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Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle
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The resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum
dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level
atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and
the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin
electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized
surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons
are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of
the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field
corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one
obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle’s aspect ratio, the external
magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin
of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized
by engineering the shape of the MNP.
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I. INTRODUCTION

The coherent manipulation of semiconductor quantum dots
(QDs) has attracted much interest motivated by the proposal of
using QDs as the basic building block of quantum information
processing devices, either as single photon emitters1 or qubits
for quantum computers.2 Their scalability, feasibility of coher-
ent manipulations, strong robustness against relaxation,3,4 and
the flexibility to accommodate their properties (e.g., energy
scales) to a specific application, which is not possible for
atoms, make them attractive for their integration with the
existing technological applications.

In order to reduce decoherence effects, resonant optical
excitation in QDs has drawn a lot of attention. As a matter of
fact, quantum optical experiments pioneered in atomic vapors
in the 1970s have been shown to be achievable in these systems.
For example, the resonant excitation of QDs has enabled the
observation of Rabi oscillations,5 the coherent manipulation
of excitons,6 and the observation of Autler-Townes splitting
in the optical AC Stark effect. In addition, the Mollow-like
absorption spectrum has been demonstrated for a single neutral
exciton,7–9 biexciton10 and for a single self-assembled charged
quantum dot.11,12 Spin initialization and arbitrary single-qubit
rotations for QD’s electron spins coupled through a cavity
mode while making use of all-optical Raman transitions have
been demonstrated as well.13

Among other findings, it deserves to be mentioned the
collection of resonance fluorescence on a single QD. The
embedding of a QD between two distributed Bragg reflectors of
moderate reflectivity had allowed the successful recording or
the first measurement of RFS in a single self-assembled QD.8

The use of a moderate-finesse etalon and a dark-field micro-
scope for detection of the RFS have allowed the experimental
observation of the Mollow triplet using a single QD. The key
advantage of the resonant fluorescence over the spontaneous
one is that the resonance fluorescence exhibits much more
information about the system under study, including quantum
features of interaction of the incident radiation with the

system.14 As an example of this, the application of an external
magnetic field in the Faraday geometry allowed for the optical
accessing of the QD spin through the analysis of the sidebands
in the so-called Mollow quintuplet.15 The authors pointed out
that the spin of the QD is imprinted into the spectrally resolved
sidebands of the RFS. The operation in the low driving field
regime, the so-called Heitler regime, has allowed us to generate
subnatural linewidth and high-coherence quantum light from
a single QD.16 This phenomenon arises from the dominance
of the elastic component of the RFS over the incoherent part of
the spectrum. These experimental findings open an alternative
to produce single photons with laserlike coherence free from
any dephasing processes affecting the QD light emission,
which is of much interest in quantum information science. This
behavior has been also experimentally confirmed in another
work,17 where the fraction of coherently scattered photons
was shown to be close to unity for sufficiently weak or detuned
pumping of a InAs QD. In these works the self-assembled
quantum dot is usually embedded in a high-quality microcavity
structure.

In view of the fact that the density of states scales with
the ratio of the quality factor of the cavity to the mode
volume, the use of small cavities has shown to be a very
efficient method to manage the radiative decay rates of a
quantum emitter.18 An alternative to obtain large local photon
density of states, accompanied by a significative reduction
in the size of the system, is provided by plasmonic systems
where light fields are confined to the surface of a MNP.
When a quantum emitter is approaching a resonant plasmonic
structure, it experiences a strong near-field enhancement as
well as a significant modification of the decay rate of its
transition channels. The localized surface charge oscillations
supported by these particles allow the coupling between the
MNP and the quantum emitter, leading to a large resonant
enhancement of the local field inside and near the MNP.19–22

In addition, the local density of states are dramatically altered
by the MNP, which results in a modification of the spontaneous
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emission rates of the QD’s optical transitions.22–26 Thus, the
coupling of a single MNP to a QD can be exploited as a
nanoscale cavity27 offering a route to size reduction with a
system size as small as 20 nm3. The AFM nanomanipulation
of the coupling of a single QD to a single gold MNP has been
demonstrated experimentally and manifested as a modification
of the photoluminescence lifetime from about 30 ns to well
below 1 ns.28 In this experiment the authors reported changes
in the photoluminescence of the same QD, thus, eliminating the
ambiguity of variable properties of individual QDs. By analogy
with photoluminescence, the resonance fluorescence of a QD
near the plasmonic nanostructure must also be influenced by
the modified incident electromagnetic field and by the modified
radiative decay rate of the QD. Very recently, resonance fluo-
rescence assisted by plasmonic structures has been addressed
for two level atoms in CW regime29,30 and under pulsed
excitation.15

The aim of this work is to extend the investigations in
Ref. 30 to study the effects of surface charge oscillations
on the RFS of a multilevel hybrid system consisting of a
p-doped QD and a spheroidal metallic nanoparticle (MNP) by
proper adjustment of the shape of the MNP, the MNP-to-QD
distance and the Rabi frequency of the driving field. P-doped
QDs are a very promising system to minimize the interaction
with the reservoir of QD nuclei spin. The p-type atomistic
Bloch function of the hole wave function has a node at the
position of the QD nuclei, which in turn results in a dramatic
reduction of the hyperfine contact coupling Hamiltonian.31

Using this approach, Brunner et al.32,33 have experimentally
obtained a hole spin relaxation time on the order of 1 ms.
Electromagnetically induced transparency (EIT) was also
experimentally demonstrated in this system. In particular, we
show that the anisotropic enhancement of the QD decay rates
arising from the spheroidal geometry of the MNP can modify
the resonance fluorescence time scale. This kind of MNP has
been shown adequate to accelerate the spin initialization of
the QD to a target state.34 We will consider the so-called Voigt
configuration in which the magnetic field is applied along the
growth plane of the QD. We present numerical simulations
for a representative case of QD, with values of the oscillator
strengths, decay rates and the characteristic energy levels taken
from experimental studies.32 It is found that the resonantly
excited system exhibits a rich variety of spectral features in
the resonance fluorescence of a single QD coupled to the MNP
beyond the Mollow triplet found in the two-level case. It is
shown that the adjustment of the relative separation between
the QD-MNP, the aspect ratio of the MNP and the Rabi
frequency of the laser field, the splitting bands and spectral
width of molecular fluorescence are dramatically modified.
Moreover, with the strong pumping laser, the plasmonic effects
can lead to a subnatural narrowing of the spectral lines. In
particular, by proper selection of the applied magnetic field
and the aspect ratio of the MNP, the spectrally distinguished
sideband doublet with information about the spin state is
enhanced. These results suggest that the plasmonic effects
imprinted in the RFS could serve as a way to spectrally isolate
the photons of interest from the original driving field and to
obtain information about spin state.

The paper is organized as follows. Section II establishes
the model, i.e., the Hamiltonian of the system and the

time-evolution equations of the atomic operators assuming
the rotating wave approximation. Section III deals with
the numerical simulations and explores how the plasmonic
interaction influences the RFS of the hybrid system. Finally,
Sec. V summarizes the main conclusions.

