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Dynamic structure factors of Cu, Ag, and Au: Comparative study from first principles
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We present a comparative theoretical and experimental study of dynamic structure factors (momentum-
dependent loss functions) of the noble metals Cu, Ag, and Au in the energy range of 0–60 eV. The emphasis
is on theoretical results that are compared with new as well as available experimental data. Dynamic structure
factors are calculated within the linear-response formalism of time-dependent density-functional theory, using
the full-potential linearized augmented plane-wave method. For the studied energy range, local-field effects are
found to be very important for Ag and Au and only marginally relevant for Cu. We present an explanation for
this surprising behavior. Loss functions of all three metals possess a complex multipeak structure. We classify
the features in the loss function as being related to collective excitations, interband transitions, or mixed modes.
The impact of short-range correlations on the dynamic response functions is evaluated by comparing the results
of the random-phase approximation to those of the time-dependent local density approximation. Exchange-
correlation effects are found to be weak for small momentum transfers, but increasingly important for larger
momenta. The calculated structure factors agree well with experiments.

DOI: 10.1103/PhysRevB.88.195124 PACS number(s): 71.15.Qe, 71.20.Be, 71.45.Gm, 79.20.Uv

I. INTRODUCTION

Electron energy loss spectroscopy (EELS) in the transmis-
sion electron microscope (TEM) is a well-established experi-
mental technique to study the electronic structure of materials.1

Energy loss is directly linked to the imaginary part of the
inverse dielectric function, and therefore many other prop-
erties of interest can be extracted from these measurements.
Combined with the imaging capabilities of the microscope, as
well as optical and x-ray emission spectroscopies that can
be performed in the TEM, EELS is an excellent tool for
materials characterization. In the past decades, the TEM has
experienced an impressive improvement in its performance.
Modern microscopes equipped with field-emission guns and
monochromators routinely achieve an energy resolution of
0.5 eV or even 0.1 eV,2,3 while the resolution in the momentum
transfer is better than 0.1 Å−1. Equally strikingly, in scanning
TEMs with aberration correction units, the electron beam can
attain diameters of sub-Ångstrom dimensions. This provides
unprecedented opportunities to study electronic structure at
the atomic scale.4,5

As a first approximation, a spatially resolved electron
energy loss spectrum can be viewed as the weighted con-
volution of momentum-dependent energy loss spectra. Thus,
the analysis of spatially resolved spectroscopic information
of complex inhomogeneous materials requires the under-
standing of momentum-resolved electron energy loss spectra
of its constituents. Since theoretical tools to accurately
calculate momentum-dependent dielectric functions have also
matured,6–13 it is very timely to pose an important question:
How do results of state-of-the-art theoretical spectroscopy
compare to measurements performed in modern TEMs?

In this work, we address this question taking three bulk
noble metals, Cu, Ag, and Au, as model systems. We focus on
low (valence) energy losses. The study of optical and dielectric
properties of bulk metals is a mature field in fundamental
research, and has been such for quite some time.14,15 To
illustrate this, it suffices to say that the first successful
theoretical analysis of optical properties of simple metals at the
microscopic level, the celebrated Drude model, precedes the
formulation of quantum mechanics by almost three decades.
Transition metals with fully or partially occupied d states
are certainly more complex than simple metals,16,17 but their
optical properties have been studied extensively also for
decades, both experimentally and theoretically.18–38 It may
thus seem that no aspect concerning valence excitations is
left unknown in these metals. While to a certain extent this is
certainly true for dielectric properties up to 10 eV (visible, near,
mid, and far ultraviolet), a lot less is known about excitations
with energies of several tenths (up to 100) of eV (extreme
ultraviolet). Lying between the optical range and shallow
semicore and core edges, these excitations are, in some sense,
no man’s land. Surprisingly, though being very important in
the measurements of spatially resolved electronic response,
the momentum dependence of the electron energy loss spectra
in this energy range is little understood. Therefore, the main
objective of this work is the study of momentum-dependent
EELS spectra of Cu, Ag, and Au for energies higher than 10 eV.

This paper is organized as follows. In Sec. II, the method-
ology to calculate response functions as well as loss functions
and dynamic structure factors is outlined. The experimental
setup and the post processing of raw experimental data are
described in Sec. III. Loss functions for small momentum
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transfers are analyzed and compared to experimental results in
Sec. IV. Momentum-dependent loss functions are presented
and analyzed in Sec. V. In particular, the dispersion of the
low-energy plasmon in Ag is computed and compared with
experimental data. In Sec. VI, the main results are summarized
and the impact of our findings is discussed.

