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Two-band Luttinger liquid with spin-orbit coupling: Applications to monatomic chains on surfaces
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Recently, monatomic chains on surfaces have been synthesized that show evidence of Luttinger liquid physics.
The experimental data point to a dispersion along the chain with four Fermi points. Here we investigate a
general low-energy effective Hamiltonian for such a two-band model where SU(2) spin symmetry is broken but
time-reversal symmetry persists, as is expected due to the surface geometry. Spin-orbit coupling gives rise to
an energy scale εSO much smaller than the Fermi energy εF and to spin-nonconserving scattering processes.
We derive the generic phase diagram at zero temperature as well as an effective phase diagram at temperatures
εSO < T � εF . For the part of the phase diagram where a Luttinger liquid is found to be stable, the density of
states and the spectral function are calculated and discussed in relation to the experimental data.
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I. INTRODUCTION

Interacting one-dimensional itinerant electron systems be-
have very differently from those in higher dimensions. The
correct low-energy theory to describe such systems is not
Fermi liquid but rather Luttinger liquid theory. In contrast
to a Fermi liquid, a Luttinger liquid has collective excitations,
shows only a power-law suppression of the occupation number
nk near the Fermi momentum kF , i.e., a zero quasiparticle
weight, and has a separation of spin and charge degrees of
freedom.1,2

Experimentally, a number of quasi-one-dimensional struc-
tures have been investigated with the aim to confirm Luttinger
liquid behavior. This has been particularly successful for
spin chains, i.e., for systems in which the charge channel is
gapped. Prominent examples are various cuprate and organic
chains with superexchange coupling constants along the chain
direction J being orders of magnitude larger than the interchain
couplings J⊥, making them, to a very good approximation,
one-dimensional (1D) at temperatures J⊥ � T � J .3–5 For
such systems it has been possible to show that the Luttinger
liquid quantitatively describes a large number of experimental
data ranging from thermodynamic measurements to dynamical
response functions.6–14

For itinerant electron systems, mounting evidence has also
been compiled in recent years verifying the predictions of
Luttinger liquid theory, including, in particular, spin charge
separation.15–19 The quasi-one-dimensional systems for which
these results have been obtained are, on the one hand,
carbon nanotubes, and on the other hand, two-dimensional
electron gases confined to a narrow channel by gate
electrodes.

Other possible candidates for Luttinger liquids are
monatomic chains on surfaces. The best studied examples
are gold chains on top of a Si(111) surface.20–24 While the
gold chains were found to exhibit a metal-insulator transition
at an energy scale of ∼ 100 K so that low-energy Luttinger
liquid physics could not be studied,22,24 a number of important
general observations were nevertheless made. In particular,
angle-resolved photoemission spectra (ARPES) have shown
two closely spaced bands which were first interpreted as a
signature of spin-charge separation.20 Later, however, it was
shown by ab initio calculations23 and a more detailed ARPES

study24 that the splitting of the band is caused by spin-orbit
coupling.

Very recently, a different surface system has been found
which seems to remain metallic down to temperatures of
the order of a few Kelvin.25 Here Au atoms self-organize
into chains on a Ge(001) surface, and scanning tunneling
spectroscopy (STS) has revealed a density of states (DOS)
showing power-law scaling with energy which is indicative
of a possible Luttinger liquid state. A subsequent ARPES
study showed that the 1D character of the Au chains is indeed
exceptionally high. An additional complication in this system
arises, however, because the single surface band shows two
electron pockets,26,27 a fact which has to be taken into account
in a proper theoretical description.

In all these surface systems, Rashba- and Dresselhaus-type
spin-orbit couplings are generically expected to be present
due to the reduced symmetry.28,29 In particular, spin-rotational
symmetry is expected to be broken and only time-reversal
symmetry will persist. Luttinger liquids with spin-orbit in-
teractions have been studied previously in the context of
carbon nanotubes30 and magnetized spin chains and quantum
wires.31,32 There is also a rather extensive literature on
one-dimensional models where two bands cross the Fermi
surface.33–46 However, in these works the bands are either
assumed to have SU(2) symmetry or to be completely spin
split by a magnetic field.

In this paper, we want to consider a generic two-band
model with spin-orbit coupling, including all interaction terms
which are allowed by time-reversal symmetry. While in
the SU(2) symmetric case the phase diagram is to a large
extent determined by the renormalization group (RG) flow of
marginal interaction terms, most of these interaction terms
will become either relevant or irrelevant in the case with
only time-reversal symmetry, simplifying the calculation of
the phase diagram. On the other hand, four instead of only
two independent Luttinger parameters are present once SU(2)
symmetry is broken, leading to a much richer phase diagram.
Of particular relevance for the experiments on monatomic
chains on surfaces is the question of whether a Luttinger
liquid phase can survive at all in a surface geometry where
the symmetries are reduced. We will show that this is indeed
the case, however the phase diagram turns out to be quite
rich.
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This paper is organized as follows. In Sec. II
we introduce a general two-band model with spin-orbit
coupling, show how to bosonize it, and look at the interaction
terms which are allowed by time-reversal symmetry. In Sec. III
we calculate the spin density correlation functions and analyze
the simplifications for the specific point in parameter space
where the model has an additional SU(2) symmetry. Section
IV is devoted to a renormalization group analysis and the
subsequent phase diagram of the general model. The spin-flip
scattering terms present are found to be slowly oscillating
in space so that they can only be ignored at the lowest
temperatures. We therefore also present an effective phase
diagram at small temperatures where these terms are still
present in the RG flow. In Sec. V we look at the spectral
function and density of states and try to determine in which
part of the phase diagram the system of monatomic chains
might be located. Finally, in Sec. VI we conclude.

II. MODEL

A. The noninteracting band structure

We are interested in wires composed of single atoms
deposited in surfaces. Such wires have no structural inversion
symmetry or inversion center and therefore both Rashba
and Dresselhaus-type couplings can be present.29 For small
spin-orbit coupling this will not lead to any drastic effects for
the noninteracting band structure. Nonetheless, the breaking
of SU(2) symmetry does have important consequences for the
interaction terms.47

In experiment, the surface band is found to cross the Fermi
energy four times, forming two small electron pockets. No
microscopic model for the noninteracting band structure, i.e.,
by downfolding starting from a density functional theory
calculation, has been obtained yet. The origin of this band
structure is, however, not important for the low-energy
effective theory we are going to construct, and we simply
take as a given the noninteracting Hamiltonian

H0 =
∑
σk

(εk − μ)c†σkcσk, (2.1)

where εk is the dispersion, μ is the chemical potential, and c
(†)
σk

is the fermionic annihilation (creation) operator for particles
with spin σ and momentum k. The dispersion before taking
spin-orbit interactions into account is supposed to have four
spin-degenerate Fermi points ±kF1, ± kF2 in the Brillouin
zone, i.e., εkFb

= μ for the “bands” b = 1,2. We label the
Fermi momenta such that kF1 < kF2.

