
PHYSICAL REVIEW B 88, 195130 (2013)

Topological phase transitions with non-Abelian gauge potentials on square lattices
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We investigate the topological phase transition on interacting square lattices via the non-Abelian potential
by employing the real-space cellular dynamical mean-field theory combining with the continuous-time Monte
Carlo method. For a weak on-site Hubbard interaction, a topological band insulating state with a pair of gapless
edge states is induced by a next-nearest-neighbor hopping. A phase transition from the metallic phase to the
Mott insulating phase is observed when the interaction is increased. These two phases can be distinguished by
detecting whether a bulk gap in the K-dependent spectral function exists. The whole phase diagrams as functions
of the interaction, next-nearest-neighbor hopping energy, and temperature are presented. The experimental setup
to observe these new interesting phase transitions is also discussed.
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I. INTRODUCTION

The topological phases originating in spin-orbital coupling
systems have attracted great attention in modern condensed
matter physics.1–5 Many interesting phenomena have been
found in recent theoretical and experimental works, such as the
integer and fractional quantum Hall effect, topological band
insulator (TBI), topological Mott insulator, and topological
superconductor.6–17 Experimentally, the TBI has been detected
in many materials, such as Bi2Se3 and HgTe/CdTe quantum
wells.18–25 Besides these experimental observations, there are
also many theoretical proposals for simulating the TBI in sys-
tems with different geometric structures, such as honeycomb
and kogome lattices.26–28 This novel state can be identified
by a gapped bulk spectrum and gapless edge states, which are
protected by time-reversal symmetry. However, these previous
works mainly focus on the TBI without interaction. Thus, it
is desirable to investigate the influence of interactions on the
TBI, which should play an important role in real systems.

One important method used to realize these exotic systems
with interactions is via ultracold atoms trapped in optical
lattices.29–34 Due to the Feshbach resonance, interactions in
cold atomic systems can be precisely tunedand are used
to realize novel phenomena driven by strongly correlated
effects, for instance, the superfluid, Mott insulator, and Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state.35–40 However, a
major disadvantage of simulating spin-orbital coupling in
cold-atom systems is that charge-neutral ultracold atoms
cannot be affected by external magnetic or electric fields. A
recent breakthrough called artificial gauge field technology
has been made to supply effective magnetic and electric
fields on neutral ultracold atoms in experiments.41,42 This
new developing technology provides a crucial step to simulate
spin-orbit couplings, Abelian or non-Abelian gauge fields, and,
more importantly, novel topological phases in this controllable
artificial system, especially the TBI.43–47

In this article, we investigate the band structure and
topological effects in a square lattice with interaction and a
non-Abelian gauge potential by employing real-space cellular
dynamical mean-field theory (CDMFT) combined with the
continuous-time quantum Monte Carlo (CTQMC) method.
Without the on-site interaction, a gap is found near the
Fermi energy, which is induced by the next-nearest-neighbor

(NNN) hopping t ′. Two edge states are observed from the
energy dispersion. When the interaction increases, the bulk
gap is closed and edge states disappear. This gapless behavior
suggests that the system becomes a paramagnetic metal (PM).
When the interaction is stronger than the critical interaction Uc,
a big gap can be found near the Fermi energy. This indicates a
phase transition from a metallic state into a paramagnetic Mott
insulator (PMI) state. In addition, a collinear antiferromagnetic
order is formed when the temperature is lower than the Curie
temperature, and the double occupancy is gradually suppressed
as the interaction increases.

This paper is constructed as follows. The model Hamil-
tonian and method are introduced in Sec. II. In Sec. III, we
investigate the noninteraction case and find that the ground
state of the system is a TBI. The interaction effects on the TBI
are presented in Sec. IV. We present the phase diagrams in
Sec. V. In Sec. VI, we discuss the experimental setup to realize
our system and the relevant physics. Section VI presents a
summary and discussion.

II. MODEL AND METHOD

We consider the standard Hubbard model on a half-filling
square lattice in the presence of a non-Abelian gauge potential,

H = −t
∑

〈ij〉σσ ′
c+
iσ T σσ ′

ij cjσ ′ − t ′
∑

〈〈ij 〉〉σσ ′
c+
iσ T ′σσ ′

ij cjσ ′ + H.c.

