
even in random samples.

Then, using Eq. (2), the left side of Eq. (10) is known
for any given direct As flux. Since the right side of Eq. (10)
depends only on input temperature T and As concentration
cAs, the latter can be uniquely calculated for any given set
of growth conditions (As flux, T , ε). The growth rate is then
straightforwardly obtained via Eqs. (6)–(8) using the values
of the model parameters supplied in Sec. III C. As in the
experimental case (Sec. III D), all thermodynamic quantities
of interest can then be calculated from cAs.
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FIG. 6. (Color online) NW growth rate ρn (red lines, left scale),
equivalent evaporation rate ρe (green lines, same scale), and As
concentration in the droplet (blue lines, right scale) calculated using
our model as a function of the incident As flux for three simulated
NWs having the different geometries (NW radius, droplet contact
angle) indicated. Other parameters: ε = 3.1, T = 873 K. The As
flux is expressed as absolute atomic beam flux (upper scale) and as
BEP, using value of η given in text (lower scale). The inset details
the variations of the growth rate and As concentration at low fluxes
(units as in main panel) for the NW with R = 35 nm and β = 125◦;
the dash-dotted line is the linear approximation of the NW growth
rate at high As flux.

B. Modeling NW growth as a function of As flux, NW radius,
and temperature

This method is illustrated in Fig. 6 for a simulated
pressure series. We model three arbitrary NWs with different
geometries. Doubling the NW radius from 35 to 70 nm leads
to only a very modest increase of the growth rate. As detailed
below, this is in agreement with our experiments.15 The droplet
contact angle has a larger effect on the growth rate. Our model
allows us to explore growth under As fluxes both larger and
smaller than those hitherto studied experimentally.15 At high
fluxes, the growth rate and cAs still vary quasilinearly with As
flux. When the flux is decreased, cAs deviates markedly from
linearity before the NW growth rate. However, at very low
As fluxes (Fig. 6, inset), the NW growth rate is also strongly
nonlinear. As a consequence, NWs might still grow under As
fluxes lower than predicted by the linear extrapolation of the
high-temperature data.6

The variations of the growth rate with NW radius are
further explored in Fig. 7. At T = 883 K, we find only a small
variation of the NW growth rate in a large range of NW radii.
Between radii of 25 and 40 nm, the growth rate increases by
only 14%. This compares closely with our experiments where,
over the same range and at the same temperature, an increase of
about 10% of the total NW length was measured.15 However,
we predict a sharp drop of the growth rate at smaller NW
radii. At higher temperature (Fig. 7, triangles), the growth rate
should vary faster with NW radius (unless this radius is very
small).
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FIG. 7. (Color online) Calculated variation of the NW growth
rate as a function of NW radius under given As flux (Jd = 1.1 ×
1019atom m−2 s−1, corresponding to 4.8 × 10−6Torr As4 BEP with η

given in text) at T = 883 K (disks) and 913 K (triangles). β = 125◦,
ε = 3.1.

These variations of the growth rate with NW radius can be
clarified by modeling a temperature series. Figure 8 shows the
variations with temperature of the growth rate ρn, equivalent
evaporation rate ρe, and As concentration in the droplet,
calculated for four NWs (including those of Fig. 6). Here
again we explore a range of the relevant growth parameter (T )
wider than in our experiments. Let us first focus on the two
NWs with β = 125◦ and radii of 35 and 70 nm, respectively.
At low T , their growth rates are equal. Since evaporation is
then negligible (see ρe curves), As material balance [Eq. (10)]
implies that the total incoming current Id + Ir equals the
nucleation current In. However, the former scales as Sd and
hence R2 [Eqs. (1) and (2)], whereas the latter, as explained
in Sec. II C, scales as R4Jn. Hence, material balance can only
be guaranteed if the nucleation rate Jn is less for the wider
NW than for the narrower one (namely, 4 times smaller for
the present radii). This in turn implies smaller values of 
μ

