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Nonequilibrium thermal transport and its relation to linear response
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We study the real-time dynamics of spin chains driven out of thermal equilibrium by an initial temperature
gradient TL �= TR using density matrix renormalization group methods. We demonstrate that the nonequilibrium
energy current saturates fast to a finite value if the linear-response thermal conductivity is infinite, i.e., if the Drude
weight D is nonzero. Our data suggest that a nonintegrable dimerized chain might support such dissipationless
transport (D > 0). We show that the steady-state value JE of the current for arbitrary TL �= TR is of the functional
form JE = f (TL) − f (TR), i.e., it is completely determined by the linear conductance. We argue for this functional
form, which is essentially a Stefan-Boltzmann law in this integrable model; for the XXX ferromagnet, f can be
computed via the thermodynamic Bethe ansatz in good agreement with the numerics. Inhomogeneous systems
exhibiting different bulk parameters as well as Luttinger liquid boundary physics induced by single impurities
are discussed briefly.
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I. INTRODUCTION

One-dimensional (1D) electronic systems are realized in
carbon nanotubes and individual polymer molecules and
provide an approximate description of strongly anisotropic
3D materials. It has been known for many years that 1D
systems can support unusual correlated electron phenomena
such as Luttinger liquid physics. However, electrical and
thermal transport in real materials are usually not governed
by the free low-energy Luttinger liquid fixed point but by an
interplay between dangerously irrelevant operators scattering
the currents and conserved quantities protecting them.1–3

In order to connect to actual experiments, it is thus
essential to study generic microscopic models. Over the
last decades, a significant number of works2–12 investigated
equilibrium charge (or spin) transport properties. In particular,
the question whether or not so-called integrable models,
which possess a complete set of local conserved quantities,
can support dissipationless currents at finite temperature was
addressed extensively. Less is known about the quantitative
effects of integrability breaking perturbations, which are
naturally present in any experimental system, and even the
qualitative question whether the linear-response conductivity
of a nonintegrable model can still be infinite is not answered
conclusively.13 While experimental measurements of thermal
transport driven by a temperature gradient in quasi-1D spin
systems already exist,14–17 only a few works investigate
this theoretically.8,9,18–25 Studying nonequilibrium thermal (or
charge) transport is complicated in general—one reason being
that is not even clear whether the long-time dynamics can be
described by a low-energy theory—and constitutes one of the
most active areas of research in strongly correlated condensed
matter physics.26–37

The primary goal of our work is to obtain quantitative results
on steady-state energy flow both near and far from equilibrium
and to understand the effects of integrability and correlations.
This is motivated by the experiments listed above and by
recent technical advances in dynamical simulations.12 As
prototypical models, we consider an XXZ spin-1/2 chain in the
presence of two perturbations (dimerization and a staggered

magnetic field) that break integrability37,38 as well the quantum
Ising model. Using density matrix renormalization group
methods we demonstrate that the nonequilibrium energy
current driven by a temperature gradient TL �= TR relaxes fast
to a finite steady-state value if the linear-response thermal
conductivity is infinite,30 i.e., if the Drude weight D is nonzero.
Our data indicate that the dimerized chain might support
such dissipationless transport (D > 0) despite the fact that
it is nonintegrable (D can be extracted from the asymptote
of the equilibrium energy current correlation function,8 and
we cannot exclude that the latter decays on a hidden large
temperature-independent time scale).

One of our main results is that for a large class of problems
the steady-state current takes, within numerical accuracy, the
functional form

JE(TL,TR) = f (TL) − f (TR). (1)

In words, its dependence on the two temperatures is tightly
constrained: the steady-state current is the difference between
the total radiated power from the left and right leads. The
function f is thus a generalization of the Stefan-Boltzmann
law for photons, for which f ∼ T d+1 in d spatial dimensions.
Moreover, Eq. (1) implies that nonequilibrium thermal trans-
port is entirely determined by linear response—f can simply
be obtained by integration of the equilibrium conductance
∂T f .

We give an intuitive argument for the existence of a
Stefan-Boltzmann function f and also show that for the
XXX ferromagnet, f can be estimated via the thermodynamic
Bethe ansatz in good agreement with the numerics at low
temperatures. We demonstrate that at low temperatures the
gapless integrable XXZ chain as well as the quantum Ising
model exhibit universal nonequilibrium behavior conjectured
by conformal field theory,36,39,40 which provides a check on
the accuracy of the numerical calculations. We finally study
inhomogeneous systems featuring different bulk interactions
as well as the long-studied Luttinger liquid physics41 induced
by an impurity at the interface.
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II. THERMAL NONEQUILIBRIUM SETUP