II. THEORY AND COMPUTATIONAL DETAILS

In the case of a periodic solid, the double-differential
scattering cross section per unit volume for momentum transfer
Q and electron energy loss ω is given by (in atomic units)14,39

1

V

d2σ

d�dω
= γ 2

4π2

kf

ki
v2(Q) s(Q,ω). (1)

Here, v(Q) = 4π/Q2 is the Fourier transform of the Coulomb
interaction, s(Q,ω) is the dynamic structure factor (per unit
volume), γ = 1/

√
1 − v2/c2 is the relativistic factor for inci-

dent electrons, ki and kf are the initial and the final electron mo-
menta (Q = kf − ki). s(Q,ω) describes quantum-mechanical
electron density fluctuations of the physical system39 and is
directly related to the macroscopic density response function
χM:

s(Q,ω) = −2 ImχM(Q,ω). (2)

By definition, χM determines the macroscopic dielectric
function via

ε−1
M (Q,ω) = 1 + v(Q)χM(Q,ω), (3)

and thus the double-differential scattering cross section in
Eq. (1) can be also expressed as

1

V

d2σ

d�dω
= − γ 2

2π2

kf

ki
v(Q) Imε−1

M (Q,ω). (4)

The imaginary part of the inverse dielectric function

L(Q,ω) = −Imε−1
M (Q,ω) (5)

is a dimensionless quantity and is traditionally called the loss
function.

The dynamic structure factor is also an important quantity
in inelastic x-ray scattering spectroscopy (IXS). In IXS,
the double-differential scattering cross section is (in atomic
units)40

1

V

d2σ

d�dω
= α4(ei · ef)

2 ωi

ωf
s(Q,ω), (6)

where α = 1/137.035 is the fine-structure constant, ei and ef

are polarizations of the incident and the scattered wave. In
this paper, we will use the terms dynamic structure factor and
momentum-dependent loss function interchangeably. They are
related through

s(Q,ω) = 2

v(Q)
L(Q,ω), (7)

and the relative merits preferring one over the other depend
on the context. For example, the dynamic structure factor is
more convenient when discussing x-ray scattering since the
double-differential scattering cross section in IXS is directly
proportional to s(Q,ω). At variance, the loss function is
sometimes more convenient when discussing EELS, even

though the expression for the double-differential scattering
cross section of electrons has an additional prefactor v(Q).

According to Eq. (2), the main quantity that needs to
be calculated is the macroscopic density-response function
χM. By definition, the macroscopic quantity is related to its
microscopic counterpart χG,G′ (q,ω) via

χM(Q,ω) = χG,G(q,ω). (8)

Here, G is the reciprocal lattice vector, and Q = q + G, so
that q is confined to the first Brillouin zone. Within the
linear-response formulation of time-dependent density func-
tional theory (TDDFT),9,11 the microscopic density-response
function χ of the interacting many-electron system is related
to the density-response function χ0 of the corresponding non-
interacting Kohn-Sham system through the Dyson equation,
which is, symbolically

χ = χ0 + χ0(v + fXC)χ. (9)

fXC is the exchange-correlation kernel that accounts for all
many-body effects, and χ0 is given as

χ0
G,G′(q,ω)

= 2

V0

BZ∑

k

∑

n,n′

fn,k − fn′,k+q

εn,k − εn′,k+q + ω + iη

×〈ψn,k|e−i(q+G)r|ψn′,k+q〉〈ψn′,k+q|ei(q+G′)r|ψn,k〉. (10)

Here, ψn,k, En,k, fn,k are single-particle wave functions, their
eigenvalues, and occupation numbers (given by the Fermi
distribution function), respectively; indices n and n′ span all
bands, so both so-called resonant and nonresonant terms are
included in this approach; V0 is the volume of the unit cell.
While the approach is formally exact, approximations are
needed in practice.11 In this work, we use two different simple
approximations. Setting fXC to 0 yields the random-phase
approximation (RPA), in which only the classical Coulomb
field of the induced charge density is accounted for when
calculating χ . The second approximation is the adiabatic local
density approximation (ALDA or TDLDA), in which fXC is
given by11

f TDLDA
XC (rt,r′t ′) = δ(t − t ′)δ(r1 − r2)

dV LDA
XC (n)

dn

∣∣∣∣
n=n(r,t)

.

(11)

The TDLDA kernel is local in space and time. Thus, its Fourier
transform with respect to time is frequency independent, and
the transform with respect to real space variables f TFLDA

G,G′ (q)
depends only on q and G − G′. More complicated kernels,
such as those that attempt to include excitonic effects, are not
used in this work as we are dealing with metals only.

An important concept in studying response functions is that
of crystal local fields. Taking the RPA as an example, we obtain
from Eq. (9)

χ = (1 − χ0v)−1χ0. (12)

The calculation of χ therefore involves the inversion of the
matrix 1 − χ0v for each value of q and ω. Calculations are
numerically involved as one needs to include a sufficient set of
reciprocal lattice vectors for the representation of microscopic
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quantities, so that the final result is converged. Neglecting
all off-diagonal elements, or crystal local fields, is equivalent
to dealing with scalar functions rather than matrices. This
is equivalent to the assumption that the screening charge is
independent of the position of the test charge inside the unit
cell. The comparison of response functions calculated with or
without the inclusion of local fields shows to what extent this
assumption is realistic in a given material.

