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Graphene sheet versus two-dimensional electron gas: A relativistic Fano spin
filter via STM and AFM tips
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We explore theoretically the density of states (LDOS) probed by a scanning tunneling microscope (STM) tip
of two-dimensional systems hosting an adatom and a subsurface impurity, both capacitively coupled to atomic
force microscope (AFM) tips and traversed by antiparallel magnetic fields. Two kinds of setups are analyzed, a
monolayer of graphene and a two-dimensional electron gas (2DEG). The AFM tips set the impurity levels at the
Fermi energy, where two contrasting behaviors emerge: The Fano factor for the graphene diverges, while in the
2DEG it approaches zero. As result, the spin degeneracy of the LDOS is lifted exclusively in the graphene system,
in particular, for the asymmetric regime of Fano interference. The aftermath of this limit is a counterintuitive
phenomenon, which consists of a dominant Fano factor due to the subsurface impurity even with a stronger
STM-adatom coupling. Thus we find a full polarized conductance, achievable just by displacing vertically the
position of the STM tip. Our work proposes the Fano effect as the mechanism to filter spins in graphene. This
feature arises from the massless Dirac electrons within the band structure and allows us to employ the graphene
host as a relativistic Fano spin filter.
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I. INTRODUCTION

Graphene is a two-dimensional layer of atoms organized
in a honeycomb lattice. Its peculiar band structure, consisting
of two Dirac cones placed at the corners of the Brillouin zone
and characterized by a massless relativistic dispersion relation,
provides the opportunity for scientists to explore relativistic
phenomena in the domain of condensed matter physics. In the
past decade graphene was in focus of the physical community,
both theoretically and experimentally. In particular, transport
properties of graphene and other carbon-based nanostructures
attracted the vivid interest of researchers.1–12

Recent experimental13,14 and theoretical15–18 studies reveal
the possibility of the effective absorption of the individual
magnetic impurities by single graphene sheets. The presence of
such impurities (adatoms) strongly modifies the magnetic19–21

and transport properties of graphene22–24 which can be used
for a variety of technological applications including chemical
sensing.25,26 The convenient experimental techniques for
the investigation of the properties of individual adatoms is
provided by a scanning tunneling microscope (STM).27,28 The
latter is made by a metallic tip that probes, for low enough
temperatures, the local density of states (LDOS) of a sample
by measuring the differential conductance.29,30 In this scenario,
the STM of impurities adsorbed on graphene reveals the
scattering of electrons in a relativistic environment.

The LDOS of metallic systems coupled to impurities
displays Fano profiles31,32 resulting from the quantum inter-
ference between competing channels in the electron transport.
Such an effect arises from the interplay between the paths
of itinerant electrons that travel from the tip directly to the
conduction band of the host and those that tunnel via impurity.

The total Fano factor, established by the superposition of
these electron paths, defines the shape of the profiles of the
differential conductance.

In the past decade particular attention has been devoted to
the Fano effect in regular metals with magnetic adatoms in the
Kondo limit.33 In this situation, the description of the host as
a two-dimensional electron gas (2DEG) has been successfully
verified.34–38

Additionally, in the emerging field of spintronics, the
presence of spin-polarized hosts gives rise to interesting new
features.39–55 For these cases, the splitting of the Kondo
peak in the conductance characterizes the fingerprint of
itinerant magnetism in the host.39,40 A spin-polarized tip and
a nonmagnetic host also lead to a spin-dependent STM setup.
Particularly, the aforementioned system behaves either as a
spin filter in the Kondo regime or as a spin diode away from
it.41–43 Moreover, a Fano spin filter can in principle be realized
even in the absence of ferromagnetism56,57 and the Kondo
effect. This can be achieved in the side-coupled geometry of a
quantum wire hybridized with a quantum dot (QD) where spin
degeneracy is lifted by the external magnetic field applied at
the QD region.58

The properties of individual magnetic adatoms hosted
by graphene were previously investigated theoretically by
using the single-impurity Anderson Hamiltonian,59 both in the
regime of high temperatures T � TK (the Kondo temperature)
when the Hartree-Fock approach can be used5,6 and for
T � TK when Kondo correlations become important. In the
latter case, by changing the adatom level in the vicinity of
the Fermi energy, it has been predicted that the Kondo peak
arises in a narrower energy range than in normal metals.7 This
is due to the difference in the dispersion of the carriers in
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FIG. 1. (Color online) (a) A schematic diagram of the system
considered in this paper. An STM tip is coupled to the atom adsorbed
(adatom) in a 2D host which may be a 2D electron gas (2DEG) or
a graphene sheet. A subsurface impurity is also considered which
lies beneath the 2D system. The AFM tips allow us to control
the energy levels of the impurities which are under the presence
of antiparallel magnetic fields. The cross and dot at each impurity
indicate the orientation of the magnetic field. (b) The top views of
the setups considered: a 2DEG and a graphene sheet, respectively.
(c) The Zeeman splitting caused by the magnetic field in both
impurities.

the two systems: While the 2DEG is described by a parabolic
dispersion, the honeycomb lattice of graphene leads to a linear
dispersion relation near the Fermi level.

