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Extended slow-light field enhancement in positive-index/negative-index heterostructures
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We present a biwaveguide paradigm composed of joined positive-index-material (PIM)/negative-index-
material (NIM) slabs, demonstrating ultraslow-light propagation stemming from the competing propagation
disposition in the PIM and NIM regions. We report for the first time a mesoscopic extended electromagnetic
(EM) enhancement covering regions of the order of the free-space wavelength, enabled by the slow-light mode
in our system. Our dynamic numerical results are consistent with our developed theoretical model, predicting an
EM energy accumulation reminiscent of a charging capacitor. Our analysis reveals that spatial compression is not
a requirement for EM enhancement in slow-light systems and stresses the merits of a high coupling efficiency,
strong temporal compression, monomodality, and modal index bandwidth—all present in our proposed paradigm.
Furthermore, we show that the heterostructure waveguide mode is an extraordinary entity with a unique energy
velocity, which is opposite to the Poynting vector in one of the participant waveguides. We believe that these results
will inspire new slow-light platforms relevant to the collective harvesting of strong light-matter interactions.
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I. INTRODUCTION

Slow light has attracted increasing attention in recent
years owing to its tremendous application potential, as,
for example, in all-optical chips1–3 and optical memories.2

Slow light has furthered the frontiers of current optics, with
many works reporting on strong light-matter interactions that
manifest themselves as an enhancement of optical gain,1,4

Raman signal5 or nonlinear optical processes,1,4 such as
third-harmonic generation.6 Strong light-matter interactions
are associated with high-intensity electromagnetic (EM) fields.
Intensity enhancing platforms have been pursued vigorously
in recent years; they involve a spatial compression of the
impinging wave into deep-subwavelength volumes. Typically,
spatial light compression is facilitated by a resonant7–10

interaction between light and a structured material, although a
nonresonant11 scheme has also been demonstrated recently.

Slow-light physics is opening an alternate avenue where
field enhancement may occur as a result of temporal
compression,1,2 thus allowing it, in principle, to extend over
mesoscale areas of the order of the free-space wavelength. This
can facilitate a collective harvesting of light-matter interaction,
which is important when a strong signal yield from nonlinear
optical processes is desired. With the exception of resonant
atomic systems,12 all slow-light paradigms2 seem promising
in terms of field enhancement, which has been indirectly
evidenced by observing a dependent process.5,6,13 However,
a deeper understanding is still lacking with respect to which
are the key controlling attributes pertinent to the dynamics of
EM energy enhancement in slow-light platforms. Also, there
seems to be a lack of a clear consensus regarding the role of
spatial compression in slow-light systems.2,4

Different schemes have been employed to control the
light’s dispersion and thus the speed of information transfer in
man-made architectures.1,2,4,13–21 An interesting scheme was
proposed in 2006 by Vandenbem et al.22 that joins a positive-
refractive-index medium (PIM) with a negative-refractive-
index medium (NIM)23 together into a heterostructure

waveguide,24 shown to exhibit a flat photonic dispersion.22

Other NIM-based waveguides were also reported by Shadrivov
et al.25 and Tsakmakidis et al.,26 but with the energy being
guided through the NIM only, evanescently decaying outside.
In the system of Ref. 26 a slow-light behavior leading
to rainbow trapping via an adiabatic taper was predicted
by frequency-domain calculations. Given the ongoing rapid
development of photonic metamaterials,27,28 these NIM-based
waveguides seem highly promising as slow-light platforms.
However, the salient dispersion features relevant to an achiev-
able ultrahigh slowdown factor, as well as the related un-
conventional propagation characteristics within a wave-optics
picture, have not been identified. Furthermore, the peculiar
dynamics of energy accumulation in these systems, and its
relation to spatial and temporal compression, is certainly still
outstanding. It should also be noted that efficient coupling to
slow-light modes is not a trivial matter and is the subject matter
of currently ongoing research.29,30