In this work, the response functions have been deter-
mined via all-electron full-potential calculations based on
the linearized augmented plane-wave (FP-LAPW) method, as
implemented in the EXCITING code.41–44 For all metals, the
experimental lattice constants have been used. Ground-state
electron densities, as well as Kohn-Sham orbitals and eigen-
values, have been calculated with the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional45 (below just referred
to as the generalized-gradient approximation, GGA). The
product of the muffin-tin radius and the largest G vector in
the interstitial region RGmax was set to 8.0. An off-center
20×20×20 k-point mesh has been used for the Brillouin zone
sampling in most cases. For very large momentum transfers,
we have found it necessary to increase the mesh to 25×25×25,
while for an accurate determination of the plasmon dispersion
in Ag a 30×30×30 grid has been employed. To account
for local-field effects, at least three shells of G vectors
(�27 vectors) have been used. The summation in Eq. (10)
has been performed with a finite η, in most cases 0.1 eV.

III. EXPERIMENT

Thin metallic films have been produced on freshly cleaved
NaCl substrates. Cu and Ag films have been prepared by
sputtering, while the Au film has been produced by evapo-
ration. This led to polycrystalline samples with grain sizes of
10–50 nm and only very little texturing. The film thickness
d was about 55 nm for Cu, 50 nm for Ag, and 35 nm
for Au. The films have been produced immediately before
being transferred to the microscope to avoid oxidation. EELS
analysis has shown no detectable oxygen contamination.

EELS data for Cu and Au were acquired on a FEI Tecnai F20
TEM equipped with a field-emission gun and a post column
Gatan imaging filter. The instrumental resolution was about
0.7 eV measured as the full width at half maximum (FWHM)
of the zero-loss peak without the specimen. The spectra
were acquired in the diffraction mode, using a large selected
area aperture to integrate over many crystal orientations. The
momentum transfer was selected by varying the spectrometer’s
entrance aperture and camera length and moving the diffraction
pattern projected on the spectrometer entrance aperture with
the projective deflection coils. For Cu, the same camera length
and spectrometer entrance aperture was used over the whole
acquisition range, while for Au the collection angle was
increased when moving away from the central spot, allowing
for a better signal at the expense of a lower angular resolution.
The collection semiangle was 0.1 mrad for Cu and varied
from 0.05 to 0.86 mrad for Au. The spectra where acquired
up to about 2

3 of the distance to the first diffraction ring since
for larger angles the total intensity started rising again, an
indication that the intensity coming from the first diffraction
ring was no longer negligible.

After the acquisition, the spectra were corrected for multiple
scattering following the procedure by Batson and Silcox.16 A
spectrum in the image mode needed for this procedure was
acquired using a large collection semiangle of 25 mrad. This
spectrum was subtracted from each of the angular-resolved
spectra after scaling the intensities of the zero-loss peaks.

Measurements for Ag have been performed with a JEOL
2200 FS TEM, equipped with a Schottky field-emission gun,
an in-column Omega-filter, and a 2k × 2k Gatan Ultrascan
CCD camera. The instrumental resolution was 0.8 eV. The
spectrum was taken in the image mode with a large selection
area aperture.

IV. ZERO MOMENTUM TRANSFER

A. Loss function

For small or vanishing momentum transfers and for energies
<15 eV, loss functions of Cu, Ag, and Au have been exten-
sively analyzed before.14,18,22,24–26,28–35,37,38 Common features
and distinctions for all three metals are rather well understood.
In particular, the origin of the 3.8-eV plasmon peak in Ag
is known,14 and reasons why a similar excitation does not
develop in Cu and is severely damped in Au, have been
formulated.31 For the sake of consistency, we provide a
short review of low-energy dielectric properties of all three
metals in the Supplemental Material (SM).46 We discuss the
importance of the band structure in the theoretical description
of those properties, complementing the analysis of Cazalilla
et al.31 from a semiclassical perspective. For higher energies
(>10 eV), the features in the loss functions have been to some
extent addressed for Cu in Ref. 26, Ag in Ref. 37, and Au in
Ref. 33.

The calculated loss functions are compared to the experi-
mental data of Werner et al.29,30 in Fig. 1. The experimental loss
functions were obtained from reflection EELS (disks) using
an algorithm to separate surface and bulk contributions and to
take into account multiple scattering.29,30 The calculations are
all based on the GGA band structure but use three different
approximations to determine response functions: RPA calcula-
tions taking local-field effects into account (“GGA-RPA, with
LFE,” black solid lines, and shaded areas), TDLDA calcula-
tions with local-field effects (“GGA-TDLDA, with LFE,” solid
purple lines), and RPA calculations without local-field effects
(“GGA-RPA, w/o LFE,” dashed lines). Calculations without
local-field effects reproduce earlier results29,30 in which the
interband contribution was evaluated strictly for q = 0, and
the intraband contribution had the analytic Drude form with
appropriate parameters.