+ U
∑

i

ni↑ni↓ + μ
∑

iσ

niσ , (1)

where t is the nearest-neighbor hopping energy [see lighter
(red) arrows in Fig. 1(a)], t ′ is the NNN hopping energy
[see (blue) arrows in Fig. 1(b)], U is the on-site repulsive
interaction, and μ is the chemical potential, which keeps
the system at half-filling. c+

iσ and ciσ denote the creation
and annihilation operators, respectively, and niσ = c+

iσ ciσ

corresponds to the density operator. T σσ ′
ij can be written as

Tij = Tx = eiψ1σx and Ty = eiψ2σy , which corresponds to the
flux induced by the nearest-neighbor hopping. T ′σσ ′

ij can be

written as T ′
1 = eiψ ′

1σx [see direction 1 in Fig. 1(b)] and
T ′

2 = eiψ ′
2σy [see direction 2 in Fig. 1(b)]. Here, we use

ψ1 = ψ2 = ψ ′
1 = ψ ′

2 = π/4 and t = 1.0, which is also set as

195130-11098-0121/2013/88(19)/195130(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.195130


YAO-HUA CHEN, JIAN LI, AND C. S. TING PHYSICAL REVIEW B 88, 195130 (2013)

(c)

Ek

kx

ky

X

Y

(d)

t

a b

c d

(a)

a b

c d

b

d

a

c

a b a

cdcd

b

t’

(b) (c)

Ek

kx

ky

X

Y

(d)

t

a b

c d

(a)

a b

c d

b

d

a

c

a b a

cdcd

b

t’

(b)

(e)

X

Y

Y
X
12

Y
X

FIG. 1. (Color online) (a) Sketch of a square lattice via a non-Abelian gauge potential; lighter (red) arrows show the nearest-neighbor
hopping t . (b) Next-nearest-neighbor hopping t ′ in a square lattice with a non-Abelian gauge potential is denoted by (blue) arrows. Dashed
lines indicate the direction of T ′

1 and T ′
2. (c) Energy band structure when t ′ = 0 without interaction. There are four Dirac points, near the

( π

2 , π

2 ), ( π

2 , − π

2 ), (− π

2 , π

2 ), and (− π

2 , − π

2 ) point. (d, e) Schematic of a system with (d) open boundary conditions and (e) periodic boundary
conditions.

the energy unit. Figure 1(c) shows the energy band structure
when t ′ = 0 and U = 0. Four Dirac points can be found, near
(π

2 , π
2 ), (π

2 , − π
2 ), (−π

2 , π
2 ), and (−π

2 , − π
2 ), which is similar

to the spectrum of the honeycomb lattice. Figures 1(d) and
1(e) show two systems, with open and periodic boundary
conditions, respectively, in which the lighter (red) arrows
represent nearest-neighbor hopping and the darker (blue)
arrows denote NNN hopping. For the open boundary case,
there are NL sites along the Y axis, while a square lattice is
used in the periodic boundary case. The latter case is equivalent
to a big circular loop, as shown in Fig. 1(e).

We use real-space CDMFT combined with CTQMC to
investigate the interaction effects on this system, which is
developed in the framework of the real-space DMFT.48–53 The
real-space DMFT has been used to investigate phase transitions
driven by interactions in systems without periodic boundary
conditions, such as investigating the metal–Mott insulator
phase transition in a three-dimensional optical lattice with an
exterior magnetic field.34,54,55 However, this method works
ineffectively in low-dimensional systems due to the ignoring
of nonlocal correlation and spatial fluctuations. Therefore,
the real-space CDMFT is developed to incorporate spatially
extended correlations and geometrical frustration by mapping
the original lattice to many clusters embedded in effective
media. We use CTQMC56,57 as an impurity solver, which is
more accurate than the traditional QMC method due to the
absence of Trotter decomposition. This new method has been
used to investigate the competion of interaction and topological
effect on a honeycomb lattice.27

In the real-space CDMFT, the original lattice is mapped
to Nc clusters embedded in effective media. There are Ns

sites in every cluster. The whole lattice has Nall = Nc×Ns

sites. A self-consistent loop can be started by guessing the

self-energy �̂. Then the real-space CDMFT coarse-grained
Green’s function Ĝ is obtained by Ĝ = 1

Nk

∑
k

1
iωn−μ−t̂(k)−�̂

.

The Weiss field function, gotten by the Dyson equation ĝ−1 =
Ĝ−1 + �̂, is used as the input of the impurity solver CTQMC.

We recalculate the self-energy �̂ by �̂ = ĝ−1 + Ĝis
−1

to finish
the iterative loop, where Ĝis is the new Green’s function given
by the impurity solver CTQMC. The real-space CDMFT self-
consistent iterative loop is repeated until it converges with
the self-energy �̂. Then the physical property is obtained by
other codes, such as double occupancy and magnetism. The
K-dependent spectral function A(

−→
k ,ω) can be gotten by the

maximum entropy method,58 and the density of states (DOS) is
given by ρ(ω) = 1

Nk
�−→

k
A(

−→
k ,ω), which describes the number

of states at frequency ω.