In this paper, we propose a particular PIM-NIM heterostruc-
ture as a composite biwaveguide paradigm and discuss its
extraordinary dispersion features in Sec. II. In Sec. III we
present time-domain simulations that verify the existence of
the trapped slow mode—predicted by the frequency-domain
simulations in Sec. II—and also demonstrate an associated
high EM enhancement covering mesoscale areas, of the
order of the wavelength. In Sec. IV we further analyze the
propagation characteristics of the slow mode and report for
the first time an exotic guided wave having a Poynting vector
that is opposite to the direction of energy propagation in one
of the participant waveguides. These dynamic observations
further stress the importance of the large modal-index band-
width that we discuss in Sec. V. Furthermore, in Sec. VI
we study the EM energy accumulation for the slow mode
in the time domain. We present an analytical model that
underpins the observed dynamic EM energy accumulation,
which reveals the participating roles of spatial and temporal
compression. This model identifies the prominent features
of our prototype’s band dispersion that are responsible for
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both observing ultraslow light and achieving an extended high
field enhancement. Finally, we present our conclusions in
Sec. VII.

II. THE NIM-PIM BIWAVEGUIDE PARADIGM

In Fig. 1(a) we show a schematic of the biwaveguide
paradigm, with its geometric characteristics designated (we
assume an infinite extent in the x and z directions). We take
a dielectric medium for the PIM (ε2 = 4.0, μ2 = 1.0) and
consider a homogeneous left-handed medium23 for the NIM,
similar to the one in Refs. 31–33. In particular, we take

ε1 = μ1 = 1 − ω2
p

ω2
, (1)

with ωp = 2π × 308 × 1012 rad/s and ω representing the
frequency of the EM wave. We investigate the H -polarized
composite guided modes; i.e., light is guided within both the
NIM and the PIM layers of the biwaveguide and has evanescent
tails outside, with the magnetic field along the z direction. Our
design prototype has d1 = 1702.5 nm and d2 = 2837.5 nm.

By assuming guided waves in both the NIM and the PIM
regions and evanescent tails outside (see also the Appendix),
we obtain the dispersion relation for the composite NIM-PIM
biwaveguide guided mode, ω(k||), where k|| is the wave vector
along the x axis. This is given by

(z1 + z2)cosOP + (1 − z1z2)sinOP

(z1 − z2)cos�OP + (1 + z1z2)sin�OP
= z1 − z2

z1 + z2
, (2)

where OP = k1yd1 + k2yd2, �OP = k1yd1 − k2yd2, z1 =
k1y

ε1ky
, and z2 = k2y

ε2ky
. ky represents the decaying wave vector

outside the biwaveguide, while k1y and k2y represent the wave
vectors along the y axis inside the negative-index part and
positive-index part of the biwaveguide, respectively. That is,

ky =
√

k2
|| −

ω2

c2
, (3)

k1y =
√

ε1μ1
ω2

c2
− k2

||, (4)

and

k2y =
√

ε2μ2
ω2

c2
− k2

||, (5)

with c being the speed of light.
We solve Eq. (2) as a transcendental equation and show

the result for the photonic dispersion by the solid line in
Fig. 1(b). Note the biwaveguide mode transitions from a
region of a positive band slope to a region of a negative
band slope with increasing k||. Essentially, this implies that
the guided mode transitions from being forward to being
backward34 upon passing through a regime with near-zero
dω/dk|| = vg , implying near-frozen light [see also the dashed
line in Fig. 1(c)]. Now, this by itself may not be striking and
occurs also in systems where the EM energy is guided through
the left-handed-medium core only.25 However, what is striking
is that the near-zero vg regime extends over a much larger
k|| interval, which we henceforth refer to as the modal-index
bandwidth.35 This extraordinary feature has been observed in
photonic-crystal waveguides2,17 but, in these systems, does not

FIG. 1. (Color online) (a) Schematic of the PIM-NIM biwaveg-
uide. (b) Photonic dispersion (theory) of the biwaveguide’s guide
mode (solid black line), with the dashed (dotted) line representing the
light line in vacuum (in the NIM). (Not shown here is the light line in
the PIM at much larger k||.) Filled circles represent the corresponding
numerical time-domain result, with open diamonds designating three
characteristic cases, labeled M1, M2, and M3. Both the frequency,
ω, and the x component of the wave vector, k||, are scaled to be
dimensionless (ωp defines the material properties of the NIM). The
dark shaded area shows the near-frozen light regime, which merges
to a regime with slow backward (slow forward) light to the right
(the left) (lighter shaded area). (c) The corresponding energy velocity
(solid line) and group velocity (dashed line), both scaled by the speed
of light c.