The most important conclusion that can be readily drawn
from Fig. 1 is that the two most accurate theoretical treatments
(GGA-RPA with LFE and GGA-TDLDA with LFE) overall
provide an excellent description of loss functions. More
specifically, note the following: (i) In agreement with the
established knowledge of low-energy optical properties of
these three metals,14,31 only in Ag a well-defined low-energy
plasmon (peak 1) develops, while it is severely suppressed
in Cu and Au. This is explained in more detail in SM.46

(ii) Loss functions of all three metals are characterized by
a broad structure with several well-defined peaks; the origin
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FIG. 1. (Color online) Loss functions of bulk Cu, Ag, and Au
for small momentum transfers based on the GGA band structure
(energy range 0–60 eV): black lines and shaded area (blue dashed
line) indicate results obtained within the RPA, and include (exclude)
local-field effects; maroon solid lines are obtained by adiabatic local
density approximation including local-field effects. Measurements in
the image plane of the TEM are given by the orange line (only for
Ag); reflection EELS data by Werner et al. (Refs. 29 and 30) are
displayed by red dots.

of the peaks will be discussed in Sec. IV B. (iii) In the case
of Ag and Au, local-field effects are essential for energies
>40 eV. Only the inclusion of these effects brings the
calculated loss functions in agreement with experiment. At
variance, local-field effects are much less pronounced for Cu.
This surprising asymmetry between metals with very similar

nominal electron configurations is explained in Sec. IV C and
SM.46 (iv) The effect of including a finite exchange-correlation
kernel is approximately an order of magnitude smaller than
that of the local fields. Consequently, it is almost completely
irrelevant for Cu. This will be discussed in more detail in
Sec. IV C.

B. Origin of peaks in the loss function

The origin of the peaks in the loss function below 10 eV has
been analyzed before,14,18,22,24,25,31,37 and reviewed in SM.46

In short, in Cu peaks 1 and 2 are characterized by a small
real part of the dielectric function ε1, and have to be classified
as plasmon resonances. These resonances are severely damped
due to a significant value of the imaginary part of the dielectric
function ε2. Similar reasoning applies to peak 2 of Ag and
peak 1 of Au. At variance, peak 1 of Ag is a proper plasmon
peak that originates from Drude-type oscillations in the sp

band renormalized by interband transitions from the 4d state
to the states above the Fermi energy.14,31,46 We note that all
these peaks have been observed experimentally in many other
experiments. For example, peak 2 in Ag has been recently used
to image Ag nanoparticles.47

The origin of higher-energy peaks in the loss functions
of Cu, Ag, and Au can be understood in terms of a system
of classical Drude-Lindhard oscillators.49 The corresponding
model is presented in more detail in SM.46 In short, the analysis
shows that for each peak in ε2 there is an associated peak at
slightly larger energies in the loss function, and the difference
between the two frequencies decreases for higher-lying peaks.
Furthermore, the absolute value of the peak in the loss function
is inversely proportional to the background value of ε1 at the
peak position.

Indeed, as shown in Fig. 2, these trends hold for peaks
3 and 4 of Cu, peaks 3–7 of Ag, and peaks 2–7 of Au. This
indicates that these excitations originate mainly from interband
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FIG. 2. (Color online) ε1 (solid line), ε2 (dashed line), and loss
function (shaded area) of Cu, Ag, and Au in the energy range 11–
60 eV. Most important peaks due to excitations of valence electrons
are marked in numbers. N2,3 and O2,3 edges of Ag and Au are also
shown.
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transitions and also implies that the Drude plasmon does not
play a significant role at such energies.

A peak at ∼56 eV in the loss function of Ag (Fig. 2)
corresponds to the N2,3 core edge (excitations from 4p bands),
the experimental value being ∼62 eV. This shows that the 4p

states are significantly underbound in GGA, even more so than
4d states. Similarly, a peak at ∼58 eV in the loss function of
Au corresponds to the O2,3 edge (excitations from 5p bands),
while the M2,3 edge in Cu appears above 60 eV. Since our main
focus is on excitations of valence electrons, we will neglect
core excitations in subsequent discussions.

The conclusion that eminent features in the loss function
for energies >10 eV are caused by interband transitions from
d states is probably expected and not surprising, and has been
already suggested in Ref. 26 for Cu. The existence of these
features on top of a broad background indicates that even at
energies as high as 50–60 eV above the Fermi level (i.e., more
than 45 eV above the vacuum level) electrons still feel the
influence of the underlying atomic cores. Indeed, for optical
transitions from d states to free-electron levels high above the
Fermi energy, one would not expect any sharp features in the
loss function. This finding is not new, however. In fact, already
three decades ago Speier et al. performed bremsstrahlung
isochromate spectroscopy (BIS) measurements for Cu and
Ag.48 BIS is a variant of inverse photoemission spectroscopy
and measures the unoccupied density of states (DOS). It was
found that for energies >10 eV the unoccupied DOS for Cu
and Ag shows several well-pronounced peaks. There is a very
nice correlation between peaks in the BIS spectra and the
EEL spectra. In the case of Ag, for example, for each of
the peaks 3–7 in the EEL spectrum there is a corresponding
peak in the BIS spectrum at about 4 eV lower energies. This
correspondence underpins the interpretation that pronounced
features in the loss functions arise because of interband
transitions from d states to unoccupied states with a peak
in the DOS.