In the current paper we compare further the manifestations
of spin-related phenomena in normal metals and graphene in
the geometry of the two side-coupled impurities traversed by
antiparallel magnetic fields [Figs. 1(a) and 1(b)]. These fields
introduce a Zeeman splitting of the impurity levels as depicted
in Fig. 1(c). Additionally, two atomic force microscope (AFM)
tips are capacitively coupled to the impurities in order to set
their energies at the host Fermi energy.8 These tips play the
role of metallic gates usually employed to tune the levels of
QDs embedded in nanostructures.60,61

The quantum interference between the alternative paths
taken by the electrons rules the transport through the system
and leads to the typical Fano shape of the profiles of the differ-
ential conductance of the system. They can be characterized
in terms of Fano parameters which allow us to determine the
relative impact of each path into the global response probed
by the STM tip. The Fano parameters are dependent on the
properties of the host and demonstrate opposite behavior in
graphene and normal metals. In the former case, in the vicinity
of the host Fermi energy, the Fano factor diverges, while in
the latter case it approaches to zero. In order to explore such
contrasting features, in our further consideration we set the
levels of the impurities at the Fermi energy. As it will be
shown in this paper, the lifting of the spin degeneracy of the
LDOS is only feasible for the graphene system, in particular,
in the asymmetric limit of Fano parameters. In this regime,
a counterintuitive phenomenon is revealed, which is due to
the Fano factor of the subsurface impurity that dominates the
interference even with a stronger STM-adatom coupling. We
find that the majority spin component of the LDOS can be
tuned by displacing vertically the STM tip towards (or away
from) the host. We also demonstrate that there is an STM tip

position where the conductance becomes full polarized. The
graphene host thus allows us to emulate an ideal relativistic
Fano spin filter on massless Dirac fermions.

In order to model the system illustrated in Fig. 1, an
approach based on the two-impurity Anderson Hamiltonian
and going beyond the Hartree-Fock approximation and valid
away from the Kondo regime was developed. We consider
both cases of 2DEG and a graphene monolayer. In the latter
system, we follow the approach proposed in Ref. 7, where
an impurity is adsorbed above a single site of the host.
Additionally, we take into account a subsurface impurity, sit-
uated opposite to the adatom. By using an equation-of-motion
technique for the Green’s functions we derive a spin-resolved
formula for the LDOS, characterized by Fano interference
parameters.

The paper is organized as follows. In Sec. II we present the
theoretical model of metallic surfaces with two impurities and
derive the expression for spin-dependent LDOS for the setups
shown in Fig. 1. The decoupling scheme Hubbard I62 for the
calculation of the Green’s functions is presented in Sec. III.
In Sec. IV we derive the expressions of the noninteracting
self-energies of the impurities as well as the Fano parameters
for the graphene sheet and the 2DEG, respectively. The results
of the calculations are presented and discussed in Sec. V.
Conclusions are summarized in Sec. VI.

II. THEORETICAL MODEL

A. Hamiltonian

In order to probe the LDOS of metallic surfaces, we
consider an STM tip weakly connected to hosts hybridized
with a pair of side-coupled impurities as outlined in Fig. 1.
The systems we investigate are described according to the
Hamiltonian

H = H2D + Htip + Htun. (1)

The first term represents the Anderson model7 given by

H2D =
∑
sσ

∫
dkεkc

†
skσ cskσ +

∑
jσ

εjdσ d
†
jσ djσ

+
∑

j

Uj nj↑nj↓ +
∑
jsσ

∫
dkVjk(c†skσ djσ + H.c.).

(2)

The surface electrons forming the hosts are described by
the operators c

†
skσ (cskσ ) for the creation (annihilation) of

an electron in a quantum state labeled by the wave number
k, spin σ , and in the case of the graphene, an additional
index s standing for the valley index.4 For the 2DEG, the
quantum number s does not exist. The dispersion relation for
the graphene electrons is

εk = h̄vF k, (3)

with h̄ as the Planck constant divided by 2π and vF as the Fermi
velocity. For the impurities, d

†
jσ (djσ ) creates (annihilates) an

electron with spin σ in the state εjdσ , with the index j = 1,2
corresponding to the upper and lower impurities.
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The magnetic fields split the energies εjdσ ,

εjdσ = εjd − σ
�j

2
, (4)

where �j is the Zeeman energy. Here we employ antiparallel
magnetic fields established by the condition �1 = −�2.

The third term in Eq. (2) accounts for the on-site Coulomb
interaction Uj , with njσ = d

†
jσ djσ . Finally, the last two terms

mix the host continuum of states of the conduction band and
the levels εjdσ , where H.c. stands for the Hermitian conjugate
of the first term. This hybridization occurs at the impurity sites
via the coupling

Vjk = v0

2π

√
π�0

N
√

|k|, (5)

where N is the number of conduction states, and the parame-
ters v0 and �0 denote the host-impurity hybridization in energy
dimensions and the unit cell area, respectively.

The densities of states of the hosts per spin are different for
graphene and 2DEG and are given by the expressions

ρ0 = ρGS (ε) =
∑

s

�0

2π

|ε|
(h̄vF )2 = |ε|

D2
(6)

and

ρ0 = ρ2DEG (ε) = �0

2π

D

(h̄vF )2 = 1

2D
, (7)

where 2D denotes the band width.
The second part of Eq. (1) is described by the Hamiltonian

Htip =
∑
�qσ

ε�qb
†
�qσ

b�qσ , (8)

which corresponds to free electrons in the STM tip with energy
ε�q ruled by fermionic operators b

†
�qσ

and b�qσ .
To perform the coupling between Eqs. (2) and (8), we have

to define the tunneling Hamiltonian, here expressed in two
distinct forms,

Htun = tc
∑

σ

ψ
†
tip,σ ψhost,σ +

∑
jσ

tdjψ
†
tip,σ djσ + H.c.

= tc
∑

σ

ψ
†
tip,σ ψσ + H.c., (9)

where

ψtip,σ = 1√
N

∑
�q

b�qσ (10)

is the fermionic operator for the edge site of the tip,

ψhost,σ = 1

2π

√
π�0

N
∑

s

∫ √
|k|dkcskσ (11)

for the site of the host side-coupled to the impurities and

ψσ = 1

2π

√
π�0

N
∑

s

∫ √
|k|dkcskσ + (πρ0v0)

∑
j

qe
j djσ

(12)

represents the operator that accounts Fano interference via the
extrinsic Fano factor defined by

qe
j = (πρ0v0)−1

(
tdj

tc

)
. (13)

Notice that the electrons from the tip are able to tunnel directly
to three different sites with different hopping terms denoted
as: tunneling tip-host (tc), tunneling tip-adatom (td1) and tip-
subsurface impurity (td2). It is worth mentioning that according
to Refs. 63 and 64, these amplitudes are overlap integrals
that mixture the STM tip with the “host + impurities” system.
Thus by changing such parameters, we mimic the vertical
displacement of the STM tip.