III. TOPOLOGICAL BAND INSULATING PHASE IN A
NONINTERACTING SYSTEM

The energy band structures without interaction for different
NNN hoppings t ′ are shown in Fig. 2. Figures 2(a) and 2(b)
show the bulk energy band structures obtained under the
periodic boundary condition. With t ′ = 0, we find that the up-
band touches the down-band near the Fermi energy, as shown
in Fig. 2(a). An obvious gap induced by the NNN hopping
t ′ is found near the Fermi energy at t ′ = 0.5 [see Fig. 2(b)].
The energy band structure obtained under the open boundary
condition is shown in Figs. 2(c) and 2(d). Differently from the
periodic boundary case, the system is a band insulator even at
t ′ = 0. As shown in Fig. 2(c), a small visible gap is observed
in the spectrum. When we increase t ′ to 0.5, a pair of edge
states appears close to the π/2 point, as shown in Fig. 2(d).
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FIG. 2. Energy band structure without interaction at different
next-nearest-neighbor hoppings t ′ when NL = 20. Bulk energy band
structure obtained under periodic boundary conditions [see Fig. 1(e)]
with (a) t ′ = 0 and (b) t ′ = 0.5. Energy band structure obtained
under open boundary conditions [see Fig. 1(d)] with (c) t ′ = 0 and
(d) t ′ = 0.5.

This indicates that the TBI phase induced by t ′ appears at
t ′ = 0.5.

IV. INTERACTION EFFECTS

In this section, we take the on-site Hubbard interaction
into consideration and show how the interaction U affects the
phases discussed above. To observe the interaction effects, we
present the spectral function for different U values with t ′ =
0.5 in Fig. 3. Figures 3(a)–3(c) show the K-dependent spectral
functions for different interactions U with the temperature
T = 0.4, which are obtained from the periodic boundary
condition. When U = 1.0, a bulk insulating gap can be found
near the Fermi energy, which is induced by NNN hopping
with the non-Abelian potential [see Fig. 3(a)]. This gap is
closed by tuning the interaction to U = 3.0 [see Fig. 3(b)],
indicating a transition from a gapped insulating state to
a gapless metallic state. As U becomes stronger than the
critical interaction UPM-PMI

c = 10.9 at T = 0.4, we find that the
insulating gap is reopened [see Fig. 3(c)], implying a transition
from a metallic state to an insulating state. Figures 3(d)
and 3(e) exhibit the K-dependent spectral functions for the
open boundary condition at T = 0.4 for various U ’s. The
edge states connecting the up-band and down-band are shown
in Fig. 3(d), which means that the system becomes a TBI at
U = 1.0. The edge states disappear at U = 14.0, and a large
Hubbard gap can be seen near the Fermi energy, as shown in
Fig. 3(e). The evolution of the bulk DOS at T = 0.2 is shown in
Fig. 3(f). Gapped-gapless-gapped behavior is found in the bulk
DOS when the interaction increases, indicating that the system
undergoes a TBI–metal insulator phase transition.

Figure 4(a) shows the evolution of a single-particle gap
�E in the bulk obtained from the DOS as a function of U

for t ′ = 0.5 and T = 0.2 and 0.4. To determine whether there
are magnetic transitions during the process of increasing U ,
we also present the ferromagnetic magnetization intensity m,
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FIG. 3. (Color online) Evolution of the K-dependent spectral
function A(k,ω) and density of states on different U ’s with t ′ = 0.5.
A(k,ω) obtained under periodic boundary conditions with (a) T =
0.4, U = 1.0, (b) T = 0.4, U = 3.0, and (c) T = 0.4, U = 14.0.
A(k,ω) obtained under open boundary conditions with (d) T =
0.4, U = 1.0 and (e) T = 0.4, U = 14.0. (f) Evolution of the bulk
density of state ρ(ω) at various interactions U with T = 0.2.

staggered magnetization intensity ms, and collinear antifer-
romagnetic order parameter ms ′ in Fig. 4. Here m is defined
as m = 1

N

∑N
i (ni↑ − ni↓), and it describes the ferromagnetic

order [see Fig. 4(b)]. The staggered magnetization intensity ms

[see Fig. 4(c)] is obtained by ms = 1
N

∑N
i sign(i)(ni↑ − ni↓),

where sign(i) = +1 with i = a,d, and sign(i) = −1 with
i = b,c. Points a–d are defined in Fig. 1(a). The collinear
antiferromagnetic order [see Fig. 4(d)] can be identified by
a new order parameter, ms ′, which is defined by ms ′ =
1
N