This conclusion is especially important for photoelectron
spectroscopies, in which excited photoelectrons of energies
comparable to these ones are often described by plane waves.

C. Local-field and exchange-correlation effects

The loss function [Eq. (5)] as measured in EELS or
IXS, naturally contains LFEs. While the occurrence of local-
field effects in inhomogeneous solids has been known for
decades,50,51 their importance varies from solid to solid. From
a theoretical perspective one can get insight by considering the
dielectric response of materials with and without these effects.

It has been demonstrated that the inclusion of LFEs is very
important for excitations from core52 and semicore53 levels
to the lowest unoccupied states. Clearly, localized atomiclike
states are far from the homogeneous electron gas model
for which LFEs vanish. Sturm and Oliveira54 have shown,
however, that these effects also influence collective excitations
in simple metals. These excitations couple to short wavelength
(large-q) charge fluctuations via LFEs and this significantly
affects the width and the dispersion of the resulting plasmon for
small q. It was subsequently discovered that also the opposite
effect can be observed: Collective excitations that occur for
small q affect electron-hole excitations that occur at very large

q (beyond the first Brillouin zone).55,56 This interaction is small
in Si, where a plasmon Fano antiresonance forms,57 while in
MgB2 (Ref. 55) and compressed Li (Ref. 56) the interaction is
much stronger and leads to replicas of the plasmon at higher
Brillouin zones.

Here, we discuss LFE for Cu, Ag, and Au for small q.
LFE at finite q are analyzed in Sec. V C. The results in Fig. 1
show that for small q the inclusion of local-field effects does
not lead to notable differences for energies <10 eV, but these
effects are very pronounced at larger energies, especially for
Ag and Au. Since at larger energies, loss functions correspond
to transitions from occupied d states to plane-wave-like
unoccupied states high above the Fermi level, LFEs reflect
the rather localized nature of the d orbitals. However, this
conclusion seems to contradict the result that, between 10 and
60 eV, LFEs are substantially smaller in Cu than in Ag and Au.
Indeed, Cu 3d are more localized than Ag 4d or Au 5d states,
and one would naturally expect LFEs to reflect this trend.
However, as shown in SM,46 paradoxically, it is because of a
larger degree of localization of Cu 3d that LFEs are relatively
small in the energy range studied. Indeed, we find that LFEs
indirectly probe the density of d states in reciprocal space.
This density is significantly more spread out for Cu than for
Ag and Au. As a result, it is being probed by plane-wave-like
unoccupied states at higher energies. This is confirmed by our
calculations. However, excitations from semicore Cu 3p states
start to overlap with excitations from 3d states at the same
energies. The effect of local fields on momentum-dependent
loss functions is discussed in Sec. V C.

It is clear from Eqs. (9) and (11) that in the optical
limit, i.e., G = 0 and q → 0, the TDLDA kernel does not
change the dielectric function when local field effects are
neglected. Indeed, in this case, χ00(q,ω) = χ0

00(q,ω)/{1 −
[v(q) + f TDLA(0)]χ0

00(q,ω)}. Since f TDLDA(G) is finite for all
G, including at G = 0, and v(q) = 4π/q2 → ∞, the effect of
the XC kernel is vanishing for small q. Thus, the choice of
the TDLDA kernel is important only when LFEs are included.
As seen in Fig. 1, the effect of the TDLDA kernel on the loss
function is in general small, i.e., much smaller than that of local
fields. This finding is in line with previous studies.53,58 As a
result, the effect is totally negligible for Cu for the energies
studied here.

V. FINITE MOMENTUM TRANSFERS

A. Loss functions

The calculated momentum-dependent loss functions for all
three metals are shown in Fig. 3. The momentum transfer
is along the [111] direction, and varies between 0.030 and
2.262 Å−1 for Cu, 0.026 and 1.849 Å−1 for Ag, and 0.027 and
1.921 Å−1 for Au. The upper limits correspond to momenta
q ≈ (0.7,0.7,0.7)2π/a, where a is the lattice constant. The
special points � = ( 1

4 , 1
4 , 1

4 )2π/a and L = ( 1
2 , 1

2 , 1
2 )2π/a are

indicated in Fig. 3.
Despite several individual features, most of the trends

are the same for all three metals. While the loss functions
for small momentum transfers are characterized by several
well-pronounced peaks, as discussed above, their relative
intensity tends to decrease with increasing momentum transfer.
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FIG. 3. (Color online) Momentum-dependent loss functions of
Cu, Ag, and Au in the (111) direction. Spectra are offset for
clarity. Special points � = ( 1

4 , 1
4 , 1

4 )2π/a and L = ( 1
2 , 1

2 , 1
2 )2π/a are

indicated, where a is the lattice constant.

Qualitatively, this can be understood by analyzing the density-
response function of noninteracting electrons χ0 [Eq. (10)].
For small q, e−iqr ≈ 1 − iqr, and thus only dipole-allowed
transitions contribute, provided local-field effects are ne-
glected. Hence, the structure of the loss function is determined
mainly by transitions from occupied d to unoccupied states
with p and f character. For larger q, other transitions set in
that, on average, smear out the peaks. This can also be seen by
comparing the loss function for small q (mainly dipole-allowed
transitions) with the weighted joint density of states for opti-
cal transitions, defined as J (E) = 1/E

∫ EF

EF−E
D(E′)D(E′ +

E)dE′ (not shown). It does not discriminate between states of
different symmetry. While all the peaks apparent in the loss

function can be identified in the joint density of states, these
are much less pronounced in the latter.