We aim at investigating the real-time dynamics of the
energy current 〈JE(n,t)〉 through a one-dimensional infinite
lattice system driven out of equilibrium by an initial sharp
temperature gradient TL �= TR . Our main focus is to study
the long-time behavior of 〈JE(n,t)〉 and specifically the
question how it relates to linear-response thermal transport
properties. As a prototypical model, we consider a chain of
interacting spin-1/2 degrees of freedom S

x,y,z
n governed by

local Hamiltonians:

hn = Jn

(
Sx

nSx
n+1 + Sy

nS
y

n+1 + �nS
z
nS

z
n+1

) + bn

(
Sz

n − Sz
n+1

)
,

(2)
or equivalently spinless Fermions through a Jordan-Wigner
transformation. By choosing the couplings Jn, �n, and bn

appropriately:

Jn =
{

1 n odd

λ n even
, �n = �, bn = (−1)nb

2
, (3)

we can study systems that are gapless or gapped and, as a
key aspect of this work, investigate the role of integrability.
For λ = 1 and b = 0, Eq. (2) can be diagonalized via Bethe
ansatz;42 the model is nonintegrable otherwise. The spectrum
is gapless for |�| � 1 and gapped for � > 1. A gap opens for
λ < λc or b > bc, where λc < 1 and bc > 0 only if −1 < � <

−1/
√

2.37,43,44 In addition, we study the quantum Ising model

hn = −4Sz
nS

z
n+1 − (

Sx
n + Sx

n+1

)
. (4)

Thermal nonequilibrium is introduced via the following
protocol: we initially consider two separate semi-infinite
chains (N → ∞),

H0 = HL + HR =
−1∑

n=−N/2+1

hn +
N/2−1∑
n=1

hn, (5)

each being in thermal (grand-canonical) equilibrium at tem-
peratures TL and TR . The corresponding density matrix
factorizes,

ρ0 = ρL ⊗ ρR, ρi = exp(−Hi/Ti)

Tr exp(−Hi/Ti)
. (6)

At time t = 0, the chains are coupled through h0, and the time
evolution of ρ0 is computed with respect to (w.r.t.) H = H0 +
h0. The energy current is defined by a continuity equation,8

∂thn = JE(n) − JE(n + 1) ⇒ JE(n) = i[hn−1,hn], (7)

and its time evolution is simply given by

〈JE(n,t)〉 = Tr[eiHtρ0e
−iH tJE(n)], (8)

which can be computed efficiently using the real-time45

finite-temperature46 density matrix renormalization group47,48

(DMRG) algorithm introduced in Ref. 12. DMRG is essen-
tially controlled by the so-called discarded weight ε. We
ensure that ε is chosen small enough and that N is chosen
large enough to obtain numerically exact results [i.e., 〈JE(t)〉
to an accuracy of one percent] in the thermodynamic limit.
We stop our simulation once the DMRG “block Hilbert space
dimension” has reached values of about 1000.
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FIG. 1. (Color online) Energy current flowing between two semi-
infinite spin-1/2 chains, which are initially in thermal equilibrium at
different temperatures TL,R and coupled at time t = 0 and position
n = 0. (a) Integrable XXZ chain with z anisotropy �. The behavior
in the gapped phase � > 1 is similar. (b, lower inset) Nonintegrable
dimerized XXZ chain where the coupling on every second bond is
reduced by λ. The latter is irrelevant at � = −0.85 but opens a gap for
� = 0.5. (c) XXZ chain in presence of a staggered field b rendering
the model nonintegrable. A gap opens around b ≈ 0.3. Despite the
fact that the local energy density h(n,t) does not relax (upper inset),
the current saturates fast to a unique finite value except for b > 0.
We attribute this to a finite linear-response thermal Drude weight of
both the pure XXZ chain and the nonintegrable dimerized chain (see
Fig. 2).

III. NONEQUILIBRIUM ENERGY CURRENT

We start by studying an XXZ chain with two additional
perturbations (dimerization λ < 1 and a staggered field b >

0), which both render the system nonintegrable.8,37,38 At time
t = 0, two semi-infinite chains, each being prepared in thermal
equilibrium at temperatures TL,R , are coupled by h0 to an
overall translationally invariant chain. Exemplary results for
〈JE(n,t)〉 are shown in Fig. 1. The current at the interface
n = 0 saturates on a scale t ∼ 1 [note the definition of units
via Eq. (3)] irrespective of the temperature difference TL − TR

or the absolute values of TL,R and regardless of the fact whether
or not the system is gapped. The only exception is b > 0 where
〈JE(n,t)〉 does not reach a finite steady-state value within the
time scales accessible by our numerics [see Fig. 1(c)], again
irrespective of the fact whether or not b opens a gap. We will
now try to understand this in more detail.