∑N
i sign′(i)(ni↑ − ni↓), where sign′(i) = +1 with i = a,b

and sign′(i) = −1 with i = c,d. In Fig. 4(a), we find that
the gap is opened up at T = 0.2 by the NNN hopping term
t ′, and it decreases when U increases as long as U < 5.2.
As the interaction becomes stronger than the critical interaction
UTBI-PM

c = 5.2, the gap is closed. This gapless behavior indi-
cates that the system stays in a metallic state. The interaction-
induced insulating state is found when U > UPM-PMI

c = 10.9.
A gap is reopened near the Fermi energy. The parameters m,
ms, and ms ′ are all nearly 0 when the interaction increases,
and this means that no magnetic order exists. The critical
point of the interaction in the TBI-metal transition decreases
when the temperature increases [see inset in Fig. 4(a)]. This
indicates that the TBI is more stable at low temperatures due
to the suppression of thermodynamic fluctuations. Figure 5
shows the evolution of m, ms, and ms ′ as a function of T for
t ′ = 0.5, U = 12.0. It is found that ms ′ increases to a finite
value, while m and ms remain nearly 0 with T < TCurie ≈ 0.19.
This implies that there is a phase transition from the PMI to the
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FIG. 4. (Color online) (a) Development of the single-particle gap
�E, magnetization intensity m, staggered magnetization intensity
ms, and collinear antiferromagnetic order parameter ms ′ as a function
of interaction U at t ′ = 0.5, with T = 0.2 and T = 0.4 (inset).
Sketches of (b) ferromagnetic order, (c) antiferromagnetic order, and
(d) collinear antiferromagnetic order.

collinear antiferromagnetic insulating phase as T is lowered
below the Curie temperature, indicating that the PMI state is
not a spin-liquid state.59,60

The evolution of double occupancy Docc = ∂F
∂

U =
1
N

∑N
i 〈ni↑ni↓〉 as a function of the interaction for different

T ’s when t ′ = 0.5 is shown in Fig. 6(a). The arrows show the
critical points of the metal–Mott insulator transition at different
T values. At U < UPM-PMI

c , the double occupancy increases
due to the suppression of thermodynamic fluctuations of
particles by the decreasing T . The double occupancy remains
small at U > UPM-PMI

c , and this suggests that the system is
just singly occupied when the interaction is strong enough.
The low double occupancy means that the system becomes
a Mott insulator, in which there is only one particle at one
site with half-filling. We also find that the double occupancies
at different T values are almost suppressed at U > UPM-PMI

c .
This indicates that T does not affect the itinerancy of
particles when the metal–Mott insulator phase translation
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FIG. 5. (Color online) Evolutions of ferromagnetic magnetization
intensity m, staggered magnetization intensity ms, and collinear
antiferromagnetic order parameter ms ′ as a function of temperature
T at t ′ = 0.5 and U = 12.0. The black arrow indicates the Curie
temperature.
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FIG. 6. (Color online) (a) Evolution of double occupancy Docc as
a function of U for different T values with t ′ = 0.5. Arrows show
the critical points of the metal–Mott insulator transition at different
T values. (b) Magnification of the double occupancy near the critical
point. (c) Evolution of double occupancy as a function of t ′ for
different U values with T = 0.2.

occurs. Docc decreases smoothly as U is increased. However,
a discontinuous decreasing behavior is found near the critical
point [see Fig. 6(b)], which is obvious at low temperatures
and suggests that the metal–Mott insulator phase transition
is a first-order phase transition.61,62 Figure 6(c) shows the
evolution of double occupancy as a function of t ′ at different
U values with T = 0.2. The double occupancy increases when
t ′ is increased due to the enhancement of the itinerancy of the
particles.

V. PHASE DIAGRAM

The phase diagrams in terms of the interaction U , tem-
perature T , and NNN hopping t ′ with a non-Abelian gauge
potential are plotted in Fig. 7. The black line represents the
phase boundary between PM and PMI, where the diamonds
exhibit the critical interaction UPM-PMI

c . The phase boundary
between TBI and PM is illustrated by the (red) line with
squares (indicating UTBI-PM

c ). Figure 7(a) shows the U -T phase
diagram at t ′ = 0.5. The TBI induced by t ′ is broken when
U is increased, and a PM state emerges. The PMI induced
by U can be seen at U > UPM-PMI

c . The critical interaction
UTBI-PM

c increases when the temperature decreases, which
shows that the TBI state is more stable at low temperatures due
to the suppression of thermodynamic fluctuations. Figure 7(b)
shows the U -t ′ phase diagram at T = 0.2. The system
undergoes a PM-PMI transition driven by U at t ′ = 0. The
TBI phase can be seen when t ′ is strong, such as at t ′ > 0.1.
It is destroyed by the interaction, and PM can be found at
U > UTBI-PM

c . When the interaction is stronger than the critical
interaction UPM-PMI

c , a gap can be reopened near the Fermi
energy, indicating a PM-PMI transition.