II. THEORETICAL MODEL

We consider an InAs/GaAs self-assembled QD grown along
the Z axis through the Stranski-Krastanov method. The QD
is separated by a layer several nanometers thick from a Fermi
sea of holes. An applied bias between the top gate and the
back contact controls the QD charge state (see Refs. 33
and 35 for specific details). The QD which is charged with
a single hole. The ground hole states are labeled |1z〉 ≡ |⇓〉
and |2z〉 ≡ |⇑〉, and the excited trion states are |3z〉 ≡ |⇓⇑↑〉
and |4z〉 ≡ |⇓⇑↓〉. Here ⇑(⇓) and ↑(↓) denote a heavy hole
(HH) and an electron with spins along (against) the Z axis.
Hole and electron spin states are naturally degenerate at zero
magnetic field, with spin eigenvalues ±1/2 for electrons and
±3/2 for holes. The energy level diagram of QD is shown in
Fig. 1(a). Selection rules restrict the optically active transition
to excitations where the difference in spin between initial and
final states is one. Hence, the |1z〉 ↔ |4z〉 transition can only be
driven by a σ+ polarized laser field, the transition |2z〉 ↔ |3z〉
is restricted to σ− polarization, and the transitions |2z〉 ↔ |4z〉
and |1z〉 ↔ |3z〉 remain dark. The application of an external
magnetic along the X axis, perpendicular to the sample growth
direction, in the so-called Voigt geometry, allows the dark
transitions to become bright. The magnetic field introduces an
energy shift depending on the carrier spin direction as

E
h(e)
Zm = 1

2μB(gh(e))Bx. (1)

Here, E
h(e)
Zm is the Zeeman energy shift relative to Bx = 0

T, Bx being the magnetic field, and μB stands for the Bohr
magneton. The quantity gh(e) is the Landé factor of carrier h(e).
This magnetic field causes a reference frame transformation
from the Z to X basis. The ground hole states are |1〉 ≡
|⇓x〉 = 1√

2
(|⇓〉 − |⇑〉) and |2〉 ≡ |⇑x〉 = 1√

2
(|⇓〉 + |⇑〉). In

addition, the electron spin states are |↑x〉 = 1√
2

(|↑〉 + |↓〉)
and |↓x〉 = 1√

2
(|↑〉 − |↓〉), while the mixed trion states are

|4〉 = |⇑x⇓x↓x〉, and |3〉 = |⇑x⇓x↑x〉. In this new situation
each hole spin ground state can be linked to two exciton
states via linearly and orthogonally polarized transitions. In
particular, the |1〉 ↔ |4〉 and |2〉 ↔ |3〉 transitions become
bright with an optical field polarized along the X axis. In
addition, |2〉 ↔ |4〉 and |1〉 ↔ |3〉 transitions become allowed
with an optical field polarized along the Y axis. The four
levels of the system in the Voigt configuration are depicted
in Fig. 1(b). Similar arrangements have been previously
considered in other works.36–39 In what follows we consider
the scheme depicted in Fig. 1(b) to analyze the RFS of the
hybrid system: a linearly, polarized laser Ec along the X axis
drives the hole state |1〉 to an exciton state |4〉. The system can
relax into the desired state |2〉 or return to state |1〉, where it
can be re-excited by the driving field. Note that the same laser
also drives the |2〉 ↔ |3〉 transition, although in a nonresonant
way.
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FIG. 1. (Color online) (a) Four level scheme illustrating the ground and excited states of self-assembled QDs. C.B./V.B. stands for the
conduction/valence band. (b) Metallic nanospheroid placed close to the QDs. The MNP has a semiminor axis Lz = Lx and semimajor axis Ly

and a dielectric constant εm. The dielectric constants of the QD and the host medium are εs and εB , respectively. Atomic states of the positively
charged QD and the MNP. The QD atomic states in the X basis are |1〉 and |2〉 for the hole spin eigenvectors, split by the Zeeman effect; and the
upper levels |3〉 and |4〉 are X1+ excitons consisting of two spin-paired holes in the V.B. and an unpaired electron with spin ±1/2 in the C.B.
The straight lines indicate the driving field linearly polarized along the X axis. The wavy lines indicate the spontaneous relaxations from the
upper level |4〉 to the ground states. In addition, γ32 and γ31 are the decay rate of the upper level |3〉 to the ground states transitions (not shown).

The narrowing/broadening of a line shape is associated to a
decrease/increase of its associated decay rate. Here we are
interested in the obtention of subnatural linewidths. Thus,
in order to lengthen the characteristic time to transfer the
population to the target state |2〉, we pursue to selectively
decelerate the decay rate from the trion state |4〉 to the
target state |2〉, while keeping the other decay rate transition
|4〉 ↔ |1〉 nearly unchanged. To accomplish this a MNP with
nanospheroid geometry is placed close to the QD as shown in
Fig. 1(b). The center-to-center distance between the QD and
the MNP is denoted as R. The semiminor axis and semimajor
axis of the MNP are Lx = Lz and Ly , respectively [Fig. 1(b)].
We define the aspect ratio of the nanospheroid as q = Ly/Lz.
We will show that the appropriate engineering of the shape
of the MNP will result in a way to tailor the dynamics of the
QD-MNP hybrid system, which in turn should manifest as
dramatic modifications in the RFS of the system. The driving
field Ec is assumed to be spatially uniform over the relatively
small dimensions of the hybrid system, and this allows us
the use of the quasistatic approximation40 when describing the
interaction of the light field with the MNP. The dielectric func-
tion of the QD is εs , while that of the host medium is labeled as
εB [see Fig. 1(b)]. The dielectric function of the MNP, εm(ω),
is taken in a renormalized Drude approximation as

εm(ω) = ε∞ − ω2
p

ω2 + iγpω
, (2)

ε∞ being the high-frequency limit of the metal dielectric
function, ωp stands for the bulk plasma frequency, and γp is
the Landau damping constant.

The system is driven by a classical light field with amplitude
Ec and angular frequency ωL, which is assumed to be linearly
polarized in the X direction and reads as

�Ec = 1
2 ûxEc(t)e−iωLt + c.c., (3)

ûx being the unitary vector along the X axis. Therefore, the
driving field only couples transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉.

The time evolution of the density matrix reads

∂ρ

∂t
= − i

h̄
[H,ρ] − Lρ, (4)

where H is the Hamiltonian of the hybrid system and is
explicitly given by

H = h̄

4∑
j=1

ωjσjj − 1

2
[μ41σ41 + μ32σ32] E

(x)
QDe−iωLt + H.c..

(5)

In the above expression, σij = |i〉〈j | are the excitonic
operators and μij is the dipole moment of the transition
|i〉 ↔ |j 〉. The quantity E

(x)
QD represents the slowly varying

amplitude of the total field felt by the QD, which drives the
|1〉 ↔ |4〉 and |2〉 ↔ |3〉 transitions. This field is nothing but
the sum of the driving field and the field due to the polarization
of the MNP arising from the charge induced on its surface by
the field due to the QD (see Appendix A for a summary of
the derivation and Ref. 34 for full details). A straightforward
calculation allows to establish the relationship between these
fields and allows to rewrite the total Hamiltonian of the QD in
the dipole approximation as follows

H = h̄

4∑
j=1

ωjσjj − h̄ [�c + Gc (ρ41 + ρ32)] (6)

× (σ41 + σ32) e−iωLt + H.c.,

where we have introduced the magnitudes �c and Gc, which
account for the effects of both the driving field and the
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plasmonic interaction, and are explicitly given by

�0
c = μ41Ec

2h̄εeffs
,

�c = �0
c

[
1 + SxqL3

xγx(ωL)

R3

]
, (7)

Gc = S2
xμ

2
41qL3

xγx(ωL)

8πε0εBh̄εeffsR6
,

where we have assumed that μ41 = μ32. In the above equa-
tions, �c is the renormalized Rabi frequency associated with
the driving field and the field produced by the induced dipole
moment P

(x)
MNP of the MNP. Note that Gc is a complex quantity

whose imaginary part represents the Förster energy transfer
rate from the QD to the MNP, while its real part accounts for
the red shift of the QD transition caused by the plasmonic
interaction.20,41

Finally the term Lρ in Eq. (4) accounts for the spontaneous
decay rates of the involved transitions, which are described by
Lindblad terms

Lρ = γ
p

41

2
(ρσ44 + σ44ρ − 2σ14ρσ41)

+ γ
p

42

2
(ρσ44 + σ44ρ − 2σ24ρσ42)

+ γ
p

31

2
(ρσ33 + σ33ρ − 2σ13ρσ31)

+ γ
p

32

2
(ρσ33 + σ33ρ − 2σ23ρσ32)

+ γ21

2
(ρσ22 + σ22ρ − 2σ12ρσ21) . (8)

Here, γ
p

ij with i = 3,4 and j = 1,2 stand for the spontaneous
emission decay rates of the QD. These parameters are modified
by the plasmonic field of the MNP. The dissipative process

described by the term of the Liouvillian with the prefactor γ21

accounts for the lower levels’ dephasing and is assumed to be
uncoupled with the localized surface plasmons due to the low
values of the Zeeman splitting considered.