B. LDOS for the “host + impurities” system in the
presence of STM and AFM tips

By applying the linear response theory, in which the STM
tip is considered as a probe, it is possible to show that the
differential conductance per spin is determined by6

Gσ (V ) ∼ e2

h
π	cρ

σ
LDOS (eV ) , (14)

where e is the electron charge, 	c = 4πt2
c ρtip, tc is the

tunneling term between the STM tip and the host, ρtip is
the DOS for the tip, V is the bias voltage, and ρσ

LDOS is the
spin-resolved LDOS of the “host + impurities” system.

To obtain the LDOS, we introduce for the operator of
Eq. (12), the retarded Green’s function

Rσ (t) = − i

h̄
θ (t)Tr{�2D[ψσ (t),ψ†

σ (0)]+} (15)

in the time domain, where θ (t) is the Heaviside function, �2D is
the density matrix of the system described by the Hamiltonian
[Eq. (2)], and [. . . , . . .]+ is the anticommutator of the field
operator taken in Heisenberg picture.39

From Eq. (15), the spin-resolved LDOS of the host can be
obtained as

ρσ
LDOS = − 1

π
Im(R̃σ ), (16)

where R̃σ is the Fourier transform of Rσ (t). To obtain an
analytical expression for the LDOS, we apply the equation-of-
motion approach to Eq. (15). Substituting Eq. (12) in Eq. (15),
one gets

Rσ (t) =
(

1

2π

√
π�0

N

)2 ∑
ss̃

∫ √
|k|dk

√
|q|dqRσ

cskcs̃q

+ (πρ0v0)
∑
js

qe
j

(
1

2π

√
π�0

N

)∫ √
|k|dk

× (
Rσ

dj csk
+ Rσ

cskdj

) + (πρ0v0)2
∑
j l

qe
j q

e
l Rσ

dj dl
,

(17)

expressed in terms of the Green’s functions Rσ
cskcs̃q

, Rσ
dj csk

,
Rσ

cskdj
, and Rσ

dj dl
.

First, we have to determine

Rσ
cskcs̃q

(t) = − i

h̄
θ (t)Tr{�2D[cskσ (t),c†s̃qσ (0)]+} (18)
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by acting by the operator ∂t ≡ ∂
∂t

on Eq. (18). We find

∂tRσ
cskcs̃q

(t) = − i

h̄
δ(t)Tr{�2D[cskσ (t),c†s̃qσ (0)]+}

− i

h̄
εkRσ

cskcs̃q
(t) − i

h̄

∑
j

VjkRσ
dj cs̃q

(t), (19)

where we have used

ih̄∂t cskσ (t) = [cskσ ,H2D] = εkcskσ (t) +
∑

j

Vjkdjσ (t). (20)

In the energy domain, we solve Eq. (19) for R̃σ
cskcs̃q

and
obtain

R̃σ
cskcs̃q

= δ(k − q)δss̃

ε+ − εk

+
∑

j

Vjk

ε+ − εk

R̃σ
dj csq

, (21)

where ε+ = ε + iη and η → 0+. Notice that we also need to
calculate the mixed Green’s function R̃σ

dj csq
. To this end, we

define the advanced Green’s function

Aσ
dj csq

(t) = i

h̄
θ (−t)Tr{�2D[d†

jσ (0),csqσ (t)]+}, (22)

whose equation of motion reads

∂tAσ
dj csq

(t) = − i

h̄
δ(t)Tr{�2D[d†

jσ (0),csqσ (t)]+}

− i

h̄
εqAσ

dj csq
(t) − i

h̄

∑
l

VlqAσ
dj dl

(t), (23)

where we have used once again Eq. (20), interchanging k ↔ q.
The Fourier transform of Eq. (23) leads to

ε−Ãσ
dj csq

= εqÃσ
dj csq

+
∑

l

VlqÃσ
dj dl

, (24)

with ε− = ε − iη. Applying the property R̃σ
dj csq

= (Ãσ
dj csq

)†

on Eq. (24), we show that

ε+R̃σ
dj csq

= εqR̃σ
dj csq

+
∑

l

VlqR̃σ
dj dl

, (25)

R̃σ
dj csq

=
∑

l

Vlq

ε+ − εq

R̃σ
dj dl

, (26)

and analogously,

R̃σ
csqdj

=
∑

l

Vlq

ε+ − εq

R̃σ
dldj

. (27)

Now we substitute Eq. (26) into Eq. (21) and the latter,
together with Eq. (27), into Eq. (17) and determine

R̃σ =
(

1

2π

√
π�0

N

)2 ∑
s

∫
kdk

1

ε+ − εk

+ (πρ0v0)2
∑
j l

(qj − iFj )R̃σ
dj dl

(ql − iFl)

+ (πρ0v0)2
∑
j l

qe
j (ql − iFl)

(
R̃σ

dj dl
+ R̃σ

dldj

)

+ (πρ0v0)2
∑
j l

qe
j q

e
l R̃σ

dj dl
, (28)

where

qj = 1

πρ0v
2
0

Re �jj (29)

is the Fano parameter6 due to the host-impurity coupling and

Fj = − 1

πρ0v
2
0

Im �jj , (30)

with

�ll̃ =
∑

s

∫
dk

VlkVl̃k

ε+ − εk

(31)

being the noninteracting self-energy of the impurities.6 From
Eqs. (16) and (28), we finally derive the spin-resolved LDOS