VI. EXPERIMENTAL SETUP

The topological-insulator and Mott-insulator transition
induced by the interaction U can be realized by the newly
developed laser-induced-gauge-field method in a cold-atom
system.41,42 In Fig. 8(a), we show a sketch of experimental
setup to form a square lattice with NNN hopping, which is

195130-4



TOPOLOGICAL PHASE TRANSITIONS WITH NON- . . . PHYSICAL REVIEW B 88, 195130 (2013)

12

8

4

0

10

6

2

0.2 0.3 0.4 0.5

Topological Band Insulator

Paramagnetic Metal

Paramagnetic Mott Insulator

U

T

(a)

10

8

6

4

2

0
0 0.2 0.4 0.6 0.8

U

t’

Topological Band Insulator

Paramagnetic Metal

Paramagnetic Mott Insulator

(b)
T=0.2

t’ 0.5

FIG. 7. (Color online) Phase diagrams as a function of U , T , and
t ′. The black line with diamonds shows the phase boundary between
a paramagnetic Mott insulator (white area) and a paramagnetic metal
(gray area). The phase boundary between the paramagnetic metal and
the topological band insulator (blue area) is shown by the (red) line
with squares. (a) U -T phase diagram with t ′ = 0.5. (b) U -t ′ phase
diagram with T = 0.2.

similar to that producing a honeycomb optical lattice.63 Four
retroreflected laser beams are used to construct two square
lattices, A and B, coexisting on the same plane. Raman laser
beams are employed to produce the hopping tab, as well as
to create and adjust the phase ψ with hopping terms. The
lattice structure is shown in Fig. 8(b). Specifically, the hopping
amplitudes satisfy ta = tb ≡ t ′ and tab ≡ t .

After the square lattice and the non-Abelian gauge potential
are established, we can fill this system with cold atoms, such
as 40K. With the help of Feshbach resonance, the interaction

(a) (b)

A B
ta tb
tab

mirror

mirror

cold atoms

FIG. 8. (Color online) (a) Sketch of the experimental setup to
form a square lattice with next-nearest-neighbor hopping. Red and
blue lines with arrows denote retroreflected laser beams, which create
two square lattices. Raman laser beams are shown by green lines
with arrows. The gray cuboid indicates mirrors, and cold atoms are
signified by the light-green oval. (b) Lattice structure: A [lighter (red)
circles] and B [darker (blue) circles] are two square lattices created
by retroreflected laser beams. Hopping between A and B induced by
Raman laser beams is shown by black lines.

between these atoms can be accurately controlled, which
facilitates observation of the phenomena we are proposing. To
detect the topological structures, one can use the semiclassical
wave-packet dynamics or time-of-flight method.63,64 The latter
method can also be used to detect the double occupancy of the
system and to confirm whether the system is a Mott insulator.37

VII. SUMMARY

In summary, we have obtained the phase diagrams of
interacting square lattices via the non-Abelian potential by
employing real-space CDMFT combined with the CTQMC
method. The TBI induced by the NNN hopping t ′ is found
when the interaction is weak. Increasing the interaction can
break the topological state, and a gapless PM state appears at
UTBI-PM

c U < U < UPM-PMI
c . As the interaction U > UPM-PMI

c ,
a gapped PMI state occurs. The system undergoes a transition
from a PMI state to a collinear antiferrimagnetic insulating
state at T < TCurie. We also present the K-dependent spectral
functions and double occupancy, which may be detected in
future experiments. Our studies provide a helpful step toward
understanding the stability of the TBI state under the effects
of interaction, temperature, and different NNN hoppings.
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Nature (London) 415, 39 (2002).

36Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature
(London) 451, 689 (2008).

37R. Jördans, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger,
Nature (London) 455, 204 (2008).

38N. Gemelke, X. Zhang, C. L. Hung, and C. Chin, Nature (London)
460, 995 (2009).

39J. Li, J. An, and C. S. Ting, Phys. Rev. Lett. 109, 196402 (2012).
40M. C. Beeler, R. A. Williams, K. Jiménez-Garcia, L. J. LeBlanc,
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