and hence cAs for the wider NW at given T (as already seen
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FIG. 8. (Color online) Same as Fig. 6 as a function of growth
temperature for four simulated NWs. β = 125◦ for the three NWs
labeled by their radius R, and R = 35 nm for the NW labeled by β.
ε and direct As flux as in Fig. 7.
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in Fig. 6). At higher temperature, As evaporation becomes
significant and the growth rates of both NWs start to decrease.
However, since evaporation increases with cAs (Appendix A 2
and Fig. 10), the growth rate of the narrow NW (with higher
cAs) decreases faster than that of the wide one, to the effect
that the latter now grows faster than the former. Examination
of the NW with R = 15 nm confirms this explanation (Fig. 8).
At very low T , its growth rate is the same as that of the former
two and hence its cAs is even higher, so that evaporation comes
into play at even lower temperatures.

To summarize, we predict that, if the radius is not too
small, the growth rate is quasi-independent of radius at
low growth temperature and increases with radius at higher
temperatures. The narrow range of growth rates observed in
our experiments15 is reproduced by our model (Fig. 7, disks). It
results from the fact that our growth temperature (T = 883 K)
is moderate and that we did not synthesize very narrow NWs.
We predict an even narrower range of growth rates at low
growth temperature and a wider range either at higher growth
temperature or if narrower NWs became available.

This modeling of temperature series clarifies our observa-
tion of an increase of cAs with T at given NW radius [Sec. III D,
Fig. 5(b)]. Actually, for each NW, as T increases, cAs reaches
a maximum and then decreases (Fig. 8). Again, at low T ,
evaporation being negligible, nucleation alone must balance
the fixed sum of the direct and re-emitted currents. When
T increases in this domain, 
μ would decrease if cAs were
fixed (Appendix A 1 and Fig. 10), so that cAs must actually
increase to maintain the nucleation rate. However, at higher
temperature, evaporation becomes effective and increases
sharply with T and cAs, faster than nucleation decreases. cAs

must then decrease to preserve As balance.

V. DISCUSSION AND CONCLUSIONS

A. Impact of imperfectly known quantities on the values
of the model parameters

To determine the basic parameters of our model, we made
use of the experimental growth rates of only two NWs. It
would be desirable to confirm these values by fitting the
growth rates of other NWs, but this has not been done yet,
mainly because the necessary TEM analysis15 is very time
consuming. However, we analyzed another NW belonging
to the same pressure series as NW1 and found very similar
growth rates (which implies that, although it had a different
environment during growth, its re-emission constant was very
close to that of NW1). Let us first discuss briefly the possible
sources of error in the measurements, which were described
in detail by Ramdani et al.15 Since the model parameters
were extracted from a joint fit of a full pressure series and a
full temperature series, we believe that random errors on the
measurements of growth rate, As4 pressure, or temperature
somehow compensate each other, although this is difficult to
quantify. We estimate that the length grown in the fixed time
intervals between markers15 may be determined to within
±1 ML, so that the error on the measured growth rates is at
most of a few percent. As regards the control parameters (T
and As flux), the ratios of the As4 BEPs for a given pressure
series are also known to within a few percent. Similarly, the

differences between two temperatures of a given series are
probably very small, but the absolute temperature are not
known to better than about 10 K. Our determination of the
model parameters is thus likely to be affected mainly by pos-
sible systematic errors on As4 BEP and growth temperature.
In addition to As flux and sample temperature, when we fitted
the experimental data, we assumed that several secondary
parameters on the one hand, the geometry of the NWs on the
other, were known. We now discuss the implications of an
imperfect knowledge of all these quantities on our results.