Another important conclusion that can be drawn from
Fig. 3 is that peaks caused by interband transitions show little
dispersion as q increases. Even though for certain peaks the
position of their maxima varies by as much as one electron
volt, this is not very significant given that the peak widths
range from one to a few eV.

In contrast to peaks that originate from interband transi-
tions, plasmon peaks or peaks that have a plasmon component
(see Sec. IV B) show a different dependence on the momentum.
Peak 1 of Ag is the only well-defined plasmon peak the
dispersion of which is clearly parabolic (see Sec. V E).
Nevertheless, also other low-energy peaks in Cu, Ag, and Au
have a parabolic component in their dispersion. Since these
peaks are either broad or not well defined, it is difficult and
probably not very useful to quantify their dispersion. In the
case of Ag, it is interesting to note that one observes a slight
increase in intensity of peak 2 with momentum transfer where
peaks 2 and 3 seem to overlap.

A general trend which can be readily seen in Fig. 3 is that,
for the energies studied, the absolute value of the loss function
decreases with increasing momentum. The f -sum rule14 must
be fulfilled for all q, implying that the weight is redistributed
from smaller to larger energies with increasing momentum
transfer. This aspect is discussed in more detail in SM.46 The
reason behind can be already understood by analyzing the loss
function of the homogeneous electron gas, i.e., the Lindhard
dielectric function.

The presented analysis pertains to loss functions that
are calculated using GGA single-particle eigenvalues. The
conclusions still hold when approximate GW corrections are
applied (not shown).35,59,60 Indeed, we find that only peak 1
of Ag is significantly affected. The intensity and dispersion
of peaks that originate from interband transitions are barely
altered. The only difference is that these peaks move to higher
energies, reflecting the downward shift of d states. This finding
underpins that these peaks are caused by optical transitions
from d states.

B. Anisotropy

The loss functions presented in Fig. 3 correspond to
momentum transfer q in the [111] direction. Due to difficulties
in sample preparation, electron microscopy work is often
performed on polycrystalline samples, such as those described
in Sec. V D. It is thus important to understand to what extent
the conclusions reached in the previous section apply to other
crystallographic directions.

In Fig. 4, we show the calculated loss function of Ag
for various momentum transfers (0.076, 0.526, 1.052, and
1.730 Å−1) along the high-symmetry directions [111], [001],
and [110]. As expected, the anisotropy is very small for the
smallest momenta and becomes slightly more pronounced for
larger ones. However, even for the largest momentum transfer
of 1.730 Å−1, differences between different crystallographic
directions are only quantitative. Loss functions for momentum
transfers along different directions possess essentially the same
features.
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FIG. 4. (Color online) Loss functions of Ag for different momen-
tum transfers along high-symmetry crystallographic directions.

Despite the lack of very obvious differences, certain minor
distinctions can still be identified. For example, anisotropy
is quite visible for the loss function at about 35 eV, which
corresponds to peak 5 for smaller momenta [cf. Fig. 3(b)].
The results in Fig. 4 show that the rate of decrease is slightly
different for various crystallographic directions, being fastest
for the [111] direction, slightly slower for [110], and slowest
for [001].

We can conclude that the overall anisotropy is quite
small for the considered momenta. Differences between
loss functions along different directions are certainly much
smaller than those between measured and calculated spectra
(Sec. V D). This, to a certain extent, justifies the comparison
of loss functions obtained from polycrystalline samples with
calculations performed for high-symmetry directions.

C. Local-field and exchange-correlation effects at finite q

For all three metals that we study here, the effects of local
fields and the treatment of exchange-correlation effects in the
response functions for larger momenta are overall quite similar
to those at small momenta, as shown in Fig. 5. Like for small q,
local-field effects are very pronounced at larger energies, but
they seem to kick in already at lower energies. The TDLDA
kernel has already an effect even without an inclusion of local
fields, but in accord with the case q → 0, its impact is just a
fraction of that of the local-field effects.

D. Comparison with experiment

Theoretical and measured momentum-dependent loss func-
tions of Cu for different momenta are compared in Fig. 6. The
experimental curves were normalized as described in SM.46

Their energy resolution was of the order of 1 eV, thus an
additional Gaussian smearing was applied to the theoretical
curves for a more meaningful comparison. The smearing
parameter was kept the same for all momentum transfers and
was chosen to obtain the best possible overall agreement for all
energies and momenta. As a matter of fact, the experimental
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q = 2.13 Å
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FIG. 5. (Color online) Calculated Ag loss functions for q =
2.13 Å in the [111] direction. Black solid line (shaded region): the
response function calculated at the RPA level including local-field
effects (LFE); blue dashed line: the same without LFE; solid purple
line: the response function calculated including the adiabatic LDA
kernel (TDLDA) and LFEs; red dashed line: the same without LFEs.

energy resolution was better for smaller momenta. This can
be explained by longer acquisition times needed for larger
momentum transfers.