ρσ
LDOS = ρσ

1122 + ρσ
1221, (32)

where

ρσ
1122 = ρ0 + ρ0	

∑
j

[(
F2

j − q2
Tj

)
Im

(
R̃σ

dj dj

)
+ 2qTjFj Re

(
R̃σ

dj dj

)]
(33)

is the direct term of the LDOS and

ρσ
1221 = ρ0	

∑
j �=l

[
(FjFl − qTjqT l)Im

(
R̃σ

dj dl

)
+ (qTjFl + qT lFj )Re

(
R̃σ

dj dl

)]
(34)

represents the mixing term that arises from the interference
between the impurities, with

qTj = qj + qe
j (35)

being the total Fano factor and 	 = πv2
0ρ0 is the Anderson

parameter.
Equation (32) is the main analytical result of this paper.

It describes the spin-resolved LDOS of 2D systems with two
impurities in the side-coupled geometry shown in Fig. 1. This
equation shows the dependence of the LDOS on the direct
and mixed Green’s functions of the impurities R̃σ

dj dj
and

R̃σ
dj dl

, respectively, and on the total Fano parameter given by
Eq. (35). We highlight that the Zeeman energy of the impurities
determines the spin dependence of the LDOS and, therefore,
the spin-filter behavior, in particular, only for the graphene
system, as we will see.

In order to investigate the spin dependence of the LDOS as
well as the spin-filter effect, we introduce the expression

LDOS = ρ
↑
LDOS + ρ

↓
LDOS

ρGS (D)
(36)

for the dimensionless LDOS, where we have used Eq. (6) for
ρGS (D) and

SP = G↑ − G↓

G↑ + G↓ (37)

for the transport polarization of the system settled from
Eq. (14).
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III. GREEN’S FUNCTIONS OF THE IMPURITIES

In the present section we calculate R̃σ
dj dl

(j,l = 1,2)

within the Hubbard I approximation.62 This approach provides
reliable results away from the Kondo regime. Thus we begin
by applying the equation-of-motion method on these Green’s
functions, which results in

(ε+ − εldσ )R̃σ
dldj

= δlj +
∑

l̃

�ll̃R̃σ
dl̃dj

+ UlR̃dlσ ndl σ̄
,djσ

. (38)

In the equation above, R̃dlσ ndl σ̄
,djσ

is a two-particle Green’s
function composed of four fermionic operators, obtained from
the time Fourier transform of

Rdlσ ndl σ̄
,djσ

= − i

h̄
θ (t)Tr{�2D[dlσ (t)ndl σ̄ (t),d†

jσ (0)]+}, (39)

with ndl σ̄ = d
†
lσ̄ dlσ̄ and spin σ̄ (opposite to σ ).

In order to close the system of Green’s functions in Eq. (38),
we calculate the time derivative of Eq. (39) and then its time
Fourier transform, which leads to

(ε+ − εldσ − Ul)R̃dlσ ndl σ̄
,djσ

= δlj 〈ndl σ̄ 〉 +
∑

s

∫
dkVlk

(
R̃

cskσ d
†
lσ̄ dlσ̄ ,djσ

− R̃
c
†
skσ̄ dlσ̄ dlσ ,djσ

+ R̃
d
†
lσ̄ cskσ̄ dlσ ,djσ

)
, (40)

expressed in terms of new Green’s functions of the same order
of R̃dlσ ndl σ̄

,djσ
and the occupation number

〈ndl σ̄ 〉 = − 1

π

∫ εF =0

−D

Im
(
R̃σ̄

dldl

)
dε, (41)

determined in accordance with Refs. 5 and 6. By employing the
Hubbard I approximation, we decouple the Green’s functions
in the right-hand side of Eq. (40) as follows: R̃

c
†
skσ̄ dlσ̄ dlσ ,djσ

�
〈c†skσ̄ dlσ̄ 〉R̃σ

dldj
and R̃

d
†
lσ̄ cskσ̄ dlσ ,djσ

� 〈c†skσ̄ dlσ̄ 〉R̃σ
dldj

. As a result,
we find

(ε+ − εldσ − Ul)R̃dlσ ndl σ̄
,djσ

= δlj 〈ndl σ̄ 〉 + 〈ndl σ̄ 〉
(∑

s

∫
dkVlk

)
× R̃

cskσ d
†
lσ̄ dlσ̄ ,djσ

.

(42)

To close the calculation, we need to determine R̃
cskσ d

†
lσ̄ dlσ̄ ,djσ

.
Once again, employing the equation-of-motion approach for
R̃

cskσ d
†
lσ̄ dlσ̄ ,djσ

, we find

(ε+ − εk)R̃
cskσ d

†
lσ̄ dlσ̄ ,djσ

= VlkR̃dlσ ndl σ̄
,djσ

+
∑

s̃

∫
dqVlqR̃cskσ d

†
lσ̄ cs̃qσ̄ ,djσ

+
∑
j̃ �=l

Vj̃ kR̃dj̃σ ndl σ̄
,djσ

−
∑

s̃

∫
dqVlqR̃c

†
s̃qσ̄ dlσ̄ cskσ ,djσ

. (43)

For the sake of simplicity, we take the limit Ul →
∞ and continue with the Hubbard I scheme by
making R̃

cskσ d
†
lσ̄ cs̃qσ̄ ,djσ

� 〈d†
lσ̄ cs̃qσ̄ 〉R̃cskσ djσ

, R̃
c
†
s̃qσ̄ dlσ̄ cskσ ,djσ

�
〈d†

lσ̄ cs̃qσ̄ 〉R̃cskσ djσ
, and R̃dj̃σ ndl σ̄

,djσ
� 〈ndl σ̄ 〉R̃σ

dj̃ dj
in Eq. (43),

which becomes

R̃
cskσ d

†
lσ̄ dlσ̄ ,djσ

= Vlk

(ε+ − εk)
R̃dlσ ndl σ̄

,djσ
+

∑
j̃ �=l Vj̃ k

(ε+ − εk)
〈ndl σ̄ 〉R̃σ

dj̃ dj
. (44)