Over and above the model parameters γe, A, and Ea that
were optimized, there are three NW-independent quantities
that appear in our equations, namely χ [Eq. (7) for nucleation
barrier], η [relating direct current appearing in Eq. (2) to
measured As4 BEP], and ke [Eq. (4) for evaporation]. We
also assumed that the liquid accommodates the impinging As
molecules (directly or after re-emission) with unit probability.
We shall consider these quantities in turn. Equation (7)
readily shows that our fitting procedure actually determines
the product χγ 2

e ; the value of γe obtained assuming χ = χt

can thus straightforwardly be adapted to nontriangular nucleus
shapes (for instance, we find γe = 0.158 J m−2 for disk-shape
nuclei). Ratio η was painstakingly measured in our previous
work.15 However, it is clear that only the total current into
the droplet Id + Ir = (1 + ε)κπR2

dJd intervenes in the fitting
procedure. Hence, any modification of η affecting Jd will
be compensated by a change of ε. The same holds for an
accommodation coefficient less than 1. Therefore, only the
re-emission coefficient will be altered by an error on η or on
the accommodation coefficient, not the model parameters. On
the other hand, changing the value of ke affects the values of the
model parameters, because the use of the known dependence of
evaporation on cAs (Appendix A 2) is crucial in our procedure
(see below).

Several parameters specific to the particular NWs used in
the determination of the model parameters (Sec. III B) are
also imperfectly know. Any variation of these NW-specific
parameters affects the values of the model parameters given in
Sec. III C. In particular, whereas the NW radii can be measured
with great accuracy, the values of the contact angles β1 and β2

for NWs 1 and 2 during growth could be different from, and
probably larger than, those that we measure after growth (note
for instance that the post-growth angles measured by Kim
et al. are even lower59). The temperatures measured during
the experiments are also imperfectly known. We decided
against considering these NW-specific quantities as unknown
and finding their best values by optimizing our fits. This is
somehow validated by the excellent fits that we obtain by
optimizing only the three basic model parameters. However,
we may evaluate the effects of uncertainties on these neglected
parameters. To this end, we assume for one of them a value
different from the value retained in Sec. III B, keeping the
others at their previous values. We then carry out the procedure
detailed in Sec. III B and end up with a new pair of model
parameters (γe,A) (in all cases, we find an optimal value
Ea = 0). The results are summarized in Table I.

Let us first discuss the effect of uncertainties affecting
experimental geometry (sets 2 and 3 in Table I) or growth
temperature (sets 4 and 5). Upon the changes assumed in
these sets, the nucleus edge energy γe varies by about ±15%
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TABLE I. Modeling the growth of NW1 and NW2 using different
values of NW-specific parameters or evaporation coefficient. Refer-
ence set (1): All geometrical parameters and growth conditions as in
Sec. III. For sets 2 to 4, one of the parameters (for either NW1 or
NW2) is changed to the value indicated in the second column. For
set 5, all growth temperatures of the temperature series are shifted
down by 10 K. For sets 1 to 5, ke = 1. For set 6, ke = 0.5 and NW
geometrical parameters and growth conditions as in set 1. For each
set, γe and A are the values of the model parameters found from the
best fits to the experimental data of Figs. 2 and 4, σ̃ and σ̃ ′ are the fit
errors for the pressure and temperature series (as in Sec. III B), and
cm and cM are the values of cAs for the minimum and maximum As4

BEPs of the pressure series (NW1, see Fig. 2).

Parameter γe A σ̃ σ̃ ′ cm cM

Set change (J m−2) (1018 m−2 s−1) (nm/s) (nm/s) (%) (%)

1 None 0.123 7.01 0.077 0.084 0.94 1.45
2 β1 = 135◦ 0.108 2.34 0.064 0.094 0.90 1.54
3 β2 = 120◦ 0.123 7.01 0.077 0.102 0.94 1.45
4 T1 = 893 K 0.103 1.73 0.067 0.097 0.96 1.66
5 δT2 = −10 K 0.142 12.8 0.079 0.084 1.07 1.65
6 ke = 0.5 0.149 12.5 0.079 0.087 1.31 2.01