We are interested in the regime where the Fermi energy
is much larger than the temperature and the energy scale at
which the response of the system is tested experimentally.
Therefore, we can linearize the dispersion at these Fermi points
and introduce two Fermi velocities,

vFb =
∣∣∣∣dε

dk

∣∣∣∣
k=kFb

. (2.2)

For clarity, we shall later mostly focus on the situation
in which the bands are completely symmetric such that
vF1 = vF2 and where the density-density interactions are also
band-independent. The more general case can be treated in

(a)

(b)

FIG. 1. The dispersion around the Fermi points with the effective
band indices 1,2 which are used in the Hamiltonian (2.5). Panel
(a) shows the bands without spin-orbit splitting, panel (b) the spin-
orbit split bands.

a similar way and the necessary generalization is shown in
Appendix B.

Through the standard linearization procedure in the vicinity
of each Fermi point, new fermionic annihilation and creation
operators, cσrb(q) and c

†
σrb(q), can be defined for particles

in band b with spin σ = ± and relative momentum q =
k − rηbkFb. Here r = ± indicates the direction in which the
particle is moving, and ηb = (−1)b is an additional band factor
depending on whether the slope of the dispersion εk at the
Fermi point +kFb is positive or negative.

More precisely, we can make the following ansatz using a
continuum representation in position space:

ψσ (x) =
∑
br

eirηbkFbxψσrb(x), (2.3)

where the fields are given by the Fourier transformation

√
aψσrb(x) = 1

L

∑
q

eiqxcσrb(q), (2.4)

with a the lattice spacing.
Following this, the Hamiltonian (2.1) becomes

H0 =
∑
σrb

rvFb

∫
dx ψ

†
σrb(x)(−i∂x)ψσrb(x), (2.5)

a one-dimensional Dirac Hamiltonian with branches labeled
by (σrb); see Fig. 1(a).

B. Spin-orbit interactions

To properly treat the spin-orbit interaction, one has to start
from a two-dimensional Hamiltonian,

H2D =
∫

dx dy ψ†(x,y)[ε̂x + ε̂y + Vc(y)

+α(p̂xσy − p̂yσx) + β(p̂xσx − p̂yσy)]ψ(x,y), (2.6)

where ψ = (ψ↑,ψ↓) and ε̂i is the kinetic energy operator in the
i = {x,y} direction, x being longitudinal along the wire. Vc(y)
is a confining potential in the transverse direction. The terms
in α and β are the Rashba- and Dresselhaus-like spin-orbit
coupling terms, respectively. The part ∼ −p̂y(ασx + βσy) can
be treated perturbatively and leads to an effective mixing of
higher-lying states into the lowest band. As a consequence,
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the velocities of the spin-orbit split bands [see Fig. 1(b)]
can become unequal.30 For a strong confinement Vc(y) this
is a small effect which we will neglect in the following.
Using this approximation, we are left with a one-dimensional
Hamiltonian which can be diagonalized with a spin-orbit
induced splitting of the bands given by

HSO =
∫

dx
∑
rσb

ηbrσkFb

√
α2 + β2ψ

†
σbrψσbr . (2.7)

This band splitting gives rise to the definition of an energy
scale εb

SO ≡ vFbk
b
SO =

√
α2 + β2kFb which is much smaller

than the Fermi energy εF . Here we have assumed that the
spin-orbit couplings α, β are the same for both bands.

C. Quartic interaction terms allowed by
time-reversal symmetry

A short-range density-density interaction introduces terms
which are quadratic in terms of the densities ρσbr = ψ

†
σbrψσbr

as well as quartic terms in the fermionic operators ψσbr which
cannot be written as functions of the densities ρσbr . The
possible interaction processes depend on the symmetries of
the underlying microscopic model. Although the Coulomb
interaction itself is SU(2)-symmetric, due to the spin-orbit
interactions in Eq. (2.7), scattering between electrons with the
same or different spins is no longer equivalent.47 Furthermore,
spin-flip scattering processes become possible. We consider
here the most general form of interactions for a system
in which only time-reversal symmetry is present. Later, we
make two simplifications: (i) We take the velocities of the
spin-split bands as being equal, vFbσ = vFbσ̄ . As explained
above, this is expected to be an excellent approximation for
systems in which the confining potential Vc(y) is strong.
(ii) We will mainly focus on the case in which the bands are also
symmetric, vFbσ = vF b̄σ , the generalization to nonsymmetric
bands (though still with k → −k symmetry), however, is
straightforward and given in Appendix B.

First we introduce the notation we use to label the different
inter- and intraband scattering processes. We retain the usual
g1,g2,g4 notation (“g-ology”) for the electron directions.
Therefore, as usual g1 refers to processes in which the incom-
ing electrons have different directions and both backscatter.
g2 refers to processes in which the incoming electrons have
different directions and there is no backscattering. g4 refers
to incoming electrons of the same direction which do not
backscatter. In addition, we use ḡ to mean that the incoming
electrons are on different bands and g′ to mean that the
band index is changed for both electrons. Processes in which
one band index changes and the other does not do not
contribute (except for one umklapp process treated separately
in Appendix D). Finally, we have the spin degrees of freedom.
g‖ and g⊥ always refer to the spin indices and denote a process
in which the electrons have the same spin or different spins,
respectively. Where there is no ambiguity and both g‖ and g⊥
terms are present, these indices will sometimes be suppressed.
gs is used to refer to a process in which two up spins are
scattered to two down spins or vice versa.

1. Density-density-type interactions

Exactly as in the single-band Luttinger liquid, there are g2

and g4 density-density interactions, but these no longer need
to lie on the same band, thus

H2 =
∑
σσ ′br

∫
dx

[
g2b

2
ρσ ′br̄ρσbr + ḡ2

2
ρσ ′b̄r̄ ρσbr

]
,

(2.8)

H4 =
∑
σσ ′br

∫
dx

[
g4b

2
ρσ ′brρσbr + ḡ4

2
ρσ ′b̄rρσbr

]
.

There are also several backscattering terms which can be
rearranged into density-density interactions in the standard
way,

H1‖ = −
∑
σbr

∫
dx

g1‖
2

ρσbr̄ρσbr ,

H̄ ′
1‖ = −

∑
σbr

∫
dx

ḡ′
1‖
2

ρσb̄r̄ρσbr , (2.9)

H̄ ′
4‖ = −

∑
σbr

∫
dx

ḡ′
4‖
2

ρσb̄rρσbr ,

and rescale the g2‖, ḡ2‖, and ḡ4‖ interactions, respectively.
These three terms will be assumed to have already been
incorporated into their kinematic equivalents, and will not be
made explicit in the following. The same will be done for all
other equivalent processes we find.

2. Backscattering and interband scattering

With the addition of an extra band, many more backscat-
tering, interband scattering, and umklapp processes become
possible, which have no equivalent for a single-band model. As
a consequence, we might expect that the extent of a Luttinger
liquid phase in the phase diagram—if it survives at all—will
be much smaller than that in a single-band model.