routinely come with monomodality. Cross-modal talk directs
EM energy away from the slow-light channel, thus being a
major hurdle in the performance of photonic-crystal-based
platforms. On the other hand, monomodality is an inherent
advantage in these metamaterial biwaveguides24 and flat bands
with a large modal-index bandwidth can be easily tailored
with proper choice of d1 and d2.22 We note that the key
importance of these essential characteristics has not been
discussed for other NIM-based slow-light platforms,26 where
the light slowdown factor has not been observed in the time
domain.31

We highlight in Fig. 1 the modal-index bandwidth for near-
frozen light by the dark shaded region, which transitions to the
left and the right to a k|| region of forward and backward faster
light, respectively. Note that the composite guide mode is on
the right side of the air light line (dashed line) but on the left
side of the light lines in the NIM (dotted line) and in the PIM
(not shown since it is much farther to the right than the figure
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bounds). This signifies the guided-wave nature of the mode
within both the PIM and the NIM parts of the biwaveguide
heterostructure. We also stress that indeed the group velocity
of our system [dashed line in Fig. 1(c)] portrays the velocity
of energy propagation, ve

23 [solid line in Fig. 1(c)] (see the
Appendix).

III. DYNAMIC BEHAVIOR OF LIGHT
IN THE NIM-PIM BIWAVEGUIDE

In the following, we study the dynamic behavior of light
in our proposed paradigm. For this purpose we employ the
finite-difference time-domain (FDTD) method,36,37 a proven
excellent method for capturing the time evolution of EM waves
while propagating in space even within NIMs.33,38 To excite
the composite guided mode in the biwaveguide heterostructure
we employ in the FDTD an attenuated total reflection (ATR)
setup40,42 in the Otto configuration39 as depicted in Fig. 2(a).40

The refractive index of the prism, natr, varies as required to
yield the desired k|| value.41 In this manner, we can select
from the entire band in Fig. 1(b) a specific band region centered
around modal index ck||/ω,35 with a bandwidth that is inversely
proportional to the beam waist of the incident Gaussian beam,
depicted in the schematic in Fig. 2(a) with its magnetic field
polarized out of the prism plane.

We have confirmed the band dispersion numerically, by
considering a pulsed impinging signal and recording the
Fourier-transformed spectral response of properly placed
detectors above the prism and laterally within the biwaveguide.
We show our results as filled circles in Fig. 1. We highlight
there three particular modes that we represent by open dia-
monds and name M1, M2, and M3. These have, respectively,
a positive, a near-zero, and a negative band slope, implying
forward, slow-light, and backward propagation in each case.

With a quasimonochromatic excitation43 at the relevant
frequency in FDTD we confirm the forward and back-

FIG. 2. (Color online) (a) Schematic of the numerical FDTD ATR
experimental setup. (b–d) FDTD result for the time-averaged electric
field intensity, I, for mode M1 (b), mode M2 (c), and mode M3 (d). The
domain is cropped to depict I only in the vicinity of the biwaveguide,
-extending within the solid horizontal lines in the figure. Vertical lines
delimit the biwaveguide region that lies directly below the ATR prism,
while dotted lines designate the NIM-PIM boundary. The color map
scale is logarithmic.

FIG. 3. (Color online) Same as Figs. 2(b)–2(d), but with the ATR
excitation region included. The triangle represents the ATR prism,
used to excite the guided modes, while the solid horizontal lines
represent the biwaveguide limits.

ward lateral propagation as shown in Figs. 2(b) and 2(d),
respectively, where the time-averaged electric-field intensity is
shown cropped around the waveguide area. [See also Figs. 3(a)
and 3(c), respectively, where the ATR prism excitation area is
included.] Now, mode M2, shown in Fig. 2(c) [or Fig. 3(b)],
is mostly forward propagating, but we see some EM energy
escaping to the opposite side, due to the unavoidable nonzero
k|| bandwidth of the impinging Gaussian source. What is
striking is the much higher intensity enhancement with respect
to the intensity of the input beam that is associated with this
mode.