around the value given in Sec. III C. γe, which appears in the
exponential term of the nucleation rate, has a large effect on the
latter. Since we fit the same data as before, even such moderate
changes in γe are compensated by large changes of the other
model parameter (prefactor A) together with modest changes
of cAs at each data point. This does not compromise the validity
of our model. Indeed, the quality of the fits (given by σ̃ and
σ̃ ′ in Table I) remains nearly as good as for the reference
set. The predictive character of the model is also preserved.
To prove this, we use each of these alternative sets of model
parameters (γe,A) to simulate the growth (under a range of
As fluxes) of an arbitrary NW differing markedly in terms
of geometry (R = 45 nm, β = 140◦) and growth conditions
(T = 873 K, ε = 3.5) from NW1. Figure 9 shows that the net
effect on the NW growth rate is less than 7% over the whole
As4 BEP range considered. The effect on cAs is also very small,
except for the change in T2. Note that the changes assumed for
the NW-specific parameters are of the order of the estimated
uncertainties and that changes either larger or with the opposite
sign (i.e., β2 = 135◦) soon lead to considerably worse fits.
Finally, even the huge change of evaporation coefficient that
we assumed (set 6) has an effect of the same order on the
model parameters and little effect on the growth rate (Fig. 9).

B. Summary and conclusions

In summary, we have developed a quantitative and predic-
tive model for the self-catalyzed VLS growth of GaAs NWs.
The model is based on the sole consideration of the As species
and describes all the mechanisms of exchange of As between
the vapor, liquid, and solid phases that we believe relevant,
namely direct impingement of molecules on the droplet, their
re-emission by the neighboring surfaces, evaporation from the
droplet, and nucleation of GaAs at the solid-liquid interface.

The model reproduces quantitatively our measurements
of the NW growth rate as a function of As4 flux, growth
temperature, and NW radius.15 The values of the two main
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FIG. 9. (Color online) Calculation of the growth rate of a given
NW and of the As concentration in the droplet as a function of incident
As flux, using various pairs of model parameters (γe,A) (given for
sets 1 to 6 in Table I). NW geometry: R = 45 nm, β = 140◦. Growth
conditions: T = 873 K, ε = 3.5. Double horizontal scale as in Fig. 6.

model parameters, namely the nucleus edge energy and the
prefactor appearing in the nucleation rate [Eq. (6)], have been
determined by fitting these data. The growth rate of a NW of
known geometry under given As flux and at given temperature
can then be calculated, provided the fraction of the As flux that
is re-emitted by its environment is known. The model provides
not only the growth rate but also the As concentration in the
droplet and all quantities that depend on it (chemical potential,
nucleation barrier, evaporation rate, . . .). We find that in typical
growth conditions, this concentration is of the order of 1%,
as has been proposed for VLS growth (whatever the growth
method and catalyst) on the basis of other experiments and
calculations.11,23,31,33,44,45 Measuring such low concentrations,
especially during growth, seems beyond the reach of current
analysis techniques.

Our model reproduces well-documented effects (such as
the quasilinear variation of the growth rate with As flux at
moderate and high fluxes) but also predicts many effects that
have not been observed or forecast so far. Among these are the
nonlinear variation of the growth rate with low As fluxes, the
temperature-dependent variation of the growth rate with NW
radius, the variation of the As concentration in the droplet with
As flux, temperature, and NW radius.

To our knowledge, this is the first model of NW growth
based on a small number of model parameters that are all
assigned values validated by experiments. The all-important
effective nucleus edge energy γe (which reduces to the
energy of the interface between nucleus edge and liquid,
if nucleation occurs away from the triple phase line, as
assumed here on the basis of the observation of pure ZB)
has not been determined before, although estimates ranging
from a few tenths to about 1 J m−2 have been proposed for
Au-catalyzed growth.23,31 Assuming triangular nuclei, we find
a value of 0.123 ± 0.2 J m−2. This range allows for reasonable
uncertainties on droplet geometry and growth temperatures in
our experiments and, as demonstrated in Sec. V A, does not
affect the descriptive and predictive character of the model
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(provided the prefactor in the nucleation rate is adjusted
accordingly). This rather low value of γe might play a part
in the preferential formation of ZB in self-catalyzed GaAs
NW growth, by making nucleation at the triple phase line
unfavorable.10,23

Arsenic material balance is a key ingredient of our model.
As mentioned earlier, because of the stochastic nature of
nucleation, which produces noticeable effects in III-V NW
VLS growth due to the low concentration of As in the droplet,44

this can only hold on average over a time scale at least of the
order of the interval between successive nucleation events.
It is beyond the scope of this paper to discuss in detail this
assumption. Suffices to notice that in the present case, the
self-limiting character that manifests itself in many instances
of NW growth, seems particularly easy to understand. Indeed,
in given growth conditions, any temporary increase (decrease)
of the As concentration increases (decreases) the rates of the
two processes that deplete the droplet in As, namely nucleation
and evaporation, and thus drives back the As concentration to
a stationary value.