We confine ourselves here to the zero-momentum transfer
terms, with all other terms suppressed by rapid oscillations
in the integrals. Some additional umklapp scattering and
backscattering processes which become nonoscillating at
special commensurate fillings and thus do contribute at these
special fillings are treated in Appendix D. The generic
nonoscillating backscattering terms are

H1⊥ =
∑
σbr

∫
dx

g1⊥
2

ψ
†
σ̄ brψσ̄br̄ψ

†
σbr̄ψσbr ,

H̄ ′
1⊥ =

∑
σbr

∫
dx

ḡ′
1⊥
2

ψ
†
σ̄ brψσ̄ b̄r̄ψ

†
σ b̄r̄

ψσbr ,

H ′
1 =

∑
σ,σ ′,b,r

∫
dx

g′
1

2
ψ

†
σ ′b̄r

ψσ ′br̄ψ
†
σ b̄r̄

ψσbr , (2.10)

H ′
2⊥ =

∑
σ,b,r

∫
dx

g′
2⊥
2

ψ
†
σ̄ b̄r̄

ψσ̄br̄ψ
†
σ b̄r

ψσbr ,

H̄ ′
4⊥ =

∑
σbr

∫
dx

ḡ′
4⊥
2

ψ
†
σ̄ brψσ̄ b̄rψ

†
σ b̄r

ψσbr .
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(a) (b)

(c) (d)

FIG. 2. Additional zero-momentum transfer backscattering and
interband scattering processes in a two-band model; see Eq. (2.10).
Band structure as for Fig. 1(a).

The additional backscattering and interband processes possible
in a two-band, as opposed to a single-band, model are shown
schematically in Fig. 2.

3. Single spin-flip scattering

So far, we have just considered the generalization of the
usual Coulomb interaction terms to the case of a two-band
model. All these terms are symmetric under time reversal,

�σbr → σ�
†
σ̄ br̄ . (2.11)

However, there are also additional spin-flip scattering pro-
cesses allowed by time-reversal symmetry.

The first cases we want to look at are those in which
a single spin is flipped during the scattering process. For
every possible g‖ and g⊥ scattering process listed in the
two preceding sections, such a single spin-flip term can be
constructed. For example, a g1-type single spin-flip process
has the form ∼ ψ

†
σ ′brψσ ′br̄ψ

†
σ̄ br̄ψσbr . It is, however, easy to

check that this term is always irrelevant. There are a number
of similar terms which turn out to be irrelevant as well. The
only two single spin-flip terms which, in principle, can become
relevant [see Eq. (4.5)] are

H ′
1sf = G1

2

∑
σ,σ ′,b,r

rσσ ′
∫

dx ψ
†
σ ′b̄r

ψσ ′br̄ψ
†
σ̄ b̄r̄

ψσbr ,

(2.12)

H ′
2sf = G2

2

∑
σ,σ ′,b,r

rσσ ′
∫

dx ψ
†
σ ′b̄r̄

ψσ ′br̄ψ
†
σ̄ b̄r

ψσbr .

It is important to note that all the single spin-flip terms
are slowly oscillating due to the band splitting caused by the
spin-orbit coupling; see Fig. 1(b). They can therefore only
affect the behavior of the model at intermediate temperatures
while we have to drop them anyway at zero temperature.
Furthermore, single spin-flip terms are completely forbidden if
the velocities of the spin-split bands are equal, vFbσ = vFbσ̄ . In
this case, σ → σ̄ and r → r̄ are, up to the appropriate shifts
in momentum, separate symmetries of the Hamiltonian. As
discussed in Sec. II B, the velocities do become unequal once
the mixing with other transverse modes is taken into account.
We have assumed this to be a small effect and neglect the two
scattering terms (2.12) completely in the following.

4. Double spin-flip scattering

The other class of additional scattering terms allowed
by time-reversal symmetry, Eq. (2.11), are double spin-flip
processes. As for single-flip scattering we can, starting from
the usual backscattering, interband scattering, and density-
density terms, construct all possible double spin-flip processes.
These contributions are

H1s = g1s

2

∑
σbr

∫
dx ψ

†
σ̄ brψσbr̄ψ

†
σ̄ br̄ψσbr ,

H ′
1s = g′

1s

2

∑
σbr

∫
dx ψ

†
σ̄ b̄r

ψσbr̄ψ
†
σ̄ b̄r̄

ψσbr , (2.13)

H̄ ′
1s = ḡ′

1s

2

∑
σbr

∫
dx ψ

†
σ̄ brψσ b̄r̄ψ

†
σ̄ b̄r̄

ψσbr .

Three g2 processes also exist. However, they are not kine-
matically distinct from the g1s interactions. For completeness,
they would be g2s , g′

2s , and ḡ2s and are equivalent to g1s , g′
1s ,

and ḡ′
1s , respectively. In addition, there are two kinematically

distinct g4 processes (ḡ′
4s is equivalent to ḡ4s):

H4s = g4s

2

∑
σbr

∫
dx ψ

†
σ̄ brψσbrψ

†
σ̄ brψσbr ,

H̄4s = ḡ4s

2

∑
σbr

∫
dx ψ

†
σ̄ b̄r

ψσ b̄rψ
†
σ̄ brψσbr . (2.14)

The double spin-flip scattering processes are shown schemat-
ically in Fig. 3.

Overall, the possible interaction processes consist of the
density-density type interactions, the backscattering and inter-
band terms, and the double spin-flip terms. Using bosonization,
the density-density terms can be absorbed into the quadratic
Luttinger liquid Hamiltonian while the backscattering, in-
terband, and double spin-flip terms will lead to interactions
between the bosons. We will see that the spin-orbit induced
splitting of the bands, Eq. (2.7), can also be absorbed into the
Luttinger liquid Hamiltonian by a shift in the bosonic fields.
As a consequence, however, some of the backscattering and all
double spin-flip terms will become slowly oscillating in space.
The full details are worked out in the next section.

(a) (b)

(c) (d)

FIG. 3. Double spin-flip processes allowed in a two-band model
with time-reversal symmetry; see Eqs. (2.13) and (2.14). Band
structure as for Fig. 1(b), with the spin splitting due to spin-orbit
coupling made explicit.
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D. Bosonization

To bosonize the two-band model, we introduce bosonic
fields φσrb(x) for each branch,1,2

ψσrb(x) = 1√
2πα

eir
√

2πφσrb(x), (2.15)

where the bosonic fields satisfy the following commutation
relations:

[φσrb(x),φσ ′r ′b′ (x ′)] = δσσ ′δrr ′δbb′
ir

2
sgn(x − x ′). (2.16)

α is a short distance cutoff of the order of the lattice spacing a.
For the density operators ρσrb = ψ

†
σrbψσrb this leads to the ex-

pression
√

2πρσrb(x) = −∂xφσrb(x). The Hamiltonian (2.5)
of the noninteracting system can now be written in terms of
the bosonic fields,

H0 =
∑
σrb

vFb

2

∫
dx[∂xφσrb(x)]2. (2.17)

Similarly, the spin-orbit term (2.7) can be bosonized, leading
to

HSO = −
√

α2 + β2

2π

∑
σbr

ηbrσkFb

∫
dx ∂xφσbr . (2.18)

We can now also add the density-density-type interactions
from Sec. II C1 which are quadratic in the bosonic fields. The
Hamiltonian (2.17) including these interaction terms can be
written as