Following previous works26,42 we can derive the new
spontaneous decay rates in terms of their free-space values,
by resorting to a classical calculation in the quasistatic limit
in which the QD is treated as a point dipole. The radiative
decay rate of the atomic transitions modified by the coherent-
plasmonic field enhancement are given by

γ
p

41 = γ
p

32 = γ
(0)
41 Fx

enh,
(9)

γ
p

42 = γ
p

31 = γ
(0)
42 F

y

enh,

where the superindex 0 is used to indicate the values of the
decay rates in free space. The enhancement factors read as

Fx
enh =

∣∣∣∣1 + SxqL3
xγx(ωL)

R3

∣∣∣∣
2

, (10)

F
y

enh =
∣∣∣∣1 + SyqL3

xγy(ωL)

R3

∣∣∣∣
2

. (11)

We refer the reader to Ref. 34 for more details. A similar
approach to estimate the modification of the decay rates has
been used in other works (see for example Refs. 30,43–47). It
is worth noting that depending on the orientation of the dipole
moments of the QD emitter’s transitions, the decay rates could
become very different from one another, i.e., the value of
F

y

enh can strongly differ from that of Fx
enh. This will result in

an anisotropic Purcell factor enhancement which will have
important consequences for controlling the time dynamics
of this nanohybrid system, and can lead to the anisotropic
acceleration or deceleration of the decay rates.

From Eq. (6) and Eq. (8), we obtain the following equations
of motion for the density matrix elements of the QD in the
hybrid system:

∂ρ41

∂t
= −[
41 − i�c]ρ41 + i[�c + Gc(ρ41 + ρ32)]ρ21 + i[�c + Gc(ρ41 + ρ32)](ρ11 − ρ44),

∂ρ31

∂t
= −[
31 − i(�c + 2�e)]ρ31 + i[�c + Gc(ρ41 + ρ32)]ρ21 − i[�c + Gc(ρ41 + ρ32)]ρ34,

∂ρ21

∂t
= −[
21 + iω21]ρ21 + i[�∗

c + G∗
c (ρ14 + ρ23)]ρ31 − i[�c + Gc(ρ41 + ρ32)]ρ24,

∂ρ43

∂t
= −[
43 + i2�c]ρ43 + i[�c + Gc(ρ41 + ρ32)]ρ13 − i[�∗

c + G∗
c (ρ14 + ρ23)]ρ42,

∂ρ42

∂t
= −[
42 − i(�c + 2�g)]ρ42 + i[�c + Gc(ρ41 + ρ32)]ρ12 − i[�c + Gc(ρ41 + ρ32)]ρ43, (12)

∂ρ32

∂t
= −[
32 − i(�c + 2�e + 2�g)]ρ32 + i[�c + Gc(ρ41 + ρ32)](ρ22 − ρ33),

∂ρ44

∂t
= −(

γ
p

41 + γ
p

42

)
ρ44 + i[�c + Gc(ρ41 + ρ32)]ρ14 − i[�∗

c + G∗
c (ρ14 + ρ23)]ρ41,

∂ρ33

∂t
= −(

γ
p

31 + γ
p

32

)
ρ33 + i[�c + Gc(ρ41 + ρ32)]ρ23 − i[�∗

c + G∗
c (ρ14 + ρ23)]ρ32,

∂ρ22

∂t
= −γ21ρ22 + γ

p

32ρ33 + γ
p

42ρ44 + i[�∗
c + G∗

c (ρ14 + ρ23)]ρ32 − i[�c + Gc(ρ41 + ρ32)]ρ23.
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We assume the following definitions of the dephasing
rates: 
41 = (γ p

41 + γ
p

42)/2, 
21 = γ21/2, 
32 = (γ p

31 + γ
p

32 +
γ21)/2 = 
41 + 
21. 2�e = Ee

Zm, and 2�g = Eh
Zm. Finally,

�c = ω41 − ωL denotes the optical detuning of the driving
field. The population of the ground level ρ11 is computed
considering a closed system, i.e., ρ11 = 1 − ρ22 − ρ33 − ρ44.

A close inspection of Eq. (12) reveals that the plasmonic
interaction manifests in three different ways: The first relies
on the plasmon-induced modification of the spontaneous decay
rates. The second is related with the enhancement of the Rabi
frequency, which drives the QD according to the expression
given in Eq. (7). The third manifestation of the plasmonic
interaction can be formally interpreted as a nonlinear fre-
quency shift in the optical resonance, causing a dynamical
detuning and a nonradiative decay rate. For example, in the
case of the optical coherence ρ41, the dynamical detuning
is given by Re(Gc)(ρ11 − ρ44), whereas the dynamical decay
rate (nonradiative decay rate) is given by Im(Gc)(ρ11 − ρ44).
The above mentioned mechanisms strongly depend on the
QD-MNP distance R. The last two mechanisms have been
explored in the context of selective excitonic population in a
QD-MNP hybrid system,48 and in the case of considering how
to obtain an accelerated hole spin initialization.34

A. Fluorescence spectra of the hybrid system

We proceed to analyze how the MNP affect to the RFS of the
QD-MNP hybrid system. This spectrum is proportional to the
Fourier transformation of the steady-state correlation function
limt→∞〈E−(r,t ′ + t) · E+(r,t)〉, where E−(r,t)/E+(r,t) is the
negative/positive frequency part of the radiation field in the
far zone. The radiation field consists of a free-field operator
and a source-field operator that is proportional to the atomic
polarization operator.49 Therefore, the RFS can be expressed
in terms of the atomic correlation function

S(ω) = �
[∫ ∞

0
lim
t→∞〈D+(t ′ + t) · D−(t)〉e−iωt ′dt ′

]
, (13)

where � [] denotes the real part of the magnitude enclosed in
square brackets, and D+ (t) is the atomic polarization operator

D+(t) = �μ14σ41(t) + �μ13σ31(t) + �μ24σ42(t) + �μ23σ32(t).

(14)

and D−(t) = [D+(t)]†.
In writing Eq. (13) and in the rest of this section, we

abbreviate ω − ωL by ω, but we should interpret ω as a
frequency measured relative to the laser frequency ωL. We
are only interested in the incoherent part of the RFS, which is
given by

Sinc(ω) = �
[∫ ∞

0
lim
t→∞〈�D+(t ′ + t) · �D−(t)〉e−iωt ′dt ′

]
,

(15)

where �D±(t ′) = D±(t ′) − 〈D±(∞)〉 stands for the deviation
of the dipole polarization operator from its mean steady-state
value. The calculation of Sinc(ω) requires the calculation
of the two-time correlation function, which can be per-
formed by means of the quantum-regression theorem49,50 (see
Appendix B for details).

In Sec. III we will present the results of the RFS of the
hybrid system by means of numerical simulations, and we will
discuss the role of the previously mentioned mechanisms by
making use of the so-called dressed state picture.