IV. INTERLOCKING OF THE NIM AND PIM
SUBMODES WITH COUNTER-DIRECTIONAL

POYNTING VECTORS

We proceed by analyzing further the curious characteristics
of the composite slow-light mode in the heterostructure
biwaveguide. For this purpose, we launch in the FDTD
simulation a narrow-bandwidth pulsed signal44 and observe
the Poynting vector within each of the joint waveguides. We
monitor the x component of the Poynting vector at different
lateral locations, at the right side of the prism for the forward
modes, i.e., modes M1 and M2, and at the left side of the prism
for the backward mode, i.e., mode M3. Let Ddet represent the
distance between the lateral line detectors and the relevant
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FIG. 4. (Color online) Interlocking of the submodes within each
layer of the heterostructure waveguide, observed in the FDTD for
mode M2 via the x component of the Poynting vector monitored at
the right of the ATR prism edge. The black line and the lighter (red)
line represent the results integrated over the y extent of the NIM part
and PIM part of the biwaveguide, respectively. The Poynting vector
is given in arbitrary units, while time is expressed in terms of the
period T of the central frequency ω0 of the pulsed signal. Clearly,
the submodes move together towards the +x direction, despite the
Poynting vector pointing towards the −x direction in the NIM layer.
The schematic on the right indicates the wave vector k|| and energy
velocity ve of the composite guided mode, as well as the Poynting
vector S in each of the subwaveguides.

side of the prism edge. For each lateral location, Ddet, one line
detector is placed within the NIM part of the biwaveguide and
one line detector is placed within the PIM of the biwaveguide.
Then, for each time step, the x component of the Poynting
vector Sx is integrated along the respective line detectors in
the NIM and PIM parts of the biwaveguide. We represent this
integrated value as Sx,int. In Fig. 4 we show the result for mode
M2 and Ddet = 2.27 μm. We show the respective results for
modes M1 and M3 in Fig. 5.

FIG. 5. (Color online) Same as Fig. 4, but for the cases of
(a) mode M1 and (b) mode M3.
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FIG. 6. (Color online) Pulse arrival times in the NIM (PIM) part
of the biwaveguide in the different lateral detectors represented by
filled (open) circles. The arrival time is given in terms of the period;
the lateral detector locations Ddet, in terms of the wavelength that
corresponds to the central frequency ω0 of the impinging pulse. The
line fit in each case yields the energy velocity of propagation in each
subwaveguide.

We find that the pulse propagates laterally, i.e., along the
x-direction, consistent with a wave-optics picture. A geometric
optics picture, previously employed to explain slow-light
propagation in Ref. 26, clearly fails, as it implies a significant
Poynting vector component along the y direction, which
we did not observe in our simulations. We observe in the
FDTD a truly astonishing phenomenon: the Poynting vector
is antiparallel to the direction of EM energy propagation in
one of the participant waveguides. Specifically, the Poynting
vector consistently points towards the −x direction in the NIM
layer and towards the +x direction in the PIM layer in all
cases. Indeed, in all cases the submodes within each of the
participant waveguides interlock together. They move jointly,
as an entity, towards the same direction that is determined by
the band slope of the dispersion relation, ω(k||), despite the
counter-directional relation of the Poynting vector within each
layer of the heterostructure waveguide.

The behavior of the guided waves within each subguide as
an entity can be further evidenced by observing in the FDTD
simulation the arrival time45 of the pulsed signal at different
locations at the right side of the prism (for modes M1 and
M2, which are forward) or the left side of the prism (for mode
M3, which is backward) (Fig. 6). The pulse arrival time within
the NIM and PIM parts of the biwaveguide, at the different
lateral locations, is calculated from the detected Sx,int with
time. Normally, in experiments or simulations the arrival time
of a pulse is determined by the peak of the pulse. However,
this is a rough method and can entail significant errors for
systems in which significant pulse broadening occurs during
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propagation. This is particularly true for slow-light systems.
Petross et al.45 have proposed an accurate measure for the
pulse arrival time for nonstandard systems, which we employ
here. Thus, we calculate the pulse arrival time, tarr, at a certain
lateral line detector, Ddet, from the relation

tarr =
∫ tsim

0 tSx,int(Ddet,t)dt∫ tsim

0 Sx,int(Ddet,t)dt
, (6)

with t being the instant in time at which Sx,int is monitored at
the line detectors in the NIM and PIM parts of the biwaveguide
at the Ddet lateral location. Also, tsim is the total simulation
time. Note, since we have different line detectors placed in
the participant waveguides of the heterostucture, the arrival
time is recorded separately in the NIM and PIM parts of the
biwaveguide.