The time evolution of the local energy density h(n,t) =
〈hn(t)〉 of the XXZ chain (which for a homogeneous system
might be a measure for an effective temperature) is shown
in the inset to Fig. 1(a). It does not reach a steady-state
value but becomes increasingly smooth. This is not surprising
since we are simulating a closed quantum system, but gives
rise to the questions: (1) why does the current saturate
except for b > 0, implying that it is not determined by local
temperature gradients and (2) would we obtain the same
steady-state current if we kept the “reservoirs” at a fixed
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temperature?33 Both are reasonable if it does not matter over
which length scale L the temperature difference TL − TR is
applied; qualitatively, this should be the case if the thermal
transport properties of the chain are length-independent, i.e., if
the thermal conductance G of a finite system does not decrease
with its length L, or equivalently, if the conductivity σ = GL

of an infinite chain L → ∞ is infinite. More quantitatively,
we conjecture a relation between nonequilibrium and linear
response: the nonequilibrium energy current relaxes to a finite
steady-state value if the linear-response thermal conductivity
is infinite, i.e., if the Drude weight D is nonzero. Before
we proceed with calculating D, we note that (2) can be
shown explicitly for the XX chain � = b = 0, λ = 1 by
carrying out the so-called wide-band limit (which strictly pins
the temperatures) and by computing the current analytically
using Keldysh Green functions; moreover, the nonequilibrium
steady-state current was recently obtained from a generalized
Landauer-Büttiker formula.35 Both currents agree with the one
in our setup at long times [see, e.g., Fig. 3(b)].

IV. LINEAR RESPONSE THERMAL DRUDE WEIGHT

To support our conjecture, we now extract D from the long-
time behavior of the energy current correlation function,2,8

D = lim
t→∞ lim

N→∞
Re〈JE(t)JE〉

2NT 2
, JE =

∑
n

JE(n), (9)

which can be readily computed using DMRG. Results are
shown in Fig. 2. For λ = 1 and b = 0, JE is conserved, thus
〈JE(t)JE〉 = 〈JE(0)JE〉; the Drude weight can alternatively
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FIG. 2. (Color online) Linear-response energy current correlation
function whose long-time asymptote determines the Drude weight
through Eq. (9). For the integrable XXZ chain (λ = 1, b = 0), the
global energy current JE = ∑

n JE(n) is conserved; thus 〈JE(t)JE〉 =
〈JE(0)JE〉, and DMRG can be compared with exact Bethe ansatz
results (symbol). (a) and (b) Nonintegrable dimerized chain. The
current correlation function seems to saturate at a finite value
(or decays on a hidden large temperature-independent time scale),
indicating a finite Drude weight D > 0. (c) The data in presence of a
staggered field b > 0 are consistent with D = 0.

be obtained via Bethe ansatz.21 The energy current correlation
functions of the dimerized chain seem to saturate at a finite
value for any T ; alternatively, they decay on a hidden large time
scale, which is temperature-independent and becomes larger
as the dimerization is increased from λ = 1 to λ = 0.4 [see
Figs. 2(a) and 2(b)]. Our data thus indicate a nonzero Drude
weight. This is interesting on general grounds because the
model is nonintegrable.13 Most previous numerical works on
the dimerized chain8,9 yield D = 018 but focus on � = 1 where
also our results are less conclusive. The deeper reason for a
potentially finite Drude weight—the protection of the energy
current by an unknown nonlocal conserved operator3—will be
left as a subject for future work. In contrast, our data for b > 0
are consistent with D = 0 [see Fig. 2(c)].

Note that in both cases it does not seem to play a
role whether λ < 1 and b > 0 are irrelevant [main panel of
Fig. 2(c); inset to (b)] or open a gap [main panels of (a) and (b);
insets to (a) and (c)]: if T is decreased in a regime where b is
relevant [e.g., at � = 0.5; see the inset to Fig. 2(c) for T = ∞],
the scale on which 〈JE(t)JE〉 decays becomes successively
larger; for temperatures smaller than the gap, it can no longer be
reached by our numerics. The behavior of the dimerized chain
for parameters where λ is relevant is completely different;
if 〈JE(t)JE〉 decays on a hidden large scale, the latter is
temperature independent and does not manifest even at T = ∞
[compare Figs. 2(a) and 2(b)].

Recalling that the nonequilibrium current relaxes to a
nonzero steady-state value in all cases where b = 0, the
observation of a finite (vanishing) Drude weight for λ � 1
(b > 0) supports our above conjecture.

V. ASYMPTOTIC CURRENT, HOMOGENEOUS SYSTEM

A. Numerical results

We now turn to study the temperature dependence of the
steady-state (position-independent) current. The result for the
XXZ chain both in the gapless and gapped regimes is illustrated
in Fig. 3. The asymptotic current seems to be of a strikingly
simple functional form:

lim
t→∞〈JE(n,t)〉 = f (TL) − f (TR), (10)

indicating a second relation between nonequilibrium and
linear response: The linear thermal conductance ∼∂T f (T )
determines the steady-state nonequilibrium current at any
TL − TR . Equation (10) can be established by varying TR at
fixed TL; the corresponding curves collapse if shifted vertically
[see Fig. 3(b)]. The limiting behavior (both in the gapless and
gapped regime) of f (T ) is given by

f (T ) ∼
{

T 2, T � 1,

T −1, T  1.
(11)