III. RESULTS AND DISCUSSION

We consider the data for the QD reported in Ref. 32.
In particular, the radiative decay rates of the transitions
are h̄γ

(0)
41 = h̄γ

(0)
42 = h̄γ

(0)
32 = h̄γ

(0)
31 ≡ h̄γ0 = 0.5 μeV, the hole

spin decay rate is γ21 � 0.000671 μeV, and the ground-level
Zeeman splitting is 2h̄�g = 18 μeV. These data correspond32

to a temperature of 4.2 K and a magnetic field of 2.3 T.
We assume an upper value for the Zeeman splitting 2h̄�e �
10 μeV. We also consider the driving field resonant with
transition |1〉 ↔ |4〉, i.e., �c = 0 (λ � 947 nm). In addition,
the dielectric constant of the QD is taken as εs = 12.96,
and the dielectric constant of the host material is set to
εB = 2.25. The MNP is a gold nanospheroid with semiminor
axis Lx = Lz = 8 nm, and its semimajor axis Ly is scaled
with the aspect ratio q = Ly/Lz. The plasma frequency is set
to h̄ωp = 8.56 eV, the high-frequency limit ε∞ = 9.54, and the
damping constant h̄γp = 0.066 eV. With these parameters, the
Drude model assumed in Eq. (2) provides a reasonably good
fit to tabulated experimental data for photon energies smaller
than 3 eV.51

As a first step in our study we focus our attention on the
modifications of the spontaneous emission rates due to the
presence of the MNP. Figures 2(a)–2(b) show the radiative
decay rates γ

p

42 and γ
p

41 modified by the presence of the MNP
as a function of the aspect ratio q for several distances R from
the QD center to the MNP center. A close inspection of these
figures shows a highly distinctive behavior for the two decay
rates: The γ

p

41 decay rate shows a monotonous and smooth
decrease versus the aspect ratio for all the distances considered,
whereas the γ

p

42 decay rate presents a dispersivelike behavior
with a large variation in comparison to the value achieved in
free space. In fact, γ

p

42 presents a variation for a certain range
of q ′s where the decay rate is diminished in comparison to
that achieved in free space, and more interestingly, another
interval for q where this decay rate is strongly enhanced
up to a factor close to 102 times the value in free space.
In particular, there exists a certain value of the aspect ratio
around q � 4.6 for which the enhancement is maximized. This
anisotropic behavior is associated with the difference between
the longitudinal surface plasmon resonance along the Y axis
and the transverse surface plasmon resonance along the X axis.
This resonant behavior can be showed up by computing the
angular frequencies of the localized surface plasmon polaritons
(SPPs) labeled as ωspy(x) along the principal axes Y (X), which
read as

ωspj =
√

ςj

εB + ςj (ε∞ − εB)
, j = y,x. (16)

These frequencies are determined by setting to zero the real
part part of the denominator of γy (ωL) and γx (ωL), and solving
for ω (see also Ref. 42). Let us consider for example the case
with q = 4.6 and a distance R = 40 nm. The values obtained
are ωspy = 1.3016 (eV) and ωspx = 2.4618 (eV), whereas
the atomic transition frequency is ω41 = 1.3116 (eV). This
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FIG. 2. (Color online) (a), (b) Plasmon-modified radiative decay rates of the QD γ
p

42\γ p

41 normalized to γ0 versus the aspect ratio (q) of the
MNP for several distances R from the QD to the MNP: R = 30 nm (dotted line), R = 40 nm (dashed-dotted line), R = 60 nm (dashed line),
and R = 400 nm (solid line).

numerical example illustrates that a proper selection of the
shape factor of the MNP allows for the excitation of the SPPs
along the Y axis, whereas those along the X axis remain almost
unexcited.

In order to get some further insight into the behavior of
the curves depicted in Fig. 2(a), we resort to approximate
magnitude F

y

enh in the case that the angular frequency of
the driving field is on resonance with the atomic transition
frequency (ωL ≈ ω41). Thus we can approximate γy to

γy ≈ − ω2
spy

6ςyωL

ωL − ωspy

(ωL − ωspy)2 + (γp/2)2
, (17)

and the coherent-plasmonic enhancement factor F
y

enh can be
simplified to

F
y

enh ≈
∣∣∣∣∣1 + q

(
Lx

R

)3 ω2
spy

6ςyω41

ω41 − ωspy

(ω41 − ωspy)2 + (γp/2)2

∣∣∣∣∣
2

,

(18)

In the case with q ∈ [1, 4.6] the surface plasmon frequency
along the Y axis is larger than the atomic transition frequency
(ωspy > ω41), thus the second term of the right-hand side of
the Eq. (18) takes a negative value, and therefore magnitude
F

y

enh is less than unity, i.e., the spontaneous emission rate is
significantly inhibited, in accordance with the behavior of an
emitter inside a cavity.30,52,53 On the other hand, in the case
where ωspy < ω41, which holds in the interval q ∈ [4.6, 8],
this term becomes positive, resulting in an enhancement of
the spontaneous emission rate (Fy

enh > 1). A similar behavior
has been found in Refs. 54 and 55. Thus, the MNP acts as
a nanoscale cavity which decreases (enhances) the strength
of the vacuum fluctuations depending ωspy lies above (below)
the atomic transition frequency ω41. In summary, all these
facts indicate that the engineering of the shape and the size
of the nanospheroid can be used to enhance on demand the
spontaneous emission in a selected atomic transition of the QD.
This anisotropic resonant phenomenon is the key idea that

allows the selective plasmonic acceleration of the decay of the
transition |2〉 ↔ |4〉 in comparison with the almost unaltered
transition |1〉 ↔ |4〉.34 We will show that this will result in
dramatic modifications in the RFS of the hybrid system.

The anisotropic enhancement of the decay rates of the
atomic transitions is accompanied by the simultaneous modi-
fication of the nonlinear parameter Gc defined in Eq. (7). The
terms involving Gc in Eq. (12) accounts for the local-field
corrections arising from plasmon interaction that takes place
due to the proximity between the QD and the MNP. The
influence of such local-field corrections has been previously
addressed in other hybrid systems (see Ref. 48) in the context
of obtaining selective population transfer in a time regime
where the effects of the enhancement of the decay rates
remained negligible, and in the case of considering spin hole
initialization (see Ref. 34). Here we are interested in analyzing
how the RFS is modified by the presence of the MNP. Note
that the calculation of the RFS relies on the use of the quantum
regression theorem (see Appendix B), which in turn makes use
of the fact that the equation of motion of the system remain in
the linear regime. Thus we should check whether the nonlinear
effects in Eq. (12) remain negligible or not.

Let us start by comparing how the MNP modifies the RFS of
the QD. To this end, we have selected the distance R = 40 nm,
whereas the aspect ratio of the MNP is set to q = 4, which
results in γ

p

42 ≈ 0.105γ0 [very close to the minimum of the
dashed-dotted line in Fig. 2(a)] and γ

p

41 ≈ 0.947γ0. This choice
results in Re(Gc) ≈ 0.019γ0, and Im(Gc) ≈ 0.0002γ0, so that
the terms involving Gc in Eq. (12) do not play a significant role
in the time dynamics of the system, i.e., the nonlinear terms in
Eq. (12) can be neglected and we deal with a linear problem.
In other words, these data indicate that the asymmetric
enhancement of the decay rates is significative, while the local
field effects remain negligible. Figure 3(a) presents the RFS
of the QD in the absence of the MNP (dashed line) in the case
that the Rabi frequency of the driving field is set to �0

c = 1.5γ0.
The central line exhibits only one single peak. In addition,
we can devise the appearance of two weak blue sidebands
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FIG. 3. (Color online) Sinc(ω) versus ω for the isolated QD (dashed line) and the hybrid system (solid line) with R = 40 nm. (a) �0
c = 1.5γ0

and (b) �0
c = 15γ0. The aspect ratio is q = 4 and the magnetic field is set to Bx = 2.3 T. The inset displays the normalized central line.

and two additional red sidebands. The latter being slightly
greater than the former. Under similar illumination conditions,
the presence of the gold nanoparticle splits the central line
into a Mollow-like structure (solid line), and the peak values
of the blue and red sidebands become strongly enhanced.
Furthermore, the central line displays a subnatural linewidth.