Hq =
∫

dz[∂x�(x)]T M∂x�(x), (2.19)

where

[�]T = (φ↑1+,φ↑1−,φ↓1+,φ↓1−,φ↑2+,φ↑2−,φ↓2+,φ↓2−)

and M is a symmetric 8 × 8 matrix. The bosonization proce-
dure is thus sufficient to reexpress all but a few contributions
in terms of a diagonalizable quadratic bosonic Hamiltonian.
The matrix, M, can be written as

M = 1

2

(
M1 M′′

M′′ M2

)
, (2.20)

where

Mb =

⎛
⎜⎜⎜⎝

vFb + g4‖b
2π

g2‖b
4π

g4⊥b

4π

g2⊥b

8π
g2‖b
4π

vFb + g4‖b
2π

g2⊥b

8π

g4⊥b

4π
g4⊥b

4π

g2⊥b

8π
vFb + g4‖b

2π

g2‖b
4π

g2⊥b

8π

g4⊥b

4π

g2‖b
4π

vFb + g4‖b
2π

⎞
⎟⎟⎟⎠,

(2.21)

with b = {1,2} labeling the bands, and

M′′ = 1

8π

⎛
⎜⎜⎜⎝

2ḡ4‖ 2ḡ2‖ ḡ4⊥ ḡ2⊥
2ḡ2‖ 2ḡ4‖ ḡ2⊥ ḡ4⊥
ḡ4⊥ ḡ2⊥ 2ḡ4‖ 2ḡ2‖
ḡ2⊥ ḡ4⊥ 2ḡ2‖ 2ḡ4‖

⎞
⎟⎟⎟⎠. (2.22)

M is a real symmetric matrix with real eigenvalues and we can
now diagonalize M. The diagonalization can be split up into
several steps, and we will show the full procedure to make

connections with the standard single-band Luttinger liquid
clear.

To begin, we make two unitary transformations. The first
is φσb±(x) = [φσb(x) ∓ θσb(x)]/

√
2. Note that θσb is the

adjoint of φσb and they satisfy [φσb(x),�σb(x ′)] = iδ(x − x ′),
where �σb(x) = ∂xθσb(x). This first rotation has the effect of
uncoupling the two adjoint fields. The second transformation
is to rotate to the spin-charge representation: φc/s,b(x) =
[φ↑b(x) ± φ↓b(x)]/

√
2 [and similarly for the θ (x) fields].

The effect of these two rotations can be summarized as
M′ = Ũ−1U−1MUŨ with [�′(x)]T = [�(x)]TUŨ . Thus far
this just corresponds to the diagonalization procedure for the
usual Luttinger liquid2 applied to the two bands separately.

We now have

[�′(x)]T = (φs1,φs2,θs1,θs2,φc1,φc2θc1,θc2) (2.23)

and the rotated Hamiltonian is defined by the diagonal matrix

M′ = diag
[
M′

φs,M
′
θs,M

′
φc,M

′
θc

]
. (2.24)

In the following we focus on the symmetric band case in which
M1 = M2; see Eq. (2.20). All results are straightforwardly
generalizable to the asymmetric case, and the appropriate
formulas are given in Appendix B. For the spin and charge
(ν = {s,c}) sectors, the matrix blocks of M′ are then

M′
φν = 1

2

(
vν

Kν
vνB

vνB
vν

Kν

)
(2.25)

and

M′
θν = 1

2

(
vνKν vνA

vνA vνKν

)
. (2.26)

Here Ks and Kc are the spin and charge Luttinger parameters
for the two bands, and vs and vc are the spin and charge
velocities. The off-diagonal parameters {vsA,vsB,vcA,vcB}
describe the coupling between the fields for different bands
in the spin and charge sectors and are functions of the various
g2 and g4 interaction parameters. Their explicit form is given
in Eqs. (C1) and (C2) in Appendix C.

In the band symmetric case, we can simply perform another
rotation to diagonalize M′ given by φν1,2(x) = [φν+(x) ∓
φν−(x)]/

√
2 and θν1,2(x) = [θν+(x) ∓ θν−(x)]/

√
2. After

these additional rotations, the quadratic Hamiltonian becomes
diagonal for symmetric bands,

Hq =
∑
ν=c,s
β=±

uνβKνβ

2

∫
dx

[
[∂xφ

νβ(x)]2

(Kνβ)2
+ [�νβ(x)]2

]
,

(2.27)

where uνβ (Kνβ) are renormalized velocities (Luttinger pa-
rameters), the conjugate momenta are given by �νβ(x) =
∂xθ

νβ(x), and the fields obey bosonic commutation relations

[φνβ(x),�ν ′β ′
(x ′)] = iδνν ′δββ ′δ(x − x ′). (2.28)

β = ± label symmetric and antisymmetric combinations of
the bands, analogous to charge and spin in the spin subspace.

195113-5



N. SEDLMAYR, P. KORELL, AND J. SIRKER PHYSICAL REVIEW B 88, 195113 (2013)

Finally, we can also rewrite the spin-orbit Hamilto-
nian (2.18) in terms of the new fields,

HSO = −
√

2(α2 + β2)

π

∫
dx[kF ∂xθ

s− + k̃∂xθ
s+] (2.29)

with kFb = kF + ηbk̃. This linear term can simply be removed
by the following shift:

θs− → θs− +
√

2kF x

us−Ks−

√
α2 + β2

π
(2.30)

and similarly for θs+ so that Hq + HSO → Hq + const. How-
ever, this shift has to be carefully taken into account for the
nonquadratic interaction terms. As we will see below, it will
induce slow oscillations in space for some of these terms.

E. Bosonized interactions

In addition to the quadratic bosonic Hamiltonian, we have
the set of backscattering, interband scattering, and double
spin-flip scattering interactions, Eqs. (2.10)–(2.14). The vertex
operator, Eq. (2.15), allows a straightforward bosonization
of these interactions. First, the g1 backscattering interactions
become

H1⊥ = g1⊥
(πα)2

∫
dx cos[

√
4πφs+] cos[

√
4πφs−],

H ′
1‖ = − g′

1‖
(πα)2

∫
dx cos[

√
4πθs−] cos[

√
4πθc−],

(2.31)

H ′
1⊥ = g′

1⊥
(πα)2

∫
dx cos[

√
4πφs+] cos[

√
4πθc−],

H̄ ′
1⊥ = ḡ′

1⊥
(πα)2

∫
dx cos[

√
4πφs+] cos[

√
4πθs−].

Secondly, there is a g2 process,

H ′
2⊥ = g′

2⊥
(πα)2

∫
dx cos[

√
4πφs−] cos[

√
4πθc−]. (2.32)

Lastly, there is a g4 process,

H̄ ′
4⊥ = ḡ′

4⊥
(πα)2

∫
dx cos[

√
4πφs−] cos[

√
4πθs−]. (2.33)

Several of these terms are shown schematically in Fig. 2.
The allowed double spin-flip backscattering interactions,

Eq. (2.13), in bosonized form are given by

H1s = g1s

(πα)2

∫
dx cos[

√
4πθs+] cos[

√
4πθs−],

H ′
1s = g′

1s

(πα)2

∫
dx cos[

√
4πθs+] cos[

√
4πθc−], (2.34)

H̄ ′
1s = ḡ′

1s

(πα)2

∫
dx cos[

√
4πφs−] cos[

√
4πθs+].