We plot the results for the arrival time at the different
lateral detector positions, Ddet, in Figs. 6(a), 6(b), and 6(c)
for modes M1, M2, and M3, respectively. The filled circles
represent the arrival times calculated in the NIM part of the
biwaveguide. Conversely, the open circles represent the arrival
times calculated in the PIM part of the biwaveguide. The
excellent agreement between the two supports further our
previous observation that the composite mode is an entity,
and EM energy propagates at the same speed within the entire
extent of the waveguide, within both the NIM and the PIM
parts.

Now we can take a linear fit in each case, and from this we
obtain the energy velocity of the composite mode. We express
this in terms of the speed of light c in each case and show it in
the respective figures. Indeed, the observations for the energy
velocity within the NIM and PIM parts of the biwaveguide are
in excellent agreement, further attesting that the EM energy
of the composite mode propagates at a unique speed in all
parts. We have expressed the results in fractional form, so the
slowdown factor is immediately evident. We find a slowdown
factor of ∼16 for mode M1, ∼303 for mode M2, and ∼9 for
mode M3.

To compare with the theoretical predictions from the
dispersion relation we use the slowdown factors from Fig. 1,
which correspond to the central k|| of the impinging Gaussian
beam; these are ∼13 for mode M1, ∼105 for mode M2,
and ∼9 for mode M3. We observe an excellent agreement
for modes M1 and M3 but we find that mode M2 is slower
than expected. This is because the finite spatial extent of the
impinging beam implies a k|| span within a band �k||. Thus in
practical situations one observes the average speed from the
mode contributions within this �k|| band. For mode M2, this
ended up yielding a slowdown factor even higher than the one
predicted for the central k|| value.

V. SLOW-LIGHT PROPAGATION
AND MODAL-INDEX BANDWIDTH

Our analysis in Sec. IV suggests that the overall speed
of EM energy propagation is affected by the finite spatial
extent of the impinging Gaussian beam, implying contributions
from within a �k|| band. This further highlights the particular
advantage of having a wide modal-index span over which
the composite biwaveguide mode is near-frozen, as shown in
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FIG. 7. (Color online) (a) Photonic band dispersion and (b)
energy velocity are shown by the solid black lines for a comparative
biwaveguide design with d1 = 2270 nm and d2 = 3405 nm. The
long-dashed and dotted (green) lines represent the relevant light lines
as in Fig. 1. To aid comparison, we show the respective result for the
original design in Fig. 1 with dashed (red) lines.

Fig. 1. For example, let us consider a comparative design with
d1 = 2270 nm and d2 = 3405 nm. We show the dispersion
relation ω(k||) and corresponding energy velocity (in units of
speed of light c) for the latter design in Figs. 7(a) and 7(b),
respectively. In order to be able to easily compare the result
with the system in Fig. 1, we also show the respective
dispersion and energy velocity, as dashed lines. Evidently the
band for the comparative design is not as flat. A near-frozen
mode exists only for a very narrow k|| band.

We further investigate in the FDTD the implications of the
lack of existence of a wide modal-index bandwidth. We set
the ATR prism properties to excite in the comparative design
the near-frozen mode of ck||/ω = 1.12, as predicted from the
photonic dispersion in Fig. 7. Yet what we observe (see Fig. 8)
is an amphoteric propagation. This emanates from the strong

FIG. 8. (Color online) FDTD time-averaged intensity result,
suggesting an amphoteric propagation in the comparative waveguide
design of Fig. 7 for the near-frozen mode of ck||/ω = 1.12.
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FIG. 9. (Color online) Energy accumulation dynamics in the
biwaveguide paradigm. (a) The feeding of EM energy from above
via the ATR prism and its relaxation sideways in the biwaveguide.
(b) The solid black line represents the FDTD result for the time-
averaged EM energy density of the spatial average in the biwaveguide
region below the center of the ATR prism 〈U〉 for mode M2,
normalized by the time-averaged energy density of the source U0.
The dashed (red) line represents the fit from an analytical dynamical
model in accordance with the plot in (a).

contributions from the adjacent backward and forward modes,
as the near-frozen mode has a narrow modal-index bandwidth
in the comparative waveguide. The latter cannot be avoided
due to the finite spatial extent of any realistic excitation beam.
These results suggest that the near-frozen light modal-index
bandwidth is the key feature of merit when considering the
design characteristics of the biwaveguide.