An increase of the Rabi frequency (�0
c = 15γ0), results in

a full development of the RFS into all the possible optical
transitions (up to 13 peaks can be observed) consisting in
six blue/red sidebands and the central line as displayed in
Fig. 3(b). This result should not come as a surprise, since
at such a high pump value of the driving field, even the
detuned state |3> experiences a non-negligible population,
which in turn contributes to produce spontaneous photons,
which manifest as the emergence of the tiny transitions. It
is worth mentioning that a Mollow-like quintuplet has been
experimentally observed in the case of analyzing the RFS of
InAs/GaAs quantum dots with a weak external field of 120 mT
applied in the Faraday geometry (see Ref. 15 for details). The
inset in Fig. 3(b) shows the normalized RFS around the central
line in the absence (presence) of the MNP [dashed (solid line)],
revealing the narrowing of such line due to the plasmonic
interaction. In a free-space situation, the use of such high
values of the driving field will lead to the development of the
sidebands and each one of them will become power broadened.
We have shown in Fig. 2 that the presence of the MNP alters the
local density of states, which in turn manifests as a decrease
in the decay rates. These two competing mechanisms result
in a global reduction of the linewidths, indicating us that the
plasmonic interaction dominates over the power broadening.
It is to be noted that measuring the spectral separation of the
largest red sideband from the blue sideband it is possible to
achieve photon emission across a frequency band of ∼84 GHz.
This is nearly 110 times larger than the 0.76 GHz spontaneous
emission rate. This is by no mean an upper limit, but can be
further increased by laser detuning, i.e., by setting �c �= 0.

We will show later in this work that the inner sidebands S±x

and the outermost sidebands S±y [see Fig. 3(b)] correspond
to optical transitions between dressed states α〉 ↔ |β〉 and

γ 〉 ↔ |δ〉, respectively. These transitions only involve the
generation of flying photons which preserve the spin infor-
mation. We note that the emission of such photons from these
two sidebands is anticorrelated, determined by the hole spin.
Therefore, by filtering the RFS to a spin sideband, quantum
dot spin measurement with above-unity signal-to-noise ratio
can be carried out. A similar behavior has been observed in
the case of an isolated n-doped QD.15

In the following we will see that the narrowing of the
central line previously found in Fig. 3(b) together with the
emergence of the sidebands S± x and S± y , which allow for
the access to the QD spin, can be further engineered by a
proper selection of the distance R and the aspect ratio q. To
this end, we have computed the modified decay rate γ

p

42 for
distances R ranging from 20–200 nm. For each one of the
distances considered, we also allowed the aspect ratio to vary
within the interval q ∈ [1, 10], and the aspect ratio at which
such decay rate reaches its minimum value (qmin) was selected.
The results are displayed in Fig. 4(a). Note that in the case of
small distances between the QD and the MNP (R < 50 nm),
the anisotropy of the decay rates becomes large. However
for larger distances the anisotropy decreases and the decay
rates approach to the free-space decay rate γ0. This behavior
allows us to select the aspect ratio qmin, which optimizes the
Purcell anisotropy and the signal of the sidebands of interest
in the RFS. Figure 4(b) shows the RFS obtained for two
different pair of values (R = 20 nm, qmin = 2.726) (solid line)
and (R = 40 nm, qmin = 4) (dashed line), and the same value
of the Rabi frequency �0

c = 14γ0. The outermost sidebands
S± y remain with reduced peak values in this situation. More
interestingly, the sidebands S± x are not resolved for the
largest distance (see the dashed line in the right and left
insets with vertical linear scale). This behavior contrasts with
the one displayed in Fig. 3(b), which was obtained for a
slightly greater value of the Rabi frequency (�0

c = 15γ0). The
situation is dramatically modified when changing the distance
to R = 20 nm and the aspect ratio to q = 2.726: in this case the
sidebands S± x with solid line are clearly resolved from their
adjacent sidebands. It should be remarked that the red-shifted
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CARREÑO, ANTÓN, AND ARRIETA-YÁÑEZ PHYSICAL REVIEW B 88, 195303 (2013)

50
100

150
200

3

3.5

40

0.2

0.4

0.6

0.8

1

qmin

R (nm)

γp
42/γ0

γp
41/γ0

m
in

.d
ec

a
y

ra
te

s

−80 −60 −40 −20 0 20 40 60 80

10
−4

10
−2

10
0

ω

S
in

c(ω
) 

(u
a)

 

(b)

(a)

20 25 30
0

0.05

ω

−30 −25 −20
0

0.5

ω
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p
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the pair of values (R,qmin): (20 nm, 2.726) (solid line) and (40 nm, 4) (dashed line). The Rabi frequency of the driving field is �0

c = 14γ0, and
the magnetic field is set to Bx = 2.3 T.

sideband S−x experiences a huge enhancement in comparison
to the signal obtained at the twin sideband S+x . In addition, the
sideband S−x exhibits a twentyfold enhancement with regard
to the signal achieved in the conditions of solid line in Fig. 3(b).

Up to now we have considered a situation where the driving
field is on resonance with transition |1〉 ↔ |4〉, i.e., �c = 0. In
such situation, the asymmetries found in the RFS arise from the
fact that the Zeeman-split upper levels |3〉 and |4〉 are pumped
in an asymmetric way while the initial population is in level
|1〉. One may expect that the use of a detuned driving field
will reinforce the asymmetry of the system and it will bring a
new parameter to tune on demand the spectral features of the
RFS. Figure 5 presents the spectra obtained for two non-null
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FIG. 5. (Color online) Sinc(ω) versus ω for the QD-MNP hybrid
system in the case with R = 20 nm, q = 2.726, the Rabi frequency
of the driving field is �0

c = 14γ0, and the magnetic field is set to
Bx = 2.3 T. The detuning of the driving field is set to �c = −5γ0

(solid line) and �c = +5γ0 (dashed line).

values of the detuning �c while keeping the rest of parameters
as those used to produce the curve in solid line in Fig. 4(b). In
Fig. 5 we can appreciate that the use of a negative value for �c

results in an way to make transition |2〉 ↔ |3〉 more effective:
the essence of this effect lies in the imbalance of the effective
Rabi frequency (�eff = √

�2
c + �2

c) experienced by the two
pumped bare transitions. Here, we use the �c dependence to
enforce such imbalance and enables to imprint the spin infor-
mation onto the sidebands S±x/y : for a negative value of �c

(solid line) the sidebands S±x are not spectrally resolved (see
the inset at the bottom of the figure) while the outermost side-
bands S±y remain resolved and they exhibit weak peak values.
However, the use of a positive value for �c (dashed line) allows
to resolve the S±x from their corresponding nearest sidebands.

IV. ANALYSIS OF RFS IN THE DRESSED-STATE PICTURE

In this section we derive analytic expressions for the line
shapes and linewidths of the RFS in the dressed state basis
in order to explain the main features of the spectra previously
obtained. The dressed states are found by looking for the eigen-
values (λk ,k = α,β,δ,γ ) and eigenvectors (|k〉 ,k = α,β,δ,γ )
of the atomic plus coherent part of the Hamiltonian in Eq. (6)
in the rotating frame:

Hrf = 2h̄�gσ22 − h̄(�c + 2�e)σ33 − h̄�cσ44 − h̄�∗
cσ14

− h̄�∗
cσ23 − h̄�cσ32 − h̄�cσ41. (19)

By assuming that the driving field is resonant with the bare
atomic transition (�c = 0), the eigenvalues are found to be
given by:

λα = +h̄|�c|, λβ = −h̄|�c|,
(20)

λδ = h̄(� + �R), λγ = h̄(� − �R),

where � = �g − �e, and �R = √
(�g + �e)2 + |�c|2. The

eigenvectors [solutions to the equation (H − λkÎ )|k〉 = 0, Î

195303-8



RESONANCE FLUORESCENCE SPECTRUM OF A p- . . . PHYSICAL REVIEW B 88, 195303 (2013)

2.5 5 7.5 10 12.5 15
−30

−20

−10

0

10

20

30

40

50

Ω0
c/γ0

λ
k

(a)

λα

λβ

λγ

λδ δ, N+1

Sx+

(b)

Sy+

δ, N

α, N+1

α, N

β, N+1

β, N

γ, N+1

γ, N

FIG. 6. (Color online) (a) Eigenvalues of the Hamiltonian versus the Rabi frequency of the driving field �0
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between adjacent manifolds of dressed states, indicating the blue shifted transitions, which carry information about the spin of the QD.

being the identity operator] are

|α〉 = 1√
2

[|1〉 − |4〉] ,

|β〉 = 1√
2

[|1〉 + |4〉] ,

(21)

|δ〉 = �c

A

[
|2〉 + �1 − �R

�c

|3〉
]

,

|γ 〉 = �c

B

[
|2〉 + �1 + �R

�c

|3〉
]

.