The last two spin-flip interactions which contribute, Eq. (2.14),
are

H̄4s = ḡ4s

(πα)2

∫
dx cos[

√
4πφs+] cos[

√
4πθs+] (2.35)

and

H4s = g4s

(πα)2

∫
dx

{∏
β

cos[
√

4πθsβ] cos[
√

4πφsβ]

+
∏
β

sin[
√

4πθcβ] sin[
√

4πφcβ]

}
. (2.36)

If we now shift the θs− and θs+ fields to compensate for the
spin splitting in the bands [see Eq. (2.30)], then the backscat-
tering terms H ′

1‖, H̄
′
1⊥, and H̄ ′

4⊥ and all the double spin-flip
processes become slowly oscillating. These oscillations will
suppress the interactions at the lowest temperatures, when the
correlation length ξ ∼ vF /T  1/kb

SO. They will, however,
still be present in the RG flow at intermediate temperatures,
εb

SO � T � εF . In Sec. IV, we will consider the phase diagram
at zero temperature as well as an effective phase diagram in
the intermediate temperature regime.

III. SU(2) SYMMETRY AND SPIN DENSITY
CORRELATION FUNCTIONS

Before we continue with the calculation of the phase
diagram in the presence of the interaction terms, we want to
study first the spin-spin correlation functions for the quadratic
Hamiltonian (2.27). In particular, we want to find out what
conditions are imposed on the parameters of the two-band
model at the point where SU(2) spin symmetry is restored.
Contrary to the usual single-band model where this leads to
Ks = 1, it is not a priori clear if a similar condition also holds
in the two-band case.

For the following calculations it is convenient to express
the new fields φνβ and θνβ , introduced to diagonalize the
quadratic part of the Hamiltonian, in terms of new chiral fields
determined by

φ
νβ

δ = 1√
2

(
φνβ

√
Kνβ

− δ
√

Kνβθνβ

)
, (3.1)

where δ = ± is once again a direction index. These new fields
describe the chiral excitations of the system moving either
to the left, δ = −, or to the right, δ = +. In this basis, the
appropriate time-ordered correlation functions of the bosonic
fields are given by

Gνβδ(x,t) ≡ 〈
Tt

[
φ

νβ

δ (x,t) − φ
νβ

δ (0)
]2〉

= 1

π
ln

[
α + sgn(t)i(uνβt − δx)

α

]
. (3.2)

Using this correlation function, one can calculate the correla-
tions of the oscillating parts of the spin density waves,

S
j

SDW(x,t) =
∑
σ,σ ′;

(r,b)�=(r ′,b′)

ei(r ′ηb′ kFb′−rηbkFb)xψ
†
σrb(x,t)σ j

σσ ′ψσ ′r ′b′ (x,t), (3.3)

where σ j are the Pauli matrices for j = x,y,z.
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TABLE I. The exponents for different scattering processes in the
spin density wave correlations; see Eq. (3.4).

Charge exponent Spin exponent

εc = 1
2

(
Kc+ + Kc−) εz

s = 1
2

(
Ks+ + Ks−)

εx
s = 1

2

(
1

Ks+ + 1
Ks−

)
ε̄c = 1

2

(
Kc+ + 1

Kc−
)

ε̄z
s = 1

2

(
Ks+ + 1

Ks−
)

ε̄x
s = 1

2

(
Ks− + 1

Ks+
)

εcf = 1
2

(
Kc− + 1

Kc−
)

εz
sf = 1

2

(
Ks− + 1

Ks−
)

εx
sf = 1

2

(
Ks+ + 1

Ks+
)

For the oscillating parts of the spin density wave correlation
function in the x or z direction (in the y direction it is trivially
equivalent to that in x), we obtain〈

S
x,z
SDW(x,0)Sx,z

SDW(0,0)
〉

= 1

(πα)2

[∑
b

cos[2kFbx]

|x/α|εc+ε
x,z
s

+ cos[(kF1 + kF2)x]

|x/α|ε̄c+ε̄
x,z
s

+cos[(kF1 − kF2)x]

|x/α|εcf +ε
x,z
sf

]
. (3.4)

There are three different types of competing density waves
present. The first is backscattering which preserves the band
index, with exponents εx,z

ν , the direct analog of backscattering
in a single-band system. The second is backscattering which
mixes the bands, ε̄x,z

ν . Finally, there is a forward scattering
process which scatters between the bands, εx,z

νf . The exponents
are summarized in Table I.

For SU(2) symmetry to hold, the spin-density–spin-density
correlation should be the same with respect to any spatial
direction. This is clearly always fulfilled for the charge
exponents, but it gives us a set of conditions for the spin
exponents. In the case of equivalent bands (the more general
case is explained in Appendix B), this imposes

Ks+ = Ks− = 1, (3.5)

which is indeed in direct analogy to the usual single-band
Luttinger liquid condition.

IV. PHASE DIAGRAM

To see how the backscattering terms, Eq. (2.10), and the
double spin-flip terms, Eqs. (2.13) and (2.14), change the
behavior of the system, we perform a first-order RG analysis
on them. Note that away from the SU(2)-symmetric point, the
terms become unambiguously irrelevant or relevant, forgoing
the need for a more complicated second-order treatment.

The standard first-order renormalization group analysis
yields for the interactions of the system a set of independent
equations for the flow of the coupling constants gi , ḡi , and ḡ′

i

under a change of the length scale l,

1

gi

dgi

dl
= 2 − γi . (4.1)

The {γi} are then the scaling dimensions of the corresponding
scattering terms. These scaling dimensions can be easily
extracted by power counting. Several of the interaction
terms are always irrelevant, or at best marginal in an SU(2)

symmetric system, and we first list these together here:

γ̄ ′
4⊥ = Ks− + 1

Ks− , γ̄4s = Ks+ + 1

Ks+ ,

(4.2)

γ4s = Ks+ + 1

Ks+ + Ks− + 1

Ks− .

The remaining backscattering scaling dimensions are

γ1⊥ = Ks+ + Ks−,

γ ′
1‖ = 1

Ks− + 1

Kc− , γ ′
1⊥ = Ks+ + 1

Kc− , (4.3)

γ̄ ′
1⊥ = Ks+ + 1

Ks− , γ ′
2⊥ = Ks− + 1

Kc− .

Similarly, we find for the double spin-flip scattering terms

γ1s = 1

Ks+ + 1

Ks− , γ ′
1s = 1

Ks+ + 1

Kc− ,

(4.4)

γ̄ ′
1s = Ks− + 1

Ks+ .

Finally, the two possibly relevant single spin-flip interactions
which could modify the intermediate phase diagram, see
Eq. (2.12), have scaling dimensions

γ ′
1sf = 1

Kc− + 1

4

(
Ks+ + 1

Ks+ + Ks− + 1

Ks−

)
,

(4.5)

γ ′
2sf = Kc− + 1

4

(
Ks+ + 1

Ks+ + Ks− + 1

Ks−

)
.

All other single spin-flip processes have a scaling dimension
γsf > 2 and are thus irrelevant.