Thus by solving the system of Green’s functions composed by
Eqs. (38), (42), (43), and (44), we obtain

R̃σ
d1d1

= 1 − 〈nd1σ̄ 〉
ε − ε1dσ − ∑

11 −λσ̄
12

(
∑

11)
2

ε−ε2dσ −∑
11

, (45)

where λσ̄
12 = (1 − 〈nd1σ̄ 〉)(1 − 〈nd2σ̄ 〉) and

R̃σ
d2d1

= (1 − 〈nd2σ̄ 〉)
∑

21

ε − ε2dσ − ∑
21

R̃σ
d1d1

, (46)

with
∑

j l determined by Eq. (31). We point out that the Green’s
functions R̃σ

d2d2
and R̃σ

d1d2
can be found by swapping 1 ↔ 2 in

Eqs. (45) and (46). As a result, Eq. (45) and R̃σ
d2d2

allow us to
introduce

DOSσ
jj = − 1

πρGS (D)
Im

(
R̃σ

dj dj

)
(47)

as the dimensionless DOS for the impurities, where we have
applied Eq. (6) at the band edge D.

IV. NONINTERACTING SELF-ENERGIES
AND FANO PARAMETERS

In this section we present the calculations of the noninter-
acting self-energies of Eq. (31) and the Fano parameters within
Eqs. (13), (29), and (35). Equation (31) allows us to find

�ll̃ = �GS
ll̃

= ηGS

(
ε ln

∣∣∣∣ ε2

ε2 − D2

∣∣∣∣ − iπ |ε|
)

(48)

for the graphene sheet, with

ηGS = �0

2πN
v2

0

(h̄vF )2 = v2
0

D2
(49)

and

�ll̃ = �2DEG
ll̃

= η2DEG

(
D ln

∣∣∣∣D + ε

D − ε

∣∣∣∣ − iπD

)
(50)

for the case of the 2DEG, where

η2DEG = �0

2πN
v2

0

(h̄vF )2 = v2
0

2D2
. (51)

Notice that for ε � D, Re(�GS
ll̃

) = Re(�2DEG
ll̃

) → 0.
The self-energy of Eq. (48) is in accordance with the

corresponding determined in Refs. 5–7. For the 2DEG, we
recover the result found in Ref. 33.

From Eqs. (13), (29), (30), and (35), we determine

qGS
Tj = 1

π
ln

∣∣∣∣ ε2

ε2 − D2

∣∣∣∣ +
(

tdj

tc

)
D2

πν0

1

|ε| (52)

and

FGS
j = 1 (53)
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for the graphene system, while for the 2DEG we have

q2DEG
Tj = 1

π
ln

∣∣∣∣D + ε

D − ε

∣∣∣∣ +
(

tdj

tc

)
2D

πν0
(54)

and

F2DEG
j = 1. (55)

We emphasize that for tdj /tc � 1 and energies ε � D,
Eqs. (52) and (54) exhibit opposite behaviors: |qGS

Tj | → ∞
and |q2DEG

Tj | → 0.

V. NUMERICAL RESULTS

The present approach is for T � TK and within a range of
temperatures where we can safely define the Heaviside step
function as the Fermi distribution in the host. This assumption
was previously considered in Refs. 5 and 6. We measure the
densities and energies in units of ρGS (D) and [ρGS(D)]−1,
respectively, where we have used Eq. (6) at the band edge
D = 7 eV.5,6 For the Zeeman splittings, we employ �1 =
−�2 = 2 × 10−5 in Eq. (4) corresponding to a magnetic field
of ≈2.4 T. We have also used v0 = 0.14 in Eq. (5).5,6 The
levels of the impurities are set to ε1d = ε2d = 0.

A. Graphene system

Here we analyze the graphene system by employing
Eq. (36) in combination with Eqs. (6), (45), (46), (48), (52),
and (53).

In Fig. 2, we present the absolute value of the Fano
parameter |qGS

Tj | of Eq. (52) as a function of the energy ε.
All curves exhibit a general trend in which the Fano factor
tends to infinity as the energy approaches the Fermi level
(ε = 0) and decays to a finite value as ε increases towards the
band edge. By increasing the ratio tdj /tc the Fano parameter
diverges more rapidly. In Fig. 2(a) the curve for |qGS

T 1 | (solid
blue curve) becomes broader than the curve for |qGS

T 2 | (dotted
red curve) for |ε| � 0.2 and keeps increasing as ε → 0. This
behavior becomes even more pronounced in Fig. 2(b) where
the ratio td1/tc is increased ten times while td2/tc is kept
fixed. As a result, |qGS

T 1 | lies above the |qGS
T 2 | for almost the

entire range except in the borders of the scale for |ε| � 1.7.
The shaded regions in Fig. 2 are defined in such a way that
|qGS

T 2 | < |qGS
T 1 | while out of these regions the opposite relation

is verified, i.e., |qGS
T 2 | > |qGS

T 1 |. In the last case, the resulting
behavior yields a Fano interference in the LDOS dictated by
the subsurface impurity, where |qGS

T 2 | becomes dominant. It is
worth mentioning that in spite of the condition td1/tc > td2/tc
which is maintained for all curves in Fig. 2, there are regions of
ε in which the opposite condition (|qGS

T 2 | > |qGS
T 1 |) is verified.

This unexpected feature is a result of the interplay between the
quantum interference in the double impurity system and the
peculiar behavior of the graphene density of states. We point
out that such a behavior is not present in the 2DEG setup, as
we will verify in Sec. V B.