VI. EM ENERGY ACCUMULATION
IN THE BIWAVEGUIDE

Now that we have verified a large slowdown factor for the
M2 mode, we try to understand its relation to the observed
intensity enhancement shown in Fig. 2(c) [or 3(b)], which
spans the entire waveguide width, d ∼ 3λ0, with λ0 being the
free-space wavelength. Since the waveguide extent in the z

direction is infinite, implying that, in practice, the waveguide
can be arbitrarily wide in this direction, our results essentially
suggest an extended intensity enhancement covering a large
mesoscale area, larger than λ2

0. This, to our knowledge,
constitutes the first report of this capability, as typically,
intensity enhancement is restricted to deep-subwavelength
regions.7–11

To understand this further, we excite the M2 slow mode with
a quasimonochromatic wave and monitor the time evolution
of the EM energy density, spatially averaged over a central
region of the biwaveguide lying directly below the ATR prism.
We take the time average of this quantity within each wave
period T, 〈U 〉, and normalize it with the time-averaged EM
energy density of the source U0. The result in each period
T, shown in Fig. 9(b), implies an energy accumulation with

an almost-exponential time response reaching a 200-fold EM
energy density enhancement at steady state.

Let us consider a simple crude model, depicted in Fig. 9(a),
to explain the energy accumulation dynamics. EM energy, E ,
is fed into the biwaveguide from above via the ATR prism, at a
faster rate than its relaxation sideways in the +x direction (M2
is a forward mode),46 because of the ultralow energy velocity of
the M2 mode. In the following we denote by angle braces (〈 〉)
the spatially averaged quantities of the energy density, in an
area Lwd in the central part of the biwaveguide below the ATR
prism, where d represents the total width of the biwaveguide
[see schematic in Fig. 9(a)]. By Lw we denote the beam
waist of the evanescent wave illumination emanating from the
ATR prism, which is close to the Gaussian impinging wave’s
beam waist. Moreover, time-averaged quantities, within a wave
period T are assumed for the EM energy densities U. Note that
we have translational symmetry in the z direction, where the
guide is assumed to be infinite. We focus on a part of the guide
with width Lper along z. We see that this chosen part can be
arbitrary and does not influence the result. Then, within �T ,
the EM energy that is fed into the waveguide will be

�Efeed = FcI0�T LwLper, (7)

where Fc represents the coupling efficiency, and I0 the intensity
of the impinging Gaussian beam. Thus,

�Efeed = Fc cU0�T LwLper, (8)

where U0 is the energy density of the impinging beam. Then
the energy that gets relaxed sideways within �T will be

�Erel = 〈Sx〉dLper�T = ve〈U 〉dLper�T. (9)

So the increase in EM energy in �T will be �Efeed − �Erel.
This equals 〈�U 〉dLwLper, yielding, together with Eqs. (8)
and (9), that

�〈U 〉
�T

= − ve

Lw

(〈U 〉 − UM ), (10)

where

Um = FcU0
c

ve

Lw

d
. (11)

Equation (10), with Eq. (11), yields

〈U 〉 = U0
c

ve

Lw

d
(1 − e− ve

Lw
t ), (12)

where the time should be an integer multiple of period T.
Thus, the estimation of the feeding and relaxation rates

leads to a time -response for the EM energy accumulation that
is reminiscent of a charging capacitor, with the characteristic
time τ being equal to Lw/ve. Equation (12) implies that spatial
compression contributes a factor of Lw/d to the overall EM
energy enhancement, which is actually quite modest (about
4) for the biwaveguide paradigm. Temporal compression
contributes a large factor for slow-light modes equal to
c/ve. The results in Fig. 9(b) also imply a high coupling
efficiency Fc, greater than 60% with our proposed simple
ATR-based coupling scheme. We observe that the overall
EM energy enhancement factor is not evenly spread within
each sub waveguide and is also larger than the corresponding
electric-field intensity enhancement (enhancement of EE∗).
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FIG. 10. Same as Fig. 9(b), but for the comparative waveguide of
Fig. 7. As a result of the narrow modal bandwidth for the near-frozen
mode, a smaller EM energy enhancement and quicker saturation in
comparison with the design in Fig. 1 are observed.