For a relevant interaction term, the coupling constant grows
while lowering the temperature. Thus the bosonic fields present
in this interaction will get pinned to the values which minimize
the energy, leading to a gap in the corresponding dual mode.
We will follow the standard notation where CxSy is a phase of
the system with x gapless charge and y gapless spin modes.38

Note, however, that of course only one of the dual fields, φνβ

and θνβ , can be pinned since the commutation relation between
them must be preserved.48

As we are interested in models without SU(2) symmetry,
it is most convenient to plot the phase diagram for Ks± with
Kc− a parameter. To establish the phase diagram, we define
for convenience

χ = Kc−

2Kc− − 1
. (4.6)

The large number of scattering terms for the two-band model
leads to a very rich phase diagram, which contains a Luttinger
liquid region; see Fig. 4. This region becomes enlarged for
strong interactions as the horizontal and vertical separatrixes
are Kc−-dependent and for Kc− → 0.5, χ → ∞. That is,
these separatrixes are completely removed from the phase
diagram for Kc− � 0.5. Conversely, as Kc− → 1 we have
χ → 1, reducing the extent of the C2S2 phase.

However, this phase diagram will only hold at the lowest
temperatures where the slowly oscillating scattering terms
containing the θs− and θs+ fields can be neglected. At
temperatures εb

SO � T � εF these scattering terms also have
to be kept,49 leading to additional sections of the phase diagram
where some modes will appear thermally activated and the
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χχ−1

χ

χ−1

FIG. 4. (Color online) The phase diagram at temperatures T �
εSO with χ as defined in (4.6). Here we have used Kc− = 0.7. The
solid lines are the separatrixes between different phases and the C2S2
Luttinger liquid phase is the unshaded white region. The red regions
marked (II) are C1S1 phases, blue (III) are C2S0 phases, and green
(IV) are C1S0 phases.

corresponding spectral weight strongly suppressed. A well
known example for such behavior is the one-band Hubbard
model solvable by the Bethe ansatz. At filling n = 1 and on-site
interaction U > 0 the charge mode is gapped (Mott insulator)
while there is no gap away from half-filling. However, at
n = 1 ± ε with |ε| � 1 the cosine scattering term responsible
for the Mott transition will oscillate only very slowly. As a
consequence, the charge compressibility will look thermally
activated as in the half-filled case at high and intermediate
temperatures with a steep increase visible only at the lowest
temperatures.50 The effective phase diagram, including the
phases which appear to be gapped at temperatures εb

SO � T �
εF , is shown in Fig. 5.

In the experiments considering self-organized gold chains
on a Ge(001) surface, a Luttinger liquid (C2S2) phase appears
to be seen.25 This is surprising given the large number of
scattering terms for a system with four Fermi points, although
our results clearly show that it is not impossible if the Luttinger
liquid parameters are in the right range. However, these
restrictions on the Luttinger parameters also mean that the
structure of the spin density waves in the Luttinger liquid
are constrained. In particular, we are interested in what
these constraints mean for the decay of the in-plane and
perpendicular components of the spin correlation function.
Physically, we might expect that the spins are lying mainly
within the surface with the perpendicular component being
comparatively smaller. This can be used as a consistency check
to see if the formation of a Luttinger liquid in this surface
system is reasonable.

χχ−1

χ

χ−1

FIG. 5. (Color online) The effective phase diagram at εb
SO �

T � εF . At these temperatures the slowly oscillating interaction
terms have to be kept and lead to additional phases where modes
appear to be thermally activated. As in Fig. 4 we exemplarily show the
diagram for Kc− = 0.7. The solid lines are the separatrices between
different phases. The blue regions marked (III) are C2S0 phases, and
green (IV) are C1S0 phases.

If we assume that the system is in the low-temperature
C2S2 phase, shown in Fig. 4, then we have a set of constraints
on the Luttinger parameters. The separatrixes of this phase
are composed of the γ ′

1⊥, γ ′
2⊥, and γ1⊥ interaction processes.

There are two constraints which involve the charge Luttinger
parameter:

Ks+ > χ−1 and Ks− > χ−1. (4.7)

Additionally we require the following to hold between the spin
Luttinger parameters:

Ks+ + Ks− > 2. (4.8)

From these general considerations some conclusions follow
about the spin density wave correlation functions in the
Luttinger liquid phase; see Eq. (3.4). If Ks+Ks− > 1—which
is true for most of the C2S2 phase—then we find for the intra
band exponents 1 � εz

s > εx
s . That is, the spin-density–spin-

density correlation function decays quicker in the out-of-plane
direction, as one may expect. For interband backscattering,
ε̄x,z
s , neither in plane nor out of plane correlations are

necessarily preferred. For forward scattering both ε
x,z
sf � 1,

but the relation between them is not fixed. In general, we can
say nothing for the relative in- and out-of-plane power laws of
the interband forward scattering terms. The actual spin order
in the system will be the result of the competition between
these possible processes.
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TABLE II. Pair operators and density waves which lead to
algebraically decaying correlations in phases with two gapped modes.
All possible pairs of gapped modes for the zero-temperature phase
diagram are included.

Phase Pinned fields Pair operator Density waves

C2S0 φs−, φs+ OS,σ ;rb,rb, OS,σ ;rb,r̄b OCDW,σ ;rb,r̄b

C2S0 φs−, θs+ OS,σ ;rb,rb OSDW,σ ;rb,r̄b̄

C1S1 θc−, φs− OT,σ ;rb,rb̄ OSDW,σ ;rb,r̄b̄

C1S1 θc−, θs+ OS,σ ;rb,rb̄, OT,σ ;rb,r̄b OSDW,σ ;rb,r̄b̄

A. Characterization of phases with gapped modes

If the system is in a phase where at least one mode is
gapped, single-particle correlations will in general no longer
be described by power laws but will decay exponentially.48 In
particular, the spectral function will always show exponential
decay in phases with gapped modes. However, if we consider
many-particle correlations which do not involve the gapped
modes, then they will still behave as power laws. It is therefore
standard practice to characterize a gapped phase by the many-
particle correlation function which shows the slowest decay.

To consider a concrete example, let us assume that the g1⊥
backscattering term, Eq. (2.31), is relevant. Then the fields
φs+ and φs− are pinned to the values which minimize the
energy of this backscattering term. Every correlation function
which involves at least one of the dual fields θs+ or θs− is then
exponentially decaying. The many-body correlation functions
〈O(x,t)O(0,0)〉 which will still show a power-law decay are
those with an operator O which does not contain these two dual
fields. All operators for which this is true can be determined
by using the bosonization dictionary given in Appendix A.
For the considered example we find that the two singlet pair
operators OS,σ ;br,br = �σbr�σ̄br and OS,σ ;br,br̄ = �σbr�σ̄br̄ as
well as the charge density wave OCDW,σ ;br,br̄ = �

†
σbr�σbr̄ will

be the pair correlation functions which decay with a power
law. Which one of these shows the slowest decay depends on
the values of the Luttinger parameters.