In writing Eq. (21) the following magnitudes have been
defined:

�1 = �g + �e,

A =
√

|�c|2 + |�1 − �R|2, (22)

B =
√

|�c|2 + |�1 + �R|2.
The eigenstates in Eq. (21) define a rotation matrix T that

diagonalizes the Hamiltonian of Eq. (19) via the matrix product
T HT −1. Thus the density operator in the dressed basis ρD will
be given by ρD = TρT −1, ρ being the density matrix operator
in the bare basis. Projection of the master equation over the
dressed state basis give rise to complicated couplings between
the dressed-state populations and coherences. However, the
situation can be simplified in the high field limit where the
effective Rabi frequency is much greater than all relaxation
rates, i.e., �R � γ

p

kl (k = 3,4,l = 1,2). In this case, we can
ignore the nonsecular terms, i.e., coupling between population
and coherences, since matrix elements associated with various
frequencies may be omitted to order O(γ p

kl/�R). The Bloch
equations and the RFS in this basis and in the secular
approximation are given in Appendix C.

We present in Fig. 6(a) the eigenvalues given in Eq. (20)
as a function of the Rabi frequency �0

c . Note that the energies
of the states |δ〉 and |γ 〉 depend weakly on �0

c . Figure 6(b)
displays two adjacent manifolds of states with N + 1 and N

photons. The blue-shifted dressed-state transitions leading to

the transition, which preserve the information about the spin of
the QD are indicated with solid arrows. The RFS can be shown
to be given as a sum of different Lorentzians. The amplitude,
center and width of each one of the Lorentzians are provided
in Appendix C. In particular, the center of each Lorentzian is
determined by computing the difference in energy between the
transitions from the manifold of states with N + 1 photons,
|vi〉 ⊗ |N + 1〉, to the manifold with N photons |vj 〉 ⊗ |N〉,
|vi〉,|vj 〉 being any of the possible dressed states in Eq. (21).

Now we resort to analyze a representative case of the
RFS, as the one with solid line depicted in Fig. 3(b). The
spectral features of the RFS arise from the possible transitions
between two adjacent manifolds of the Hilbert space [see
Fig. 6(b)]. The innermost weak right sideband is attributed
to transition |β〉 ↔ |γ 〉 with amplitude Aβγ+. In Fig. 6(b)
the transitions which carry information about the spin of the
QD are indicated, according to the dressed states obtained
in Eq. (21). The two highest sidebands on the right side of
frequencies (Aδα+ and Aβδ+), can be attributed to transitions
|δ〉 ↔ |α〉 and |δ〉 ↔ |β〉. The outermost weak right sideband
arises from transition |δ〉 ↔ |γ 〉 with amplitude Aδγ+. Finally
the two sidebands enclosed between the two right highest
sidebands can be ascribed to transitions |α〉 ↔ |β〉 (Aαβ+)
and |α〉 ↔ |γ 〉 (Aαγ+), respectively. Numerical simulations
carried out reveals that the RFS computed in the dressed
picture reproduces the RFS in the bare basis. In view of the
previous considerations, we can ascribe the transitions labeled
as S±x in Fig. 3(b) as the ones produced from dressed state
transitions |α〉 ↔ |β〉, while the transitions labeled as S±y in
Fig. 3(b) as the ones produced from dressed-state transitions
|δ〉 ↔ |γ 〉. It can be easily derived from Eq. (21) that these
transitions are only contributed by transitions |1〉 ↔ |4〉 and
|2〉 ↔ |3〉, respectively, and they are the unique dressed state
transitions, which carry information about the spin of the QD,
while the other transitions result in mixing the spin of the QD
states.

The spectra computed in the dressed state picture of the
isolated QD and the hybrid system are depicted in Fig. 7(a).
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We can devise that the RFS reproduces the results obtained
in the bare basis presented in Fig. 3(b), which confirms the
validity of the secular approximation in the current situation.
The enhancement of the signal labeled as Sx+ due to the
presence of the MNP obtained in Fig. 3(b), can be easily
explained in the dressed picture as follows: the maximum value
of Sx+ can be estimated as the peak value of the corresponding
Lorentzian associated to transition |α〉 ↔ |β〉: Aαβ+/
2

αβ =
(ραα )s

3+2γ
p

42/γ
p

41
[see Eqs. (C11) and (C12) in Appendix C]. The

steady-state population of the level |α〉 can be shown to be
nearly independent on distance R [in this case (ραα)s ≈ 0.06],
thus the enhancement of the peak value of this signal is
fully attributable to the plasmon-induced changes of the
decay rates. Numerical analysis reveals that the peak value
predicted by the dressed-state formulas, which is about 0.019
for R = 40 nm, accounts for the enhancement found in the
bare state (0.021). In addition, the center of the Lorentzian
found at ωx+ = 29.18 is also well estimated with the dressed
theory at ωx+ = 29.19 for R = 40 nm. The same predictions
also hold in the dressed picture for the other sideband Sy+
found in Fig. 3(b). Finally, it is worth mentioning that the
narrowing of the central line in Fig. 3(b) is also explained
in terms of the narrowing of the component S0(ω) defined
in Appendix C. In addition, the narrowing of the individual
components found in the figures of previous section can be
explained when considering the dependence of the width of
the corresponding Lorentzians on the distance R. To this end
we have plotted in Fig. 7(b) the values of the decay rates of
the sideband S±x (
αβ) versus the distance R and two values
of the aspect ratio q, while keeping fixed the value of the
driving field �0

c = 14γ0. This figure allows us to explain the
origin of subnatural linewidths of these sidebands previously
observed.

V. CONCLUSIONS

In this work we present a description of the influence of
exciton-plasmon interaction in a QD-MNP hybrid system on

the RFS. This system has been proposed as a candidate for
obtaining high-fidelity spin preparation.34 The QD is modeled
as a four-level-like atomic system and the MNP is considered to
be a nanospheroid. We analyze how localized surface charge
oscillations in the MNP modify the decay rates of the QD
depending on the aspect ratio of the MNP and the distance
between the QD and MNP R. Based on the fact that the fre-
quencies of the SPPs are very different along the two principal
axes, the decay rate of the atomic transitions parallel to the
MNP’s major axis would be much different than those parallel
to the corresponding minor axis. We show that the anisotropic
modification of the decay rates results in modifications of the
RFS of the hybrid system. We have predicted that the lines of
the RFS can be broadened or narrowed depending on the aspect
ratio q, the distance R and the Rabi frequency of the driving
field. The modifications of the RFS predicted in this work
represents a way for testing experimentally how the exciton-
plasmon interaction modifies the properties of the spontaneous
emission of the decay pathways in a positively charged
QD.