Other details of f such as prefactors or the crossover scale
(which for � = 0 and �  1 is determined by the bandwidth
or the size of the gap, respectively), in general, depend on the
model parameters. However, a recent conformal field theory
approach36 conjectures that the low-temperature behavior of
a gapless system is universally given by f (T ) = c π

12T 2 with
c being the CFT central charge, which follows intuitively
from the version of the Stefan-Boltzmann law satisfied by a
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FIG. 3. (Color online) (a) Temperature dependence of the steady-state energy current (which becomes position-independent for t → ∞) of
the integrable XXZ chain in the gapless (� = 0.5) and gapped (� = 2) regimes. The right temperature TR is varied at fixed TL. (b) The curves
at different TL collapse if shifted vertically; thus the T dependence is of the simple functional form limt→∞〈JE(n,t)〉 = f (TL) − f (TR). The
linear thermal conductance ∼∂T f , therefore, completely determines the nonequilibrium current. A CFT approach36 predicts universal behavior
f (T ) = c π

12 T 2 at low T , which we verify (insets) for the gapless XXZ chain (central charge c = 1) and the quantum Ising model (c = 1/2).
The free fermion case � = 0 can be solved analytically34,35 at any T and provides a test for our DMRG numerics.

CFT.39,40 We confirm this prediction for the XXZ chain (c = 1)
as well as the quantum Ising model (c = 1/2); this is illustrated
in the insets to Fig. 3(b). This is a nontrivial result because
(1) it is unclear why for a microscopic model whose
equilibrium physics is governed by a certain low-energy field
theory the very same field theory should describe the long-time
behavior of the microscopic model in nonequilibrium (note
that the behavior for 0 < b < bc is not captured by the CFT),
and (2) even linear-response transport properties (such as the
Drude weight) are not determined by the low-energy theory
alone but by a delicate interplay of conserved quantities
protecting the current and dangerously irrelevant operators
scattering it.1–3

Our results for the dimerized chain at λ = 0.8 are still
consistent with Eq. (10), indicating that it might be a universal
property of any system with a thermal Drude weight, if indeed
that system has a Drude weight. At smaller λ and low T , we
cannot reach time scales where oscillations of the current have
died out completely. We expect that models that are strongly
nonintegrable and have zero Drude weight will not show a
steady state even in the homogeneous case.37

The free fermion case � = 0 can be solved exactly;34,35

Eq. (10) reflects a noninteracting thermal Landauer-Büttiker
formula. This analytic result can be used to test our DMRG
numerics at any temperature [see the comparison in Fig. 3(b)
as well as in the inset to Fig. 9].

B. Stefan-Boltzmann function in integrable systems

Equation (10) can alternately be understood as a cyclic
relation for the 3-reservoir geometry in Fig. 4(b): the existence
of a Stefan-Boltzmann function f is equivalent to the statement
that the steady-state currents between three reservoirs T1,2,3

satisfy

JE(T1 → T2) + JE(T2 → T3) + JE(T3 → T1) = 0. (12)

We now show that integrable models with a conserved total
energy current, such as the XXZ model, have a cyclic “sum
rule” structure that is loosely similar to but not (at first glance)

equivalent to Eq. (12). Further physically motivated
assumptions then lead to the existence of the Stefan-Boltzmann
function.

To understand why there is any relationship between the
three pairs of temperatures in the cyclic formula (12), consider
the initial condition shown in Fig. 4(b). Three segments of
equal lengths N of a ring are prepared at three different
temperatures. This system can be studied straightforwardly via
DMRG, and exemplary results are shown in Fig. 5. They can be
interpreted as follows. Suppose that the typical velocity of the
system is vtyp, and consider energy currents at a time vtypt �
N . For any such time, the middle of each reservoir is essentially
unperturbed from its initial state, so the local energy current is

FIG. 4. (Color online) (a) The setup studied in this paper; at
t = 0, two (effectively semi-infinite) reservoirs featuring different
temperatures TL and TR are connected, and eventually a steady-state
energy current is established. (b) Gedanken experiment with three
reservoirs. As described in the text, conservation of the energy current
implies that there is a relationship between the currents flowing at the
three interfaces, until such times as the different interfaces begin to
interact with each other.
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FIG. 5. (Color online) DMRG data for the setup depicted in
Fig. 4(b). At t = 0, three XXZ chains (� = 0.5) of lengths N = 50
and temperatures T1 = ∞, T2 = 1, T3 = 0.5 are coupled to a ring.
The energy currents saturate to their unique steady-state values at
the interfaces (n = 0,50,100) but remain zero far away from them
(e.g., for n = 25). The sum of the current over the regions where
it is nonzero vanishes [see Eq. (13)] due to the conservation of the
total current. As explained in the main text, this motivates the “cyclic
sum rule” of Eq. (12), which is equivalent to the existence of a
Stefan-Boltzmann function f .