For all other phases with two gapped modes, we can use a
similar procedure. In addition to the already introduced singlet
pair operator OS and charge density wave operator OCDW, also
the triplet pair correlations with OT,σ ;rb,r ′b′ = ψσrbψσr ′b′ and
the spin density wave OSDW,σ ;br,b′r ′ = ψ

†
σrbψσ̄r ′b′ can show

power-law decay. A list of phases with the corresponding
pinned fields and the gapless many-body correlations is given
in Table II.

For the phases with three gapped modes, four-particle cor-
relators can be constructed using the bosonization dictionary
which do not contain the fields dual to the pinned fields.
However, these correlations are of little physical use and we
do not give them here explicitly.

V. SPECTRAL FUNCTION AND DENSITY OF STATES

For the system of gold wires on a Ge(001) surface, the
density of states (DOS) has been measured experimentally
and found to show power-law scaling. As discussed in the
previous section, such a power-law scaling will only occur if
all modes are gapless, i.e., the system is in the C2S2 phase.

In this section, we will calculate the spectral function
A(q,ω) in the C2S2 phase from which the density of states
ν(ω) can be obtained by a momentum integration. The spectral
function itself may be measurable in a suitable experiment by
ARPES. While the DOS gives only information about a certain
combination of the Luttinger liquid parameters and thus by
itself does not allow a check if the predictions of our model for
the extent of the C2S2 phase are consistent with experiment,
the spectral function will, in principle, allow one to determine
all four Luttinger parameters separately and thus allow a full
consistency check.

The spectral function for the interacting fermionic model
can be calculated directly using the bosonic Luttinger liquid
representation.51,52 In general, it is defined as A(k,ω) =
− 1

π
Im Gret(k,ω), where Gret(k,ω) is the retarded Green’s

function. Equivalently we can write, with r = (x,t),

A(k,ω) = 1

2π

∑
σ

∫
dx dt ei(ωt−kx)

〈{
ψσ (r),ψ†

σ (0)
}〉

. (5.1)

After linearization, we are therefore interested in

iG>
σ (r) =

∑
br

eirηbkFbx〈ψσbr (r)ψ†
σbr (0)〉, (5.2)

and a similar term for iG<
σ (r) where the two fermionic

operators are interchanged. Ignoring the small spin-orbit
splitting we can use the bosonic Green’s function, Eq. (3.2),
and find

iG>
σ (r) = 1

2πα

∑
br

eirηbkFbx
∏
νβδ

e−πξr
νβδGνβδ (r), (5.3)

where δ = ± denotes the chiral component of the field and

ξ r
νβδ = 1

16

[√
Kνβ − δr√

Kνβ

]2

, (5.4)

which arises from the rotation between the original φσbr field
and the chiral mode φ

νβ

δ . In the space and time representation,
this leads to

A(r) ∼ 1

2π2α

∑
σbr

eirηbkFbx
∏
νβδ

[
α

|x − δuνβt |
]ξ r

νβδ

(5.5)

with

A(k,ω) =
∫

dx dt eiωt−ikxA(r). (5.6)

This integral cannot be calculated analytically in full but we
can obtain the singular contributions51,52 which occur at ω =
±uνβ |k|.

Using Eqs. (5.5) and (5.6), the full spectral function can be
decomposed into the sum

A(k,ω) =
∑
rb

Ar (k − rηbkFb,ω). (5.7)

The spectral function has the symmetry A+(q,ω) =
A−(−q,ω), and therefore we focus only on A+(q,ω). To
calculate these contributions, we first order the four velocities
in order of increasing magnitude such that uν1β1 < uν2β2 <

uν3β3 < uν4β4 , where as before νi = {c,s} and βi = ±. Then
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FIG. 6. (Color online) The spectral function, Eq. (5.6). Parts
(a) and (c) are plotted for Kc+ = Kc− = 0.7, Ks+ = 1.3, and Ks− =
1. Parts (b) and (d) are plotted for Kc+ = 0.3, Kc− = 0.5, Ks+ = 1.7,
and Ks− = 1.3. The top row, (a) and (b), is for positive momenta;
the bottom row, (c) and (d), is for negative momenta. The spectral
function has been convoluted with a Gaussian resolution function of
width ω/uc−|q| = 0.001.

we make a relabeling such that ui = uνiβi . Now for positive
momenta q > 0 we find in the vicinity of ω ≈ u1q

Ar (q,ω) ∼ �(ω − u1q)(ω − u1q)[γ1+2γ2+2γ3+2γ4−(r+1)/4]/2.

(5.8)

The exponents are given by

γi = 1

8

[
Kνiβi + 1

Kνiβi
− 2

]
. (5.9)

At the remaining singular points, ω ≈ uiq with i ∈ {2,3,4},
the spectral function behaves as

Ar (q,ω) ∼ |ω − uiq|[γi+2
∑

j �=i γj −(r+1)/4]/2. (5.10)

The full Ar (q > 0,ω) is the product over Eqs. (5.8) and (5.10).
For negative momenta, q < 0, we find near ω ≈ u1|q|

Ar (q,ω) ∼ �(ω + u1q)(ω + u1q)[γ1+2γ2+2γ3+2γ4+(r−1)/4]/2.

(5.11)

At the remaining singular points, ω ≈ uiq with i = {2,3,4},
the spectral function behaves as

Ar (q,ω) ∼ |ω + uiq|[γi+2
∑

j �=i γj +(r−1)/4]/2. (5.12)

The spectral function for positive and negative momenta and
r = + is plotted in Fig. 6 for two different parameter sets. The
slope of the divergences and cusps yields information about the
four Luttinger parameters, which would allow a consistency
check on our model. The existence of cusps versus divergences
is dependent on the values of the Luttinger parameters, as
can be seen from a comparison of Figs. 6(a) and 6(b). From
Eq. (5.7) one can see that the measured spectral function will
consist of four sets of peaks and cusps around the four Fermi
points. The two positive Fermi momenta will show the same
structure, as will the negative Fermi points.

One of the classic signatures of a Luttinger liquid, taken
as an indication of a Luttinger liquid state in the experiment

TABLE III. The exponents for power-law suppression of the DOS
near the Fermi energy: ν(ω) ∼ ωγ . Listed are the exponents, γ , for
a spinless, a standard single-band, and a two-band Luttinger liquid.
Also listed are the cases for SU(2)-symmetric models where Ks+ =
Ks− = Ks = 1.

Model General SU(2)-symmetric

Spinless 1
2

[
K + 1

K
− 2

]
N.A.

Single- band 1
4

∑
ν

[
Kν + 1

Kν
− 2

]
1
4

[
Kc + 1

Kc
− 2

]
Two-band 1

8

∑
νβ

[
Kνβ + 1

Kνβ − 2
]

1
8

∑
β

[
Kcβ + 1

Kcβ − 2
]

of Blumenstein et al.25 on the monatomic gold chains, is the
power-law suppression of the DOS near the Fermi energy.53,54

The experimental result was analyzed with the single-band
DOS. Here we now derive the equivalent formula for the
appropriate two-band model directly from the spectral function

ν(ω) ∼
∑

q

A(q,ω) = A(x = 0,ω)

∼ 1

2π2α

∫
dt eiωt

∑
σbr

∏
νβδ

(
α

δuνβt

)ξ r
νβδ

. (5.13)

We are only interested here in the power-law suppression,
which can be gained directly by power counting, and gives
ν(ω) ∼ ωγ with the exponent

γ =
∑
νβδ

ξ r
νβδ − 1 = 1

8

∑
ν=c,s
β=±

[
Kνβ + 1

Kνβ
− 2

]
. (5.14)

As a comparison, the standard results for this exponent for a
spinless as well as for a spinful single-band Luttinger liquid
are given in Table III.