For the smallest momentum transfer of q = 0.101 Å−1,
the experimental loss function agree excellently with the
calculated one. Peaks 1, 2, 3, and 4 can be identified in the
experimental loss function. The low-energy peaks are not
very apparent in the theoretical curve due to a relatively large
smearing parameter.

As explained at the beginning of the present section, the
relative intensity of the theoretically obtained peaks decreases
with increasing momentum transfer for all three metals. This
trend is reproduced in the experimental curves. Indeed, for
the largest momentum transfer q = 1.212 Å−1, peaks 3 and 4
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FIG. 6. (Color online) Measured (full lines) and calculated
(dashed lines) loss functions of Cu for different momentum transfers
q. The experimental spectra are taken on polycrystalline samples, the
calculated data correspond to q in the [111] direction.
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FIG. 7. (Color online) Measured (full lines) and calculated
(dashed lines) loss functions of Au for different momentum trans-
fers. The experimental spectra are for polycrystalline samples, the
calculated spectra are for q in the [111] direction.

are less pronounced than in the case of smaller q, both in
experiment and theory.

As experimental loss functions tend to acquire more weight
at higher energies as compared to their theoretical counterparts,
the agreement between experiment and theory is slightly
getting worse for larger momentum transfers. We assign
this fact to an incomplete removal of multiple-scattering
contributions by the procedure used in this work. Indeed, the
importance of multiple scattering increases with increasing
scattering angle. However, despite these small drawbacks, we
come to the conclusion that experiment and theory agree very
well with each other.

Theoretical and experimental loss functions of Au for
various q are compared in Fig. 7. While for the smallest
momentum transfer q = 0.167 Å−1, peaks 1, 2, 3, and 4 (cf.
Fig. 1) can be identified in the experimental loss functions, this
is not the case for peaks 5, 6, 7, which are, however, clearly
visible in the reflection EELS experiment of Ref. 29 (also
Fig. 1). Similarly to the case of Cu, the visibility of the peaks
decreases with increasing q, in full accord with theoretical
results.

The largest disagreement with theory concerns the visibility
of peak 7 for large momentum transfers [Fig. 3(c)]. It indicates
that peak 7 should be quite pronounced even for large
momenta. The results in Fig. 7 do not confirm this. One
possibility is that multiple scattering contributions have not
been completely removed by the present procedure, as in the
case of Cu. However, we can not draw a firm conclusion at
this moment. Overall, the agreement between experiment and
theory in the case of Au is very good.

Measurements of momentum-dependent loss functions of
Ag using a novel technique based on energy-filtered TEM
techniques are in progress in our laboratory.61

E. Plasmon dispersion in Ag

In contrast to all other peaks in the loss function, the energy
of the plasmon in Ag is very sensitive to the accuracy of the

FIG. 8. Momentum-dependent loss functions of Ag for energies
0–10 eV calculated within the RPA based on the GGA (upper panel)
and the GW (lower panel) band structure. Spectra are offset for clarity.

band structure. In particular, the position of d states plays
a crucial role.31,35,46 One thus would also expect that the
same applies to the dispersion of the plasmon. Therefore,
in calculating properties associated with the low-energy
plasmon we have applied approximate corrections based on
GW calculations of Marini et al.35,46 These corrections are
functions of energy only.

In Fig. 8, we plot the loss functions in the energy range
<10 eV for momenta 0.016–0.479 Å−1 along the [111]
direction. Spectra corresponding to different q are offset for
clarity. As q increases, the plasmon peak moves to higher
energies, becomes broader, and gets completely damped for
a critical momentum of qc = 0.4–0.5 Å−1. qc in Ag is much
smaller than in simple metals like Al, where qc ≈ 1.3 Å−1.16

The explanation for this is quite straightforward. In Ag, the
plasmon has a much smaller energy due to renormalization by
interband transitions.46 Thus, as q increases, it enters the region
of electron-hole excitations for much smaller q. This can
be expressed by an approximate relationship qc ≈ �p/vF,14

where vF is the Fermi velocity.
We have determined the plasmon dispersion by taking

the plasmon-peak energy as a function of momentum. This
allows a direct comparison with experimental results, where
the identical definition is most frequently used.24,25 The
corresponding dependence of the plasmon energy is shown
in Fig. 9 for three high-symmetry directions. The approximate
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FIG. 9. (Color online) Plasmon dispersion in Ag in the three
principal crystallographic directions calculated within the RPA based
on the (a) GGA and the (b) GW band structure.

GW corrections not only affect the position and the width of
the plasmon peak but also its dispersion. While it is parabolic
for low momentum transfers, it departs from this behavior
for momenta q > 0.2 Å−1. For the uniform electron gas,
it has been shown to be best described by the dispersion
relation �p(q) = (�2

p + βq2 + γ q4)1/2.62 However, there is
no good reason why this function should be used for a more
complicated plasmon like that of Ag. Thus, in this work we
choose a different procedure.