zero (see the curve at n = 25). The local energy currents rise in
the vicinity of the junctions (n = 0,50,100); let j	

t (T1 → T2)
be the spatially integrated energy current at the T1 to T2

boundary at time t , and similarly for the other boundaries.
Of course, once vtypt ≈ N the energy currents are no longer
localized in the region of the boundaries and j	

t is not defined.
The initial energy current around the ring is zero and is

a conserved quantity of the connected system, so the total
energy current must still be zero. In other words, for all times
vtypt � N , we have (see Fig. 5)

j	
t (T1 → T2) + j	

t (T2 → T3) + j	
t (T3 → T1) = 0. (13)

This is not the same as Eq. (12), however, because JE is the
current at a point, while j	

t is spatially integrated and has some
complicated profile in general. For the conformal field theory
limit, all excitations have a single velocity v and j	

t is expected
to be dominated by vtJE . To summarize, general principles
suggest that there is a sum rule (at all times less than an upper
cutoff determined by the reservoir size) relating the three pairs
of temperatures; however, the detailed form of this sum rule is
not the same as the observed relationship between steady-state
currents, although they are related in the conformal limit.

Now we proceed to give a definition of the Stefan-
Boltzmann function f and then argue that the steady-state cur-
rent is determined by the difference in the Stefan-Boltzmann
functions of the two reservoirs. Consider a large reservoir
of size L0 prepared at initial temperature T . At t = 0, it is
connected to semi-infinite leads at each end, and these leads
are prepared at some reference temperature, for example, zero
(ignoring any subtleties from possible symmetry breaking).
At some very long time so that no excitations remain in the
reservoir, let F be the total energy current integrated over all
sites to the right of the reservoir. This “right-moving energy
current” will be extensive in L0, so we define f = F/L0 as
the radiated right-moving energy current per site.

In order to give some intuition for the existence of a steady
state and Stefan-Boltzmann law even when there is not a single
velocity as in the conformal case, we present a free-particle
example in Appendix. This model has a Gaussian distribution
of velocities and a steady-state energy current at the reservoir
boundary, which is determined solely by the total radiated
power as described above. The variation in particle velocity
does not otherwise affect the answer. The steady state lives
for a time that is arbitrarily long as the reservoir size becomes
infinite but is short compared to the amount of time it takes
for the reservoir to radiate all its energy, as at that time there is
no current left at the reservoir boundaries. This notion of the
steady state as actually a long-time phenomenon compared
to transients (and diverging in the limit that the reservoir is
infinite) but a short-time phenomenon compared to the time on
which F is defined, is used in our argument for the interacting
case below.

Now comes a subtle and surprising point. The cyclic relation
at finite times in Eq. (13) means that the behavior of the energy
current at any of the junctions is remarkably constrained: any
change that only affects one junction but not the other two will
not affect the spatially integrated current around the junction.
For example, consider the two different initial conditions
shown in Fig. 6(a): one is the abrupt junction simulated in our
numerics, where a single bond is restored at t = 0; the other
contains a “spacer” of n bonds, all of which are turned on at
t = 0. The total energy current integrated over bonds between
these two reservoirs must be exactly the same in these two
cases, up to some long time (we assume that the reservoir size
L0  n). But for a long spacer n  1, the spatial profile of
the current will look different at short times than for n = 1:

Je

Je

(a)

(b) 1 1

L0

2 23 3

FIG. 6. (Color online) (a) Robustness of total integrated current
around a junction: the spatial distribution (drawn schematically for
illustrative purposes) of the energy current JE is different between
the geometries with and without a “spacer” region prepared at some
reference temperature, but the spatial integrals are the same. (b) Two
large reservoirs of size L can be viewed as made up of translated pairs
of smaller subreservoirs of size L0. The numbers indicate the pairings
of the subreservoirs. The sum of many translated copies of a function
approaches a constant, as long as the function is smoothly varying
on the scale of the translations. If the energy current can indeed be
viewed as such a sum, then the existence of a Stefan-Boltzmann
function is recovered, independent of the precise shape of the energy
current distribution.
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for the long spacer, the current consists of one right-moving
patch from the left lead and one left-moving patch from the
right lead, as shown schematically in Fig. 6(b). For n = 1, the
current is expected to be spatially monotonic, or at least not to
decouple into these separated regions.