Specifically, we find the latter to be about 100 in the NIM layer
and about 30 in the PIM layer. Note, also, that the characteristic
time of the exponential EM energy growth indirectly provides
the light slowdown factor, which we found to be, with an
exponential fit, about 90 for the case in Fig. 9(b).47

We note that the comparative design yielded a much lower
EM energy enhancement, as shown in Fig. 10. This is because
additional energy relaxes from the faster backward and forward
modes adjacent to the near-frozen mode, as any excitation
beam inadvertently includes contributions within a �k|| band.
Equation (12) simultaneously stresses the need not only for
a wide modal-index bandwidth of the near-frozen mode but
also for monomodality. Actually, it can be shown that the
coexistence of any faster channel significantly hampers the
maximum attainable EM energy enhancement.

For example, suppose that light couples inside the compos-
ite waveguide with a total coupling efficiency Fc, but to two
different modes that coexist with respected weights Fc1/Fc

and Fc2/Fc, with Fc1 + Fc2 = Fc and energy velocities ve1

and ve2. Then the balance of energy fed and energy released
sideways will lead to

〈U 〉 = U0
c

veff
e

Lw

d
(1 − e− veff

e
Lw t), (13)

with

veff
e = ve1Fc1 + ve2Fc2

Fc

. (14)

Equations (13) and (14) clearly imply that the maximum EM
energy enhancement that can be attained is adversely affected
by the coexistence of any faster channel. They also indicate
that the respective saturation time to the maximum EM energy
is smaller. This is consistent with what is shown in Fig. 10 for
the energy accumulation for the comparative design in Fig. 7,
where part of the impinging light couples to faster channels
that are adjacent to the near-frozen mode.

VII. CONCLUSIONS

In conclusion, we have presented a paradigm NIM-PIM
heterostructure supporting an exotic composite guide mode
having an ultralow-energy velocity across a very broad modal-
index bandwidth. We have observed in the FDTD a most
extraordinary propagation, where the submodes in each layer
of the heterostructure interlock together and move jointly in
the same direction, despite the Poynting vector being in the
opposite direction in one of the layers. We have verified
numerically an efficient coupling to the slow mode, with a
speed of about c/300, leading to exponential growth in EM
energy accumulation, reminiscent of a charging capacitor.
Our findings suggest the possibility of achieving an extended
electric-field intensity enhancement of the order of 100,
facilitated by the near-frozen waveguide mode of ultrawide
modal-index bandwidth. We therefore believe that this study
will inspire new designs for slow-light platforms for the
collective harvesting of strong light-matter interactions.

APPENDIX: ENERGY VELOCITY OF THE
COMPOSITE GUIDED MODE

The magnetic-field distribution for the composite guided
mode is given by

Hz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aeky (y+d1)ei(k||x−ωt) for y < −d1,

(B sin k1yy + C cos k1yy)eik||xe−iωt for −d1 � y � 0,

(D sin k2yy + E cos k2yy)eik||xe−iωt for 0 � y � d2,

Fe−ky (y−d2)eik||xe−iωt for y > d2,

where y = 0 is taken at the PIM-NIM interface. The coeffi-
cients in the above Hz field distribution are easily determined
from the EM boundary conditions at the three interfaces
(y = −d1, y = 0, and y = d2). Thus both the magnetic-field
distribution and the corresponding electric-field distribution
can be easily calculated for the composite guided mode. Then
its energy velocity, ve, along the x axis [see schematic in
Fig. 1(a)] is given by

ve = S̄x

Ū
=

1
8π

∫ ∞
−∞ EyH

∗
z dy

1
16π

∫ ∞
−∞( ∂(εω)

∂ω
(ExE∗

x + EyE∗
y ) + ∂(μω)

∂ω
HzH ∗

z )dy
,

(A1)

where the expressions in the numerator and the denominator
represent the time-averaged Poynting vector and the time-
averaged energy density in CGS units, respectively, integrated
along the finite dimension of the composite guide (y axis)
and outside to include the contributions from the evanescent
tails in vacuum. Hence, the limits span from −∞ to ∞.
The general expression for dispersive media23 is taken for
the energy density, with ε being either ε1 or ε2 and μ being
either μ1 or μ2, depending on which region of the biwaveguide
y lies within, or ε = μ = 1 for the vacuum region. Evi-
dently, for the nondispersive material regions ∂(εω)

∂ω
= ε and

∂(μω)
∂ω

= μ.
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