In Fig. 2(b), we move the STM tip closer to the host by
choosing td1/tc = 10 × 10−5. Within the shaded regions, the
adatom gives the dominant impact to the interference and
|qGS

T 1 | (solid blue curve) overcomes |qGS
T 2 | (dotted red curve).

When tdj /tc � 1, the profile of the LDOS for the graphene

FIG. 2. (Color online) Absolute value of the Fano parameter of
Eq. (52) as a function of the energy ε for v0 = 0.14 and td2/tc = 0.5 ×
10−5. (a) td1/tc = 1 × 10−5. (b) td1/tc = 10 × 10−5. In these graphs
we have defined a shaded region in which the condition |qGS

T 2 | < |qGS
T 1 |

is verified. By increasing the ratio td1/tc from 1 × 10−5 to 10 × 10−5,
this region is enlarged as shown in (b). For both cases it is observed
that the Fano factor tends to infinity as the energy approaches the
Fermi level.

is expected to exhibit resonances. This result contrasts with
the 2DEG system, where standard Fano’s theory predicts
antiresonances. In fact, Eq. (54) ensures |q2DEG

Tj | → 0 for
ε → 0.31,32

As it was mentioned earlier, the spin components of the
DOSs for the impurities [Eq. (47)] are displaced in opposite
directions away from the Fermi level (ε = 0) as Eq. (4) ensures.
In Fig. 3(a), the Zeeman energy is �1 = 2 × 10−5, thus the
resonance of the localized state in the adatom for spin up
(dotted red curve) moves to the left, while the corresponding
for spin down (solid blue curve) goes to the right (see the
“down” and “up” drawn arrows in this figure). We identify such
resonances by the letters “AA” and “BB.” For the subsurface
impurity, �2 = −�1 and the displacements of the peaks
become reversed as displayed in Fig. 3(b) (the “down” and
“up” drawn arrows illustrate such a process). These peaks are
labeled as “A” and “B.” The Fano factors shown in Fig. 2 and
the peaks “A”, “B,” “AA,” and “BB” for the spin-dependent
resonances will help us to perceive, in the asymmetric limit
td1/tc �= td2/tc, the reversal of the majority spin component in
the LDOS.

As we have antiparallel magnetic fields settled by the
constraint �1 = −�2 = 2 × 10−5 for the Zeeman energies,
the LDOS does not exhibit spin dependence in the case of
the symmetric limit of Fano factors, determined by the ratios
td1/tc = td2/tc. The symmetric limit of Fano factors can be
achieved by assuming that the overlap integral td2 between the
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FIG. 3. (Color online) Parameters: v0 = 0.14 and ε1d = ε2d = 0.
Here we use Eq. (47) for the DOS of the impurities. (a) DOS for
the adatom with Zeeman energy �1 = 2 × 10−5. (b) DOS for the
subsurface impurity with Zeeman energy �2 = −�1 (antiparallel
magnetic fields). The arrows (red and blue) indicate a given spin
corresponding to the resonance.

tip and the subsurface impurity has a broader wave function
that arises from the latter, which compensates the minor
proximity of the STM tip, thus leading to the same overlap
td1 with the adatom.

Thus the profile of the LDOS is spin degenerate, as
we can see in Fig. 4(a) for td1/tc = td2/tc = 1 × 10−5, in
which the curves for both spins are superimposed. Despite
the unpolarized profile of the LDOS, we highlight that the
pair of resonances found is a direct result of the Zeeman
splittings at the sites of the impurities. Otherwise, for levels
ε1dσ = ε2dσ = 0, the host is completely decoupled from the
impurities and the surface LDOS reduces to Eq. (6), whose
form is illustrated by the green line with squares, also shown
in Fig. 4(a).

In Fig. 4(b) we show the total LDOS (solid black curve)
obtained from Eq. (36). It can be noted that both spin states
contribute equally to the total LDOS for all values of energy ε.
This is represented by two antiparallel arrows at both peaks for
the total LDOS. Here we also make explicit the effect of the
mixing term �σρσ

1221 obtained from Eq. (34) upon the LDOS
determined by Eq. (32). Figure 4(b) shows that the quantity
�σρσ

1221 (dotted gray curve) suppresses the direct term �σ ρσ
1122

calculated from Eq. (33). The latter exhibits two resonances
(dashed gray curve), while the former is characterized by
two antiresonances. The peaks in the direct term are the
hallmark of constructive interference, contrasting to the Fano

FIG. 4. (Color online) Parameters: v0 = 0.14, ε1d = ε2d = 0,
td1/tc = td2/tc = 1 × 10−5 (symmetric limit of Fano factors), and
�1 = −�2 = 2 × 10−5 (antiparallel magnetic fields). (a) In the sym-
metric limit, ρσ

LDOS [Eq. (32)] is spin degenerate. As a result, the dotted
red curve and solid blue curve for spins up and down, respectively,
are superimposed. For comparison, the DOS for graphene free of
impurities [Eq. (6)] is represented by the green line with squares.
(b) The solid black curve represents the total LDOS given by sum of
spin-up and spin-down contributions [Eq. (36)]. Arrows are included
in order to illustrate the spins corresponding to the resonance. The
green curve with squares is the same as in (a). Additionally, the
dashed gray and dotted gray lines are the plots of Eqs. (33) and (34),
respectively. These equations correspond to the direct and mixed
contributions for the total LDOS under the presence of the impurities.

antiresonances found in the mixing term, which are signatures
of destructive interference. As a result, the total LDOS of
Eq. (36) is given by the solid black curve. The green line
with squares gives �σρGS (ε) determined by Eq. (6), which
represents the DOS of the graphene system in the absence of
the impurities where the peaks are absent as expected.