This argument indicates that the nontrivial time evolution
of spatially integrated current is exactly the same whether
the right movers and left movers pass through each other
or are spatially separated, i.e., treating the problem as two
separate pulses and adding them together gives exactly the
right total current. We now give a (nonrigorous) picture for
how a steady state described by a Stefan-Boltzmann function
can exist independent of the “pulse shape,” i.e., the spatial
distribution of energy current, which is certainly sensitive to
interactions. Consider each large reservoir, now of size L, as
made up of many contiguous subreservoirs of size L0 [see
Fig. 6(b)]. We can pair subreservoirs as shown so that the
total problem is a combination of copies translated by L0. The
point of the small subreservoirs is that the observation time for
the steady state is long enough that the subreservoirs are in the
long-time limit where F is defined, although the total reservoir
is not. The shape of these contributions could be modified by
being in a nontrivial background, but their total weight is not,
and as we are at long times, we expect the pulse shape to
be broad compared to L0. Now, whatever the shape of the
contribution from a pair of subreservoirs is, its total weight is
L0 [f (TL) − f (TR)]. When we add together many translated
copies of the same shape, we obtain a constant, since by the
Poisson summation formula

∞∑
n=−∞

g(x + na) ≈ C =
∫ ∞
−∞ g(x) dx

a
(14)

for functions g that do not vary strongly on the scale of a.
So this constant is exactly j∞

E = f (TL) − f (TR), the desired
result. The conformal limit is a case where the subreservoir
size can be taken to be arbitrarily small. In words, the steady
state exists in a time window where all that matters is the total
energy per length of right movers emitted from the left, less
that of left movers emitted from the right.

We can give a specific example for which this picture
is correct by constructing a geometry, different from the
original geometry of two semi-infinite leads, for which the
time evolution can be shown to give a steady-state described
by the Stefan-Boltzmann relation, even in the presence of
interactions. This sidesteps the difficulty of solving the time
evolution from the non-translation-invariant initial state—it is
difficult to prove, in general, even that a translation-invariant
steady state exists. We would like to make a translation-
invariant system of interacting particles whose final state has
left movers originating at a different temperature from right
movers. To do so, consider the process in Fig. 7(a). Suppose for
simplicity that the model has a finite range of particle velocities
and that there is a “vacuum” state with no particles. Two
regions of different temperatures are spaced by a large enough
region of vacuum that the left movers from the right region fail
to interact with the left movers from the other until both types
of particles have moved out of their original reservoir regions.
Particle absorbers, which could be extra lengthy spin chains
for example, are placed at the left and right ends of the system

Je

absorbers

t < ta

t ≥ ta

(a)

(b)

FIG. 7. (Color online) Protocol to prepare a translation-invariant
final state with energy current given by the Stefan-Boltzmann
prediction. (a) Consider one hot lead and one cold lead, each of
which radiates both right and left movers. To create a state that mimics
the original two-lead geometry, we place nonunitary “aborbers” as
shown. (b) Replicate the geometry of (a) in both directions. The
absorbers are maintained in place long enough (until some time ta)
to absorb half of the excitations from each initial reservoir; which
half is absorbed (right or left movers) depends on the reservoir’s
temperature. The absorbers are then removed and further evolution is
unitary. Energy current is conserved and, if the dispersion of velocities
leads to a translation-invariant final state, then the final state must have
energy current given by the Stefan-Boltzmann prediction.

and absorb left movers from the left region and right movers
from the left region.

After this absorption, the absorbers are removed and the
remaining evolution is unitary. Repeat this arrangement in a
discretely translation-invariant way, as in Fig. 7(b). Further
time evolution will preserve the total energy current, even
though the particles coming from different reservoirs will
now interact. Assuming that a homogeneous energy current
is reached in the final state because of the dispersion of
particle velocities, the energy current in this final state has to be
c [f (T1) − f (T2)], where c is the volume fraction occupied by
the reservoirs and f is the directed radiated energy current per
unit length. In other words, the conservation of energy current
means that, in this specific example where left movers and right
movers are drawn from different temperatures, the final state
is described by a Stefan-Boltzmann function. However, the
existence of the same energy current in the actual two-reservoir
geometry is so far more difficult to establish.

While particle velocities are certainly modified by the
density of particles from the other reservoir in an interacting
system, this modification needs not to alter the total energy
current at the boundary, as in the example above. A quantum
field theory approach to thermal steady states leads in some
cases to a factorization of the density matrix from which the
existence of a Stefan-Boltzmann function follows, although
integrability and conserved energy current seem to play less
of a role in this approach.49 It should be noted that applying
this field-theory approach to the steady-state energy current
in the massive sine-Gordon model gives behavior that slightly
violates the existence of a Stefan-Boltzmann function,50 at the
level of a few percent. It is not clear whether this discrepancy
indicates a fundamental difference in the type of steady state
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(as, analytically, solving the time evolution for all times to
see the unique steady state emerge is not possible in either
approach). Finally, we note that the same logic presented in
this section would apply to charge currents in a homogeneous
system with a conserved charge current, but the XXZ model’s
charge current is not conserved (does not commute with the
Hamiltonian), although there is a Drude weight.