Finally, it should be stated that, although speculative,
the hybrid system here investigated can be implemented
in realistic QD-MNP systems. Recently, hybrid structures
consisting of self-assembled QDs have been grown and
covered with metal nanocrystals.56 In addition, we would like
to draw attention to very recent works where the controlled
coupling of a single epitaxial QD to a plasmonic nanoantenna
has been demonstrated.57,58 Thus, the structure modeled
here could be fabricated using available nanotechnologies
for the growth and the precise positioning of the involved
elements.
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APPENDIX A: TOTAL FIELD FELT BY THE QD IN THE
PRESENCE OF THE MNP

The electric field appearing in Eq. (5) reads

E
(x)
QD = 1

εeffs

[
Ec + 1

4πε0εB

SxP
(x)
MNP

R3

]
, (A1)

where εeffs = (2εB + εs)/(3εB), and Sx = −1 since the electric
field E

(x)
QD is polarized along the X axis of the hybrid system

[see Fig. 1(b)]. The dipole moment P (x)
MNP arises from the charge

induced on the surface of the MNP, and depends on the total
field due to the QD as59

P
(x)
MNP = 4πε0εBqL3

xγx(ωL)E(x)
MNP, (A2)

where E
(x)
MNP is the slowly varying field amplitude at frequency

ωL felt by the MNP, which is given by

E
(x)
MNP = Ec + 1

4πε0εB

SxP
(x)
QD

R3
. (A3)

In Eq. (A2) the factor γx(ωL) stands for the polarization of
the MNP, which reads as

γl(ωL) = εm(ωL) − εB

3εB + 3ςl (εm(ωL) − εB)
, l = x,y,z, (A4)

where ςl is called the depolarization factor of the MNP,60 and
for a nanospheroid reduces to

ςx = 1 − ςy

2
,

ςz = 1 − ςy

2
, (A5)

ςy = 1

q2 − 1

[
1√

1 − 1/q2
log

(
1 +

√
1 − 1/q2

1 −
√

1 − 1/q2

)
− 1

]
.

The dipole P
(x)
QD is expressed via the off-diagonal elements of

the density matrix as follows:

P
(x)
QD = μ41ρ41 + μ32ρ32. (A6)

In Eq. (A3) we have not included the factor εeffs to account
for the screening of the QD dipole field due to the QD dielectric
response, since the polarization P

(x)
QD already contains this

factor, as pointed out by Malyshev et al.61 Substituting
Eqs. (A3) and (A6) back into Eq. (A2) we obtain

P
(x)
MNP = 4πε0εBqL3

xγx(ωL)

×
(

Ec + Sx

4πε0εB

μ41ρ41 + μ32ρ32

R3

)
.

Finally, the slowly varying amplitude of the field in the QD
is

E
(x)
QD = Ec

εeffs

(
1 + SxqL3

xγx(ωL)

R3

)

+ qL3
xγx(ωL)S2

x (μ41ρ41 + μ32ρ32)

4πε0εBεeffsR6
. (A7)

The result (A7) is plugged into Eq. (5) and we arrive to the
result stated in Eq. (6).

APPENDIX B: RESONACE FLUORESCENCE SPECTRUM
IN THE BARE-STATE BASIS

The evaluation of the two-time correlation functions that
appear in Eq. (15) can be recast to

Sinc(ω) ∝ �
[ ∫ ∞

0

(
μ2

14〈�σ41(τ )�σ14(0)〉

+ �μ14 · �μ23〈�σ41(τ )�σ23(0)〉
+μ2

24〈�σ42(τ )�σ24(0)〉
+ �μ24 · �μ13〈�σ42(τ )�σ13(0)〉
+ �μ13 · �μ24〈�σ31(τ )�σ24(0)〉
+μ2

13〈�σ31(τ )�σ13(0)〉
+ �μ23 · �μ14〈�σ32(τ )�σ14(0)〉
+μ2

23〈�σ32(τ )�σ23(0)〉) e−iωτ dτ

]
. (B1)

The two-time correlation functions can be carried out with
the aid of the quantum regression theorem49,50 and the optical
Bloch equations (12). To this end we define the column vector

Ûjk(τ ) = [�σ41(τ )�σjk(0),�σ14(τ )�σjk(0),

�σ42(τ )�σjk(0),�σ24(τ )�σjk(0),

�σ31(τ )�σjk(0),�σ13(τ )�σjk(0),

�σ32(τ )�σjk(0),�σ23(τ )�σjk(0),

�σ21(τ )�σjk(0),�σ12(τ )�σjk(0),

�σ43(τ )�σjk(0),�σ34(τ )�σjk(0),

�σ44(τ )�σjk(0),�σ33(τ )�σjk(0),

�σ22(τ )�σjk(0)]T k = 3,4, and

j = 1,2, (B2)

where the superindex T stands for transpose. According to the
quantum regression theorem, for τ > 0 the vector Ûjk satisfies

d Ûjk(τ )

dτ
= MÛjk(τ ) , (B3)

M being the 15 × 15 matrix of the coefficients of Eq. (12).
By working in the Laplace space we obtain the steady-state

fluorescence spectrum. Specifically we have

Sinc(ω) ∝ �
{

l=15∑
l=1

[γ41R1l(iz) + √
γ41γ32R7l(iz)]Û (l)

14 (∞)

+
l=15∑
l=1

[γ42R3l(iz) + √
γ42γ31R5l(iz)]Û (l)

24 (∞)

+
l=15∑
l=1

[γ32R7l(iz) + √
γ41γ32R1l(iz)]Û (l)

23 (∞)

+
l=15∑
l=1

[γ31R5l(iz) + √
γ42γ31R3l(iz)]Û (l)

13 (∞)

}
,

(B4)

where Û
(l)
jk (∞) is the steady-state value of the lth component

of the vector Ûjk(τ ). Rjk(iz) is the (j,k) element of the matrix
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R(iz) defined as

R(iz) = (izÎ − M)−1, (B5)

Î being the identity matrix with size 15 × 15, and z ≡
(ω − ωL) /γ0.

APPENDIX C: BLOCH EQUATIONS AND RFS IN THE
DRESSED-STATE PICTURE

The Bloch equations are given by:

∂ραα

∂t
= −
α

ααραα − 
β
ααρββ − 
δ

ααρδδ + 
0
αα, (C1)

∂ρββ

∂t
= −
α

ββραα − 

β

ββρββ − 
δ
ββρδδ + 
0

ββ, (C2)

∂ρδδ

∂t
= −
α

δδραα − 

β

δδρββ − 
δ
δδρδδ + 
0

δδ, (C3)

∂ραβ

∂t
= −[i2�c + 
αβ]ραβ, (C4)

∂ραδ

∂t
= −[i(�c − � − �R) + 
αδ]ραδ, (C5)

∂ραγ

∂t
= −[i(�c − � + �R) + 
αγ ]ραγ , (C6)

∂ρβδ

∂t
= −[−i(�c + � + �R) + 
βδ]ρβδ, (C7)

∂ρβγ

∂t
= −[−i(�c + � − �R) + 
βγ ]ρβγ , (C8)

∂ρδγ

∂t
= −[i2�R + 
δγ ]ρδγ , (C9)

where the decay rates appearing in Eqs. (C1)–(C9) are
explicitly given by:


α
αα = 


β

ββ = γ
p

41

4
+ γ

p

42

2
+ γ

p

31(�1 + �R)2 + γ21|�c|2
2B2

,


β
αα = 
α

ββ = −γ
p

41

4
+ γ

p

31(�1 + �R)2 + γ21|�c|2
2B2

,


δ
αα = 
δ

ββ = −γ
p

31(�1 − �R)2 + γ21|�c|2
2A2

+ γ
p

31(�1 + �R)2 + γ21|�c|2
2B2

,


0
αα = 
0

ββ = γ
p

31(�1 + �R)2 + γ21|�c|2
2B2

,


α
δδ = 


β

δδ = −γ
p

42|�c|2
2A2

+ γ
p

32|�c|2(�1 + �R)2

A2B2
,


δ
δδ =

(
γ

p

31 + γ
p

32

)
(�1 − �R)2 + γ21|�c|2

A2

− γ
p

32|�c|2(�1 − �R)2

A4
+ γ

p

32|�c|2(�1 + �R)2

A2B2
,


0
δδ = γ

p

32|�c|2(�1 + �R)2

A2B2
.