In Refs. 24 and 25, the plasmon dispersion was measured,
and for momenta smaller than 0.4 Å−1 was fitted to a parabola
of the following form:

�p(q) = �p + α
h̄q2

m
. (13)

Due to the limited energy resolution and a small number of
momentum transfers, the departure from parabolicity may
not have been detected in these early experiments. Thus,
to compare to these data, we have also fitted the results of
Fig. 9 to the above given dispersion relation [Eq. (13)] in the
same momentum range. The results of this fit are presented in
Table I. The plasmon energy at zero momentum h̄�p calculated
at the GGA level departs significantly from the experimental
value, and the agreement is noticeably improved with GW

corrections. Similarly, the dispersion coefficient α is found

TABLE I. Parameters of the plasmon dispersion in Ag for q <

0.4 Å−1 and for q < 0.2 Å−1. HEG stands for the homogeneous
electron gas with the electron density corresponding to one electron
per Ag unit cell.

q < 0.4 Å−1 q < 0.2 Å−1

h̄�p (eV) α h̄�p (eV) α

GGA 2.99 1.14 ± 0.10 3.03 0.68 ± 0.05
GW 3.47 0.85 ± 0.10 3.53 0.50 ± 0.05
Expt. (Ref. 24) 3.78 0.8 ± 0.1
Expt. (Ref. 25) 3.80 0.76 ± 0.03
HEG 0.47

to be 1.14 ± 0.10 in GGA (the error bar here comes from
averaging over the three high-symmetry directions), a bit
higher than the measured value of 0.8 ± 0.1 (Ref. 24) or
0.76 ± 0.03.25 In contrast, the GW value of 0.85 ± 0.10 agrees
very well with the measurements.

We have also performed a fit including momenta q <

0.2 Å−1 only (Table I), obtaining coefficients α of 0.68 ± 0.05
in the case of GGA and 0.50 ± 0.05 for GW , respectively.
These values could be compared to that of the homogeneous
electron gas having the density of sp electrons in Ag. To do so
requires an additional parameter, the “optical” electron mass,
which basically yields the Fermi level relative to the bottom
of the sp band (not to be confused with the effective electron
mass m ≈ 1 high above the Fermi level). Using m = 0.95,
we obtain α = 0.47 for the homogeneous electron gas. This
shows that for very small momenta the plasmon dispersion in
Ag does not significantly depart from that in the homogeneous
electron gas, despite the large difference in the corresponding
plasmon energies.

As discussed in Sec. IV, local-field effects are not very
substantial for energies below 10 eV. Indeed, when LFEs
are included, plasmon energy and dispersion do not change
much. This is illustrated in Fig. 9 for calculations including
approximate GW corrections. When local fields are included,
the plasmon energy increases slightly from 3.53 to 3.56 eV,
thus getting closer to the experimental value of 3.78 eV,
while the plasmon dispersion becomes slightly smaller. For
the [111] direction, the coefficient α decreases by about
3%. To judge about the importance of local-field effects,
however, more accurate measurements would be desirable.
These should ideally probe also the region where the dispersion
departs from the parabolic shape. We mention here a recent
theoretical work by Yan et al. for the Ag(111) surface using an
orbital-dependent functional.63 Significant improvement was
found in the description of the plasmon energy in the parabolic
region q < 0.15 Å−1; the coefficient α, however, was not
discussed in that study.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have performed a comparative analysis
of momentum-dependent loss functions of the three coinage
metals Cu, Ag, and Au. While their dielectric properties have
been studied in detail for more than half a century, our purpose
was to extend these studies to higher energies (>10 eV) and
larger momentum transfers. We have shown that pronounced
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peaks in loss functions at energies >10 eV originate from
interband transitions from d states. All-electron electronic-
structure methods like those used in this work are predestined
to achieve a reliable description of these features both at small
and at finite momentum transfers.

The main question guiding our work was, to which
extent response functions calculated using state-of-the-art
electronic-structure techniques, such as time-dependent
density-functional theory in the linear-response regime, agree
with those measured in modern electron microscopes. We
have shown that in the majority of cases the agreement is
indeed excellent.

We arrive at the conclusion that the existing theoretical
methodologies are indeed able to achieve a very reliable
quantitative description of dielectric properties of the coinage
metals Cu, Ag, and Au. It seems that given this excellent
performance of modern theoretical tools, improvements on the
experimental side are now necessary to challenge electronic-
structure theory. This includes better sample quality, post
processing of data, as well as advanced methodologies to

measure momentum-dependent loss functions.61 Due to strong
electron-electron interactions samples for TEM measurements
should necessarily be very thin. As a result, sample preparation
remains one of the most challenging tasks, in particular regard-
ing means to avoid surface contamination. As a step in this di-
rection, new sample preparation and measurements techniques
in the case of Ag will be presented in a future publication.61
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(http://www.yambo-code.org).
35A. Marini, R. Del Sole, and G. Onida, Phys. Rev. B 66, 115101

(2002).
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