On the other hand, when the As flux is varied over a large
interval (e.g., in our pressure series), the rate of consumption
of As varies in an even higher proportion (Sec. III A); since
evaporation remains moderate and stoichiometric GaAs is
formed, the same happens to the Ga consumption rate. Since
the NW radius, and thus presumably the droplet volume, do not
change appreciably, the rate of Ga arrival to the droplet must
change enormously. The way in which the Ga current (which
must occur partly by surface diffusion) adapts itself is beyond
the reach of our As-only model and calls for schemes that treat
on an equal footing group III and group V atoms.33 However,
the fact that the present model accurately describes actual
growth experiments confirms that self-catalyzed GaAs NW
growth is largely governed by arsenic. Whether this model may
apply to other self-catalyzed systems depends to a great extent
on the transferability of the key observations that subtend it, in
particular the ineffectivity of group V surface diffusion (which
might not hold for Sb) and the absence of radial growth. This
remains to be studied.
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APPENDIX: CHEMICAL POTENTIAL, EQUILIBRIUM
PRESSURES, AND FINITE SIZE EFFECTS

1. Chemical potential for infinite phases

We first calculate the difference of chemical potential

μ(cAs,T ) per III-V pair between a (Ga, As) liquid of atomic
composition cAs in As and solid ZB GaAs, at temperature
T . Finite size effects will be treated in Appendix A 3. Recall
that, in a pure phase, the chemical potential per atom equals
the Gibbs free energy per atom. Similarly, since we consider
stoichiometric GaAs, the chemical potential of a GaAs pair in

GaAs is equal to the Gibbs free energy per pair gGaAs. Hence


μ(cAs,T )

= [
μL

Ga(cAs,T ) − 0μL
Ga(T ) + μL

As(cAs,T ) − 0μL
As(T )

]
+ [

0μL
Ga(T ) + 0μL

As(T ) − gGaAs(T )
]
, (A1)

where μL
A(cAs,T ) is the chemical potential of element A (Ga or

As) in the liquid of composition cAs and 0μL
A (T ) the chemical

potential in pure liquid A. All the terms in Eq. (A1) can be
evaluated by using published data obtained from experimental
phase equilibria using the Calphad method. To evaluate the
first bracket in Eq. (A1), we note that

μL
Ga − 0μL

Ga = ĝL
m(cAs,T ) − cAs

∂ĝL
m

∂cAs
+ kBT ln (1 − cAs) ,

μL
As − 0μL

As = ĝL
m(cAs,T ) + (1 − cAs)

∂ĝL
m

∂cAs
+ kBT ln cAs,

(A2)

where ĝL
m is the excess Gibbs energy,47 i.e., the difference

between the free energy of the liquid and the weighted average
of those of its pure components. Hence

μL
Ga(cAs,T ) − 0μL

Ga(T ) + μL
As(cAs,T ) − 0μL

As(T )

= 2ĝL
m + (1 − 2cAs)

∂ĝL
m

∂cAs
+ kBT ln[cAs (1 − cAs)]. (A3)

ĝL
m(cAs,T ) can be approximated by using a first degree Redlich-

Kister polynomial:

ĝL
m = cAs(1 − cAs)

1∑
ν=0

νLL
As,Ga(2cAs − 1)ν, (A4)

the T -dependent coefficients νLL
As,Ga of which are given by

Ansara et al.47 (see Table II).
The second bracket in Eq. (A1) rewrites

0μL
Ga(T ) + 0μL

As(T ) − gGaAs(T )