In Fig. 5, we analyze the asymmetric limit of the Fano
factors established by the condition td1/tc �= td2/tc. For this
situation, with td1/tc = 1 × 10−5 and td2/tc = 0.5 × 10−5, we
have verified that the total LDOS becomes spin dependent.
Such a feature appears in Fig. 5(a), where the distinction
between the up and down components of the LDOS is
evident (ρ↑

LDOS �= ρ
↓
LDOS). In the range of negative energies,

two aligned peaks with different amplitudes exist, but the
corresponding for spin down (solid blue curve) is more
pronounced in respect to the spin up (dotted red curve), i.e.,
ρ

↓
LDOS > ρ

↑
LDOS. At positive energies, this pattern is reversed

(ρ↑
LDOS > ρ

↓
LDOS). Thus, depending on which resonance peak

is probed by the STM tip, placed at ε � −0.7 × 10−5 or at
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FIG. 5. (Color online) Parameters: v0 = 0.14, ε1d = ε2d = 0,
td1/tc = 1 × 10−5, and td2/tc = 0.5 × 10−5 (asymmetric limit of
Fano factors), with �1 = −�2 = 2 × 10−5 (antiparallel magnetic
fields). (a) In the asymmetric limit, ρσ

LDOS [Eq. (32)] becomes spin
dependent, which is evident by the peaks with different amplitudes
for spin up (dotted red curve) and spin down (solid blue curve).
For comparison, the DOS for graphene free of impurities [Eq. (6)] is
represented by the green line with squares. (b) By summing the curves
of (a) for spin up and spin down, one obtains the solid black curve
for the total LDOS [Eq. (36)]. In contrast to the results of Fig. 4(b),
now the total LDOS exhibits a spin polarization, as indicated by the
arrows at each peak. Also shown are the dashed gray and dotted gray
lines for the plots of Eqs. (33) and (34), respectively. Notice that in
this case the direct contribution is stronger than the symmetric case
of Fig. 4.

ε � 0.7 × 10−5, the system filters predominantly spin down
or spin up, respectively.

The origin of such a filtering lies within the direct term
�σρσ

1122 determined by Eq. (33); in particular, it arises from the
contribution of −(qGS

T 2 )2 Im(R̃σ
d2d2

) = (qGS
T 2 )2πρGS(D)DOSσ

22,
where we have used Eq. (47). As |qGS

T 2 | > |qGS
T 1 | is valid for

the ranges out of the shaded regions (sides “L” and “R”) in
Fig. 2(a), the parameter (qGS

T 2 )2 enhances the resonances “A”
and “B” of Fig. 3(b), thus resulting in the peaks “L.A” and
“R.B” in Fig. 5(a).

In Fig. 5(b) we have performed the same analysis as
done for Fig. 4(b). We have verified that in the asymmetric
limit td1/tc �= td2/tc, the mixing term �σρσ

1221 calculated from
Eq. (34) (dotted gray curve) suppresses the peaks of the direct
term �σρσ

1122 determined by Eq. (33) (dashed gray curve) as
well as in the symmetric regime td1/tc = td2/tc of Fig. 4(b).
This suppression leads to the solid black curve, which is
obtained from Eq. (36). In contrast to the results of Fig. 4(b),
in Fig. 5(b) each black peak of the total LDOS exhibits a finite

FIG. 6. (Color online) Parameters: v0 = 0.14, ε1d = ε2d = 0,
td1/tc = 10 × 10−5, and td2/tc = 0.5 × 10−5 (asymmetric limit of
Fano factors), with �1 = −�2 = 2 × 10−5 (antiparallel magnetic
fields). (a) In the asymmetric limit, ρσ

LDOS [Eq. (32)] is spin dependent,
as one can observe by comparing the curves for spin up (red dotted
curve) and spin down (solid blue curve). (b) The total density of
states LDOS of Eq. (36) (solid black curve) and the contributions
of the direct (dashed gray curve) and mixing (dotted gray curve)
LDOS obtained from Eqs. (33) and (34). The arrows indicate
the majority spin corresponding to the resonance. The increase of
td1/tc = 10 × 10−5 leads to the inversion of the mixing curve which
exhibits resonances instead of antiresonances, as previously shown
in Fig. 5(b). As a consequence, the majority spin at each peak is also
inverted, in comparison to Fig. 5(b). This shows that is possible to
filter either spin up or spin down by just varying the distance between
the STM tip and the adatom.

polarization whose majority spin is indicated by an arrow at
each peak.

In order to investigate the role of the mixing term �σρσ
1221

upon the total LDOS, we have considered in Fig. 6 the STM
tip closer to the host surface. To accomplish this situation,
we have increased td1/tc to 10 × 10−5, keeping td2/tc fixed
to 0.5 × 10−5. Hence, the value of td1/tc is ten times greater
than the corresponding value used in Fig. 5, which makes the
mixing term more relevant in this case. Figure 6(a) exhibits
enhanced resonances with respect to those found in Fig. 5(a).
Notice that the scale of the LDOS axis is also enlarged by a
factor of ten, thus the background DOS of the graphene [not
displayed in Fig. 6(a)] acts as a flat band within this scale.
Moreover, the main difference between Figs. 5(a) and 6(a) is
the reversal of the majority spin for the resonances.