VI. BETHE ANSATZ APPROXIMATION FOR THE
STEADY-STATE CURRENT

Within the accuracy of our numerics, the steady-state
current does not depend jointly on TL and TR but rather is
just the difference of the function f evaluated at the two
temperatures. It is known that at low T this property should
hold as a result of conformal invariance,36 with f ∼ T 2. Earlier
in this paper, we gave a somewhat lengthy analytic argument
suggesting this result; in order to make it less mysterious,
we now show that a relatively simple approximation for the
isotropic XXX ferromagnet (� = −1) gives a reasonable
description of f (T ) at all temperatures and is exact in the
low-temperature limit.

For a spatially uniform gas of free particles with a particle
distribution function ρ(v) in velocity space, the Stefan-
Boltzmann function fSB can be obtained as

fSB(T ) =
∫ ∞

0
ρ(v)vE(v) dv, (15)

where E(v) is the energy of a particle with velocity v and the
integral is over only right-moving particles. This has the units
of an energy current (an energy per time) if ρ has units of
particle number per length per velocity.

Equation (15) motivates the following approximation: the
thermodynamic Bethe ansatz solution of the XXX model
by Takahashi51,52 is in terms of particles named “magnons”
and “strings.” In general, these particles are not independent
because of the Bethe conditions on phase shifts. However,
at low temperature and for ferromagnetic interactions, the
thermodynamic state is a dilute gas of magnons and strings, and
we might hope that a formula similar to Eq. (15), generalized
to multiple kinds of particles, is a good starting point.

In the notation of Refs. 51 and 52, which introduces a
variable x that parametrizes the momentum k via

eik = x + i

x
− i, (16)

the needed quantity is

f (T ) =
∫

x>0
ρn(x)vn(x)En(x), (17)

where n ranges over the different types of excitations (magnons
and strings) and ρ,v,E are the density, velocity, and energy.
Note that there is an ambiguous additive constant in f .
We evaluate only for right-moving excitations based on a
Landauer-type picture where the steady-state can be viewed
as the combination of right movers from the left lead and left
movers from the right lead. The velocity vn was obtained as
dEn/dk and the energy for an excitation of total momentum

0.1 1 10

TR

0

0.04

0.08

| 〈
J E

(t
→

∞
)〉

 | DMRG
Bethe ansatz

Δ=−1, TL=0

FIG. 8. (Color online) Comparison for the isotropic XXX fer-
romagnet (� = −1) of two estimates for the function f whose
differences give the steady-state energy current JE via JE = f (TL) −
f (TR) between reservoirs TL and TR . One estimate is obtained
from the DMRG results, using reference temperatures. The other
is obtained from the numerical solution of the thermodynamic Bethe
ansatz equations and the formula (17).

K is

En = 2

n
(1 − cos K). (18)

We have solved the standard TBA equations for ρn using
the numerical method introduced of Schlottman.53 The result
of evaluating this form for f is surprisingly good for the
ferromagnetic case: it is correct at low temperature and
underestimates the correct value by about 10% at high
temperature (see Fig. 8). For the XXX antiferromagnet, the
result is much worse and fails to reproduce the CFT result
at low temperature, which is natural as the low-temperature
state is now not dilute in terms of these particles. However, the
agreement is improved at low temperature by using a group
velocity derived from the dressed excitation energy. A more
complete comparison to this approach, including other values
of the anisotropy parameter, is currently underway.

A full explanation of our numerical results from the Bethe
ansatz is an open problem, and just taking the right movers (as
done here) does not satisfy the Bethe conditions on the phase
shifts of the particles. Nevertheless, the quantitative agreement
between the estimate from Eq. (17) and the DMRG result
means that the steady-state current is close in the ferromagnet
to a free-particle interpretation although the particles and their
densities are rather complicated.

VII. INHOMOGENEOUS SYSTEMS

We finally investigate systems that are not translationally
invariant. Tunneling across a barrier between Luttinger liquids
has been well studied by bosonization and other field-theoretic
methods in the low-energy limit, and beyond just verifying
these predictions, numerics allow a determination of when
the asymptotic properties accessible by bosonization become
apparent. We start by studying the effects of different bulk
parameters Jn<0 = JL, �n<0 = �L, Jn�0 = JR , �n�0 = �R

(and bn = 0). If these parameters are chosen such that the
renormalized Fermi velocities in the left and right halves
coincide, backscattering due to the barrier (which is naturally
present at the interface n = 054) can be tuned to zero,55 and
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0.1 1
T1

-0.05

0

0.05

0.1
| 〈

J E
(t

→
∞

)〉
 |

TL=T2, TR=T1
TL=T1, TR=T2

0.1
T

10-7

10-6

G

Δ=0
Δ=0.8

0.1 1
0

0.08

T2=∞

T2=1

T2=0.5

T2=0.2

curves
collapse

T1.0

T2.2

exact

FIG. 9. (Color online) Steady-state current for λ = 1, b = 0
but different bulk interactions �L = 0.3,�R = 0.8 and different
couplings JL = 1,JR = 0.808 to tune the backscattering at the
interface to zero.55 The magnitude of the current is the same for
TL = T1,TR = T2 and TL = T2,TR = T1. The curves at different T2

collapse (left inset), indicating that Eq. (10) still holds. (Right inset)
Linear thermal conductance of two identical XXZ chains connected
by a strong barrier J0 = 0.002. The low-T behavior is consistent with
T 2/K−1, where K is the Luttinger liquid parameter.41 At � = 0 we
repoduce the exact result of Ref. 35 for any T .