= 0μL
Ga(T ) − 0hS

Ga(T0) + 0μL
As(T ) − 0hS

As(T0)

− [
gGaAs(T ) − 0hS

Ga(T0) − 0hS
As(T0)

]
, (A5)

where 0hS
A(T0) is the atomic enthalpy of element A in its

reference solid structure (orthorhombic for Ga, rhombohedral
for As) at temperature T0 = 298.15 K, which is taken as a
standard energy reference in the literature.47,60 To evaluate
the right side of Eq. (A5), we use the formulas for 0μL

A(T ) −
0hS

A(T0) (A = Ga or As) given by Dinsdale60 and the formula
for gGaAs(T ) − 0hS

Ga(T0) − 0hS
As(T0) (scaled for half a mole of

GaAs) given by Ansara et al.47 (Table II). This terminates the
calculation of the difference of chemical potential between
large liquid and solid phases. The variations of 
μ with cAs

and T are illustrated in Fig. 10.

2. Equilibrium pressures for infinite phases

Let us consider a gas phase at total pressure P containing
various species, in particular Asn molecules at partial pressures
πn. Assuming that the gas phase is an ideal solution, the
chemical potential of the Asn molecule is

μG
Asn

(πn,T ) = 0μG
Asn

(T ) + kBT ln
πn

P
, (A6)
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TABLE II. Thermodynamic quantities for use in Eqs. (A4), (A5), (A8), and (A9) and their values in J/mol as a function of temperature T

(in K). For use in our calculations, where atomic or molecular quantities are handled, these expressions must be divided by Avogadro’s number.
The last quantity is given only for the As2 species and, when substituted in Eq. (A8), gives p∞

2 in units of 0.1 MPa. When the reference quoted
in the third column gives several expressions, only that relative to the temperature range of interest for self-catalyzed GaAs growth is retained.

Quantity Value Ref.

0LL
As,Ga −25503.6 − 4.3109 T 47

1LL
As,Ga −5174.7 47

0μL
Ga(T ) − 0hS

Ga(T0) −1389.188 + 114.049043 T

−26.0692906 T ln T + 0.1506 × 10−3 T 2 −0.040173 × 10−6 T 3 − 118332 T −1 60
0μL

As(T ) − 0hS
As(T0) 17172.453 + 99.78639 T − 23.3144 T ln T −2.71613 × 10−3 T 2 + 11600 T −1 60

gGaAs(T ) − 0hS
Ga(T0) − 0hS

As(T0) −104352 + 265.43256 T −48.681258 T ln T − 0.0011158 T 2

+127670 T −1 − 7.1378 × 10−7 T 3 47
0μG

As2
(T ) − 2 0hS

As(T0) − kBT ln P 179351.548 + 10.5519715 T −37.35966 T ln T − 5.61806 × 10−5 T 2

−2.13098 × 10−8 T 3 + 104881.15 T −1 47

where 0μG
Asn

is the corresponding chemical potential in a pure
Asn vapor at pressure P and temperature T . The Asn pressure
p∞

n (cAs,T ) in equilibrium with a (Ga, As) liquid with As
atomic concentration cAs is defined by

μG
Asn

(p∞
n ,T ) = nμL

As(cAs,T ). (A7)

From Eqs. (A6) and (A7) we get

kBT ln p∞
n = nμL

As(cAs,T ) − 0μG
Asn

(T ) + kBT ln P

= n
[
μL

As(cAs,T ) − 0hS
As(T0)

]
− [

0μG
Asn

(T ) − n0hS
As(T0) − kBT ln P

]
. (A8)

The first bracket in Eq. (A8) rewrites

μL
As(cAs,T ) − 0hS

As(T0) = [
μL

As(cAs,T ) − 0μL
As(T )

]
+ [0μL

As(T ) − 0hS
As(T0)

]
. (A9)

In turn, the first bracket in Eq. (A9) is calculated by using
Eqs. (A2) and (A4) and the second one by using the expressions
given by Dinsdale,60 as in Appendix A 1 (Table II). As for
the second bracket in Eq. (A8), it is found by omitting the
pressure-dependent term in the expressions given, for each
molecule Asn, by Ansara et al. in Appendix II of Ref. 47 (see

FIG. 10. (Color online) Variation with As concentration in the
liquid of the difference of chemical potential 
μ between liquid and
solid ZB GaAs and of the equilibrium pressure p∞

2 of As2 molecules,
for the three temperatures indicated.