In Fig. 6(a), the peak at ε � −0.7 × 10−5 is dominated by
spin-up electrons (ρ↑

LDOS > ρ
↓
LDOS in the dotted red curve),

while the corresponding at ε � +0.7 × 10−5 is due to spin
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FIG. 7. (Color online) Parameters: v0 = 0.14, ε1d = ε2d = 0,
td2/tc = 0.5 × 10−5, and �1 = −�2 = 2 × 10−5 (antiparallel mag-
netic fields). Transport polarization of Eq. (37) as a function of
the energy ε. td1/tc = 1 × 10−5 for the solid black curve. td1/tc =
10 × 10−5 for the dotted red curve. By increasing the value of td1/tc
to 10 × 10−5 it is possible to obtain two points at which the efficiency
reaches a maximum value. In particular, for ε � −0.5 × 10−5 the
efficiency is 100%, which leads to a full polarized current through
the STM system.

down (ρ↓
LDOS > ρ

↑
LDOS in the solid blue curve). For Fig. 5(a),

we have exactly the opposite. The origin lies within the term
−(qGS

T 1 )2 Im(R̃σ
d1d1

) = (qGS
T 1 )2πρGS(D)DOSσ

11.
In the case of Fig. 6(a), the corresponding Fano parameters

are described by the curves in Fig. 2(b) in which |qGS
T 1 | > |qGS

T 2 |
for the whole energy range [shaded regions “LL” and “RR”
in Fig. 2(b)]. Thus, the peaks “AA” and “BB” of Fig. 3(a) are
enhanced by (qGS

T 1 )2 and lead to the new resonances “LL.AA”
and “RR.BB” in Fig. 6(a).

We point out that not only does the spin-filtering effect
becomes reversed, but also does the Fano interference arising
from �σρσ

1221 in Eq. (34). Figure 6(b) shows that the mixing
term (dotted gray curve) is formed by a pair of resonances,
which is the opposite pattern as compared to that found in
Figs. 4(b) and 5(b). It means that the destructive interference
is replaced by a constructive one. As a result, the direct and
mixed terms (dashed and dotted gray curves, respectively)
are now being summed, leading to the total LDOS [Eq. (36)]
represented by the solid black curve. Once again, we have
used an arrow at each peak to denote the down or up
majority spin. In summary, the lifting of the spin degeneracy
in the “host + impurities” device is not established by the
Zeeman effect �1 = −�2, but is due to the asymmetric ratios
td1/tc �= td2/tc. Our work proposes the Fano interference as
the mechanism to filter spins in graphene. Additionally, our
spin filter exhibits the opposite behavior of that for a single
adatom,6 in which the spin-polarized feature of the system is
quenched by the proximity of the STM tip.

The degree of spin polarization for the transport through the
considered setup given by Eq. (37) as a function of the energy
ε is displayed in Fig. 7. We have analyzed the cases td1/tc =
1 × 10−5 (solid black curve) and td1/tc = 10 × 10−5 (dotted
red curve). In the former situation, for energies below and near
the Fermi level, values of positive polarizations (G↑ > G↓)
and negative (G↓ > G↑) occur, while above the Fermi level,

FIG. 8. (Color online) Parameters: v0 = 0.14, ε1d = ε2d = 0,
td1/tc = 1 × 10−5, td2/tc = 0.5 × 10−5, and �1 = −�2 = 2 × 10−5

(antiparallel magnetic fields). The ρσ
LDOS [Eq. (32)] is presented as a

function of the energy ε for the 2DEG. Since the curves for spin up
(dotted red curve) and spin down (solid blue curve) are superimposed,
the total LDOS does not depend on spin, as observed for the graphene
sheet. Hence, the 2DEG system does not operate as a Fano spin filter.
Unlike the graphene, in the 2DEG we always have |q2DEG

T 1 | > |q2DEG
T 2 |

for td1/tc > td2/tc (inset).

polarization remains positive. However, it never exceeds |0.5|.
In the case td1/tc = 10 × 10−5, which mimics the STM tip
closer to the host, the pattern of the polarization observed
for td1/tc = 1 × 10−5 is reversed. Moreover, it reaches the
maximum value +1 at ε � −0.5 × 10−5 and approaches −1
for ε � +0.8 × 10−5 (see the horizontal arrows).

B. 2DEG system

In this section we explore the 2DEG system with standard
quadratic dispersion. To this end, we employ Eq. (36) for the
LDOS by taking into account Eqs. (7), (45), (46), (50), (54),
and (55).

Figure 8 reveals that even in the asymmetric limit, for which
td1/tc = 1 × 10−5 and td2/tc = 0.5 × 10−5, there is no re-
solved spin dependence in the Fano profile of the LDOS. Such
a feature can be visualized via the dotted red and solid blue
curves, which are characterized by degenerate antiresonances
for spins up and down, respectively. These resonances are
predictable due to Eq. (54) for the Fano parameter, which gives
|q2DEG

Tj | → 0 for ε → 0 (see the “gray” and “blue” line shapes
in the inset, respectively, for td1/tc = 1 × 10−5 and td2/tc =
0.5 × 10−5). It is worth noting that for the 2DEG, unlike the
graphene setup, there is no region in the Fano versus ε plot
where the condition |q2DEG

T 2 | > |q2DEG
T 1 | for td1/tc > td2/tc is

verified (compare the inset with the results in Fig. 2). As a
result, the 2DEG setup does not operate as a spin filter.

VI. CONCLUSIONS

In this paper, we have proposed a relativistic spin filter
consisting of an STM setup with a graphene hosting two
lateral impurities. The mechanism through which the STM
picks up preferentially a definite spin is based on quantum Fano
interference. A particular feature provided by this system is the
possibility to choose which spin to filter by tuning the distance
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between the STM tip and the adatom. For particular conditions
pure spin currents may be generated by the proposed setup,
which makes it attractive for possible spintronics applications.

It is worth mentioning that the subsurface impurity plays an
important role on the transport properties in spite of the weak
coupling to the STM tip. In fact, in Fig. 2 there are regions
in which the condition |qGS

T 2 | > |qGS
T 1 | is verified even with

td1/tc > td2/tc. This is a striking result of quantum interference
and illustrates the subtle quantum properties of graphene based
structures. These results contrast with 2DEG, where the Fano

factors always follow the same trend, i.e., |q2DEG
T 1 | > |q2DEG

T 2 |
when td1/tc > td2/tc.
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