Luttinger liquid (LL) boundary physics41 is absent. Results are
displayed in Fig. 9, indicating that Eq. (10) still holds.

If two homogeneous XXZ chains Jn�=0 = 1,�n = � are
connected through a barrier J0, the linear thermal conductance
G = ∂TL

〈JE(t → ∞)〉|TL=TR=T is expected to feature a low-T
power law T 2/K−1 with K being the LL parameter.41 For
� = 0, Eq. (10) still holds even if J0 < 1,35 and 2/K − 1 = 1
just reflects the asymptotic T 2 behavior of f . Our data for
G in presence of interactions is consistent with T 2/K−1. This
is illustrated in the inset to Fig. 9 where J0 is chosen small
so that the scale on which LL boundary effects manifests
becomes large.56 Equation (10) still holds approximately
above this scale. There are obviously many possible bulk and
tunneling parameters that can be studied, and we reserve a
comprehensive study for future work; the main point is to note
that the Luttinger liquid tunneling physics and other subtle
properties can be accessed via our approach.

VIII. SUMMARY

In this paper, we provided evidence for a connection
between the nonequilibrium and the linear-response ther-
mal transport properties of isolated infinite spin chains (or
equivalently, interacting spinless fermions): (1) the energy
current of a system that initially features a temperature
gradient TL �= TR saturates to a finite value if the equilibrium
thermal Drude weight D is finite, and (2) the value of the
steady-state current at arbitrary TL,R is of the functional
form JE = f (TL) − f (TR), i.e., it is completely determined
by the linear thermal conductance. This can be viewed as a
generalized Stefan-Boltzmann law describing freely moving
quasiparticles; for the XXX ferromagnet, f can be computed
via the thermodynamic Bethe ansatz in good agreement with
the numerics. Our data suggest that D > 0 for a nonintegrable
dimerized chain (or that the current correlation function decays
on a hidden large temperature-independent time scale).
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APPENDIX: STEADY STATE FOR A MAXWELLIAN
DISTRIBUTION

We would like to understand in a simple example how the
steady-state current arises outside the conformal limit, i.e.,
when particle velocities are variable. Consider a system of
classical noninteracting particles that at time t = 0 has the
Maxwellian distribution

f (x,v,0) =
{

c exp(−αv2/2) if x ∈ [−L/2,L/2],

0 otherwise.
(A1)

The Boltzmann equation contains only the streaming term,
with the result that the function f (x,v,t) is simply equal to
f (x − vt,v,0): the number of particles with a given velocity
v at the point x and time t is given by the number of particles
with that velocity at a spatial point x − vt at time 0.

We would like to compute the energy current

jE(x,t) ≡
∫ ∞

0
dv v

(
v2

2

)
f (x,v,t). (A2)

The integral over the initial distribution will contribute if x −
vt ∈ [−L/2,L/2], which means

v ∈
[−L/2 + x

t
,
L/2 + x

t

]
. (A3)

Assuming x � L/2, the energy current is

jE(x,t) = −
∫ (L/2+x)/t

(−L/2+x)/t

dv
v3

2
ce−αv2/2 (A4)

= −c
2 + αv2

α2
e

−αv2

2

](L/2+x)/t

(−L/2+x)/t

. (A5)

The Stefan-Boltzmann function f as defined above is given
by the total right-moving energy current per length, or

f =
∫ ∞

0
dv

v3

2
ce−αv2/2 = 2c

α2
. (A6)

Now the question is whether (A5), evaluated at the right edge
of the reservoir, is equal to f for some period. We have

jE(L/2,t) = c

[
2

α2
− 2 + α(L2/t2)

α2
e

−αL2

2t2

]
. (A7)

We see that this is indeed equal to f while

t � L

√
α

2
, (A8)

and that the steady state described by f persists forever if
L → ∞.
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21A. Klümper and K. Sakai, J. Phys. A: Math. Gen 35, 2173 (2002).
22K. Saito, Phys. Rev. B 67, 064410 (2003); Europhys. Lett. 147, 34

(2003).
23E. Orignac, R. Chitra, and R. Citro, Phys. Rev. B 67, 134426 (2003).
24A. V. Rozhkov and A. L. Chernyshev, Phys. Rev. Lett. 84, 087201

(2005); A. L. Chernyshev and A. V. Rozhkov, Phys. Rev. B 72,
104423 (2005).

25E. Shimshoni, N. Andrei, and A. Rosch, Phys. Rev. B 68, 104401
(2003).

26D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz, Phys. Rev. E
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