Table II). This terminates the calculation of the equilibrium
pressures p∞

n of the Asn molecules for a large liquid phase.
The variations of p∞

2 with cAs and T are illustrated in Fig. 10.

3. Finite size effects

First recall the relations between contact angle β, NW
radius R, and the radius Rd , surface Sd and volume Vd of
the droplet:

R = Rd sin β,

Sd = 2πR2 1 − cos β

sin2 β
, (A10)

Vd = πR3 (1 − cos β)2 (2 + cos β)

3 sin3 β
.

Two finite size effects must be taken into account. These
effects have a common cause, namely the change of the
liquid-vapor interface area when a few atoms are added to,
or removed from, the nanosize droplet. They modify two
of the currents considered in Sec. II. The change of the
chemical potential in the liquid [Gibbs-Thomson (GT) effect]
modifies the nucleation probability, whereas the elevation of
the equilibrium pressure of the various gas species (Kelvin
effect) increases evaporation.

The GT effect is usually treated as an increase of the
chemical potential in the liquid, since adding an atom to the
droplet produces an increase of its external area. However, as
discussed in depth by Dubrovskii et al.,52 for VLS growth, a
detailed calculation of the nucleation barrier, depending on the
location of the nucleus at the LS interface, has to be carried
out. Since the critical nucleus typically forms in a time much
shorter than the time needed for the external fluxes to replace
the atoms transferred from liquid to nucleus, nucleation occurs
at a constant total number of atoms in the system. The area
of the droplet decreases because atoms are removed from the
liquid to form the nucleus; however, in the case considered
here (the nucleus forms away from the triple phase line), it also
increases because the solid nucleus is entirely embedded in the
liquid. The volume of the droplet (i.e., the volume enclosed
in its external surface, including the nucleus) also changes.
Since the nucleus occupies only a small fraction of the LS
interface, the surface and volume changes are not effected by
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a change of the NW radius but by a small change of the contact
angle β.

Let δSd and δVd be the changes of droplet surface and
volume when one or a few atoms are added or removed at
constant NW radius. By differentiating the expressions of
Eq. (A10), we find that δSd/δVd = 2 sin β/R. Thus, the net
change of the difference of chemical potential per pair that
intervenes in nucleation is52


μGT = 2
(
ωL

p − ωS
p

)
γ L

Ga sin β

R
, (A11)

where ωL
p and ωS

p are the volumes of a (Ga, As) pair in the
liquid and the solid, respectively, and γ L

Ga the surface energy
of liquid Ga (taken as a good approximation of the surface
energy of the droplet, which is nearly pure Ga). Contrary to the
usual GT effect, 
μGT may be of either sign.52 In the case of
GaAs, the two pair volumes are very close (ωS

p = 0.04573 nm3

and ωL
p = 0.04376 nm3 at 900 K, the latter from the atomic

volumes in the liquid state61,62) and 
μGT is slightly negative.
As for the Kelvin effect, the evaporation of an Asn molecule

reduces the droplet volume by δVd = nωL
As, where ωL

As is the
atomic volume of As in the liquid. Using the formula for
δSd/δVd given above, we find that the chemical potential of
the set of n As atoms in the liquid is increased by


μn = 2nωL
Asγ

L
Ga sin β

R
. (A12)

Inserting the modified 
μ in Eq. (A8) shows that the
equilibrium pressure of Asn becomes

pn(cAs,T ,R) = p∞
n (cAs,T ) exp

(

μn

kBT

)
. (A13)

Since the droplet area decreases upon evaporation, the chemi-
cal potential in the liquid and the equilibrium pressure are both
augmented with respect to the case of an infinite liquid.
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