αβ = 3

4
γ

p

41 + γ
p

42

2
,


αδ = 
βδ = γ
p

41 + γ
p

42

4

+
(
γ

p

31 + γ
p

32

)
(�1 − �R)2 + γ21|�c|2

2A2
,


αγ = 
βγ = γ
p

41 + γ
p

42

4

+
(
γ

p

31 + γ
p

32

)
(�1 + �R)2 + γ21|�c|2

2B2
,


δγ =
(
γ

p

31 + γ
p

32

)
(�1 + �R)2 + γ21|�c|2

2B2

+
(
γ

p

31 + γ
p

32

)
(�1 − �R)2 + γ21|�c|2

2A2

− γ
p

32|�c|2
(
�2

1 − �2
R

)
A2B2

. (C10)

The RFS is obtained in the dressed-state basis by applying
the quantum regression theorem to the dressed equations
(C1)–(C9). After a lengthy but straightforward calculation,
the RFS in this basis [Sinc,DS(ω)] can be shown to be given by:

Sinc,DS(ω) ∝ �
[

Aαβ−

αβ + i(2�c + ω)

+ Aαβ+

αβ − i(2�c − ω)

+ Aαδ+

αδ + i(�c − �̄ − �R + ω)

+ Aαδ−

αδ − i(�c − �̄ − �R − ω)

+ Aαγ−

αγ + i(�c − �̄ + �R + ω)

+ Aαγ+

αγ − i(�c − �̄ + �R − ω)

+ Aβγ+

βγ − i(�c + �̄ − �R − ω)

+ Aβγ−

βγ + i(�c + �̄ − �R + ω)

+ Aβδ+

βδ − i(�c + �̄ + �R − ω)

+ Aβδ−

βδ + i(�c + �̄ + �R + ω)

+ Aδγ−

δγ + i(2�R + ω)

+ Aδγ+

δγ − i(2�R − ω)

+ S0(ω)

]
. (C11)

A close inspection of Eq. (C11) reveals that the RFS can be
decomposed as a sum of Lorentzian functions with different
amplitude coefficients [Ajk± (j,k = α,β,γ,δ)], and located at
specific positions: the plus/minus sign is used for the blue/red

sidebands. The center of each Lorentzian is determined by
computing the difference in energy between the transitions
from the manifold of states with N photons, |vi〉 ⊗ |N〉, to the
manifold with N − 1 photons |vj 〉 ⊗ |N − 1〉, |vi〉,|vj 〉 being
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any of the possible dressed states in Eq. (21). The expressions
for the coefficients Ai in Eq. (C11) read:

Aαβ+ = γ
p

41(ραα)s
4

,

Aαβ− = γ
p

41(ρββ)s
4

,

Aαδ+ = γ
p

31A
2(ρδδ)s

8�2
R

,

Aαδ− = γ
p

42A
2(�1 + �R)2(ραα)s

8�2
R�2

c

,

Aαγ+ = γ
p

31B
2(ργγ )s

8�2
R

,

Aαγ− = γ
p

42B
2(�1 − �R)2(ραα)s

8�2
R�2

c

,

Aβγ+ = Aαγ+,

Aβγ− = γ
p

42B
2(�1 − �R)2(ρββ)s

8�2
R�2

c

,

Aβδ+ = Aαδ+,

Aβδ− = γ
p

42A
2(�1 + �R)2(ρββ)s

8�2
R�2

c

,

Aδγ+ = γ
p

32A
2B2(�1 − �R)2(ρδδ)s

16�4
R�2

c

,

Aδγ− = γ
p

32A
2B2(�1 + �R)2(ργγ )s

16�4
R�2

c

, (C12a)

and S0(ω) stands for the central peak of the incoherent
resonance spectrum. The terms (ρii)s (i = α, β, δ, γ ) stand
for the steady-state populations of the dressed states, while �̄,
A and B are given in Eq. (22).

To evaluate S0(ω) appearing in Eq. (C11), let us define the
vector of populations in the steady-state:

ˆ(ρ)s = [(ραα)s ,(ρββ)s ,(ρδδ)s]
T , (C13)

where superscript T stands for transpose. The components of
vector ˆ(ρ)s satisfy the following equation:

B · ˆ(ρ)s = 
̂0,

where B is the matrix of coefficients from equations (C1)–(C3)
and 
̂0 is a column vector whose j th component is −
0

jj ,
j = α, β ,δ, defined in Eq. (C11).

The central peak of the incoherent resonance spectrum is
given by:

S0(ω) ∝ �
{ ∫ ∞

0

[
γ41

2
(〈�σαα(τ )�σαα(0)〉 + 〈�σββ(τ )�σαα(0)〉 − 〈�σαα(τ )�σββ(0)〉 + 〈�σββ(τ )�σββ(0)〉)

+
√

γ41γ32

8�2
R�c

(A2(�1 + �R)〈�σδδ(τ )�σαα(0)〉 + B2(�1 − �R)〈�σγγ (τ )�σαα(0)〉

−A2(�1 + �R)〈�σδδ(τ )�σββ(0)〉 − B2(�1 − �R)〈�σγγ (τ )�σββ(0)〉
+A2(�1 + �R)〈�σαα(τ )�σδδ(0)〉 − A2(�1 + �R)〈�σββ(τ )�σδδ(0)〉
+B2(�1 − �R)〈�σαα(τ )�σγγ (0)〉 − B2(�1 − �R)〈�σββ(τ )�σγγ (0)〉)
+ γ32

16�4
R�2

c

(A4(�1 + �R)2〈�σδδ(τ )�σδδ(0)〉 + A2B2
(
�2

1 − �2
R

)〈�σγγ (τ )�σδδ(0)〉

+A2B2
(
�2

1 − �2
R

)〈�σδδ(τ )�σγγ (0)〉 + B4(�1 − �R)2〈�σγγ (τ )�σγγ (0)〉)
]
e−iωτ dτ

}
, (C14)

where �σjj (τ ) = σjj (τ ) − 〈σjj (∞)〉, j = α, β, δ, γ , stand
for the deviation from the steady state of the operators σjj =
|j 〉〈j |. The two-time correlation functions from Eq. (C14)
can be computed by invoking the quantum regression theorem
together with the Eqs. (C1)–(C3). We define the column vector:

Û j (τ ) = [〈�σαα(τ )�σjj (0)〉, 〈�σββ(τ )�σjj (0)〉,
〈�σδδ(τ )�σjj (0)〉]T . (C15)

According to the quantum regression theorem, for τ > 0 the
vector Û j (τ ) satisfies the equation

∂Û j (τ )

∂τ
= B · Û j (τ )(j = α,β,δ,γ ), (C16)

B being the matrix of coefficients from equations (C1)–(C3)
(note that 〈σij 〉 = ρji). Working with Eq. (C16) in the Laplace
space, we obtain the values for the two-time correlation

functions from Eq. (C14):

∫ ∞

0
〈�σαα(τ )�σjj (0)〉e−iωτ =

3∑
m=1

R1m(iz) · (Û j
m

)
s
, (C17)

∫ ∞

0
〈�σββ(τ )�σjj (0)〉e−iωτ =

3∑
m=1

R2m(iz) · (
Û j

m

)
s
, (C18)

∫ ∞

0
〈�σδδ(τ )�σjj (0)〉e−iωτ =

3∑
m=1

R3m(iz) · (
Û j

m

)
s
, (C19)

∫ ∞

0
〈�σγγ (τ )�σjj (0)〉e−iωτ

= −
3∑

m=1

(R1m(iz) + R2m(iz) + R3m(iz)) · (
Û j

m

)
s
, (C20)

where we have set z ≡ (ω − ωL)/γ0. (Û j
m)s stands for the mth

component of the vector Û
j
m(τ ) evaluated in the steady state
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(τ = ∞), and Rnm(s) is the (n,m) element of the matrix

R(iz) = (izÎ − B)−1, (C21)

Î being the 3 × 3 identity matrix. Equations (C17)–(C20)
can be substituted back into Eq. (C14), which allows for the
numerical computation of the central line of the RFS.
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