Near a boundary the DOS is suppressed with a different
exponent. Exactly as in the single-band case, the bulk and
boundary exponents are related by a conformal mapping.2 In
the two-band Luttinger liquid, however, the relation between
the bulk and the boundary exponent,

γ b = 1

4

∑
ν=c,s
β=±

[
1

Kνβ
− 1

]
, (5.15)

is no longer enough to independently check all four Luttinger
parameters from DOS measurements alone.

Similarly, the Green’s function for finite temperatures can
be calculated from the zero-temperature case by a conformal
mapping. The standard results for the finite-temperature
single-band Luttinger liquid DOS then still apply with a
suitably modified exponent.

VI. DISCUSSION AND CONCLUSIONS

Recent experiments on self-organized gold chains on a
Ge(001) surface have provided evidence for Luttinger liq-
uid behavior. Other experiments on similar surface systems
have shown earlier that spin-orbit coupling effects play an
important role for the physics of such systems with both
Rashba- and Dresselhaus-type couplings being allowed by
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the reduced symmetry. Furthermore, the gold surface band
is found to cross the Fermi surface four times giving rise to
two separate electron pockets. The combination of spin-orbit
coupling, which breaks SU(2) spin rotational symmetry, with
the effective two-band structure at low energies makes the
gold chains very different from other quasi-one-dimensional
systems as, for example, carbon nanotubes or semiconducting
nanowires, where Luttinger liquid behavior has also been seen.

In our paper, we considered the low-energy effective
theory of a generic two-band model with spin-orbit coupling
using bosonization. To simplify the discussion, we made a
number of approximations. First, we assumed that the two
bands have equal Fermi velocities, vFb = vF b̄. This seems
to be approximately the case in the experiments on gold
chains. The generalization to the case of unequal velocities
is straightforward and is discussed in detail in Appendix B.
Having unequal velocities for the two bands is a marginal
perturbation when starting from the symmetric band case. It
can therefore only affect the phase diagram of the model at
second or higher order in the RG flow, which is beyond the
scope of this paper. Experimentally, this also means that such
effects would only become visible at very low temperatures if
the considered system would remain ideally one-dimensional.

Second, we ignored that the spin-orbit coupling leads
to an effective mixing of higher transverse modes into the
lowest one which can make the velocities of the spin-split
band unequal, vFbσ �= vFbσ̄ . The better the confinement in the
transverse direction is, the smaller is this effect. For the gold
chains, the dispersion perpendicular to the chain direction is
flat so that assuming a very strong confinement seems to be
a good approximation. Allowing for vFbσ �= vFbσ̄ activates
additional single spin-flip scattering processes which are
otherwise forbidden by symmetry. These scattering processes
are, however, always oscillating and therefore cannot modify
the zero-temperature phase diagram.

Using these two approximations we bosonized the two-
band model with spin-orbit coupling including all scattering
terms which are allowed by time-reversal symmetry. A
diagonalization of the kinetic part, the density-density type
interactions, and the spin-orbit coupling was achieved by three
separate rotations followed by a shift in one of the bosonic
fields. The remaining backscattering and double spin-flip terms
were then treated using a first-order RG. This turns out to
be sufficient away from the SU(2) symmetric point where
most scattering terms are either relevant or irrelevant. Some
of the scattering terms are very slowly oscillating in space due
to the spin-orbit induced splitting of the band and can thus
be ignored at the lowest temperatures. For this case we did
calculate the full phase diagram, which turns out to consist
of a Luttinger liquid (C2S2) phase as well as phases where
two or three out of the four modes (two spin and two charge)
are gapped. At intermediate temperatures εb

SO � T � εF , the
slowly oscillating scattering terms have to be kept in the RG
flow. As a consequence, the spin modes might appear to be
thermally activated even if all four modes are gapless at T = 0.

For the experiment on gold chains this means that although
the reduced spin symmetry and the two bands allow for a large
number of scattering processes absent in the SU(2) symmetric
single-band case, a Luttinger liquid phase is still present in the
T = 0 phase diagram. This was by no means a priori clear and

shows that such a system could indeed be a useful test bed for
Luttinger liquid physics. Furthermore, our theoretical study
makes a clear prediction about the behavior of the density of
states and, more importantly, the full spectral function in the
C2S2 phase. While the derived formula for the density of states
shows that the exponent of the power-law scaling in frequency
does not depend on a single Luttinger parameter as assumed in
experiment but rather on the four Luttinger parameters Kc±,
Ks±, this by itself does not allow one to verify if the predictions
of the Luttinger model are consistent with experiment. Here,
additional measurements would be desirable. First, the extent
of the Luttinger liquid regime in the phase diagram is restricted,
limiting the possible values for the Luttinger parameters.
From the limits on the Luttinger parameters Ks± we can, in
particular, infer the decay of the spin-spin correlations, which
potentially can be tested in experiment by spin-resolved STS.
Probably even more promising is the measurement of the full
spectral function by ARPES, which, in principle, allows for
the determination of all four Luttinger parameters separately
and therefore for a full consistency check with the appropriate
Luttinger model treated in this paper.
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APPENDIX A: BOSONIZATION DICTIONARY

Two useful formulas for bosonization are the vertex
operator

ψσbr (x) ∼ 1√
2πα

eir
√

2πφσbr (x) (A1)

and the densities

ρσrb(x) = ψ
†
σbr (x)ψσbr (x) = − 1√

2π
∂xφσbr (x). (A2)

The relation between these bosonic fields and the bosonic fields
describing the diagonal normal modes is

φσbr = 1√
8

[φc+ + (−1)bφc− + σ [φs+ + (−1)bφs−]

− r{θc+ + (−1)bθc− + σ [θs+ + (−1)bθ s−]}]. (A3)

The chiral fields (δ = ±) are in turn determined by

φ
νβ

δ = 1√
2

(
φνβ

√
Kνβ

− δ
√

Kνβθνβ

)
. (A4)

APPENDIX B: DIAGONALIZATION FOR
ASYMMETRIC BANDS

Here we describe the full diagonalization procedure which
holds for nonsymmetric bands. Below the spin and charge
indices have been suppressed, but the following applies to

195113-11



N. SEDLMAYR, P. KORELL, AND J. SIRKER PHYSICAL REVIEW B 88, 195113 (2013)

both the spin and charge sector (separately). If we have

(
φ1(x)

φ2(x)

)
=

(
T

φ

11 T
φ

12

T
φ

21 T
φ

22

)(
φ̃1(x)

φ̃2(x)

)
,

(
θ1(x)

θ2(x)

)
=

(
T θ

11 T θ
12

T θ
21 T θ

22

)(
θ̃1(x)

θ̃2(x)

)
, (B1)

then we require [Tφ]T = [Tθ ]−1 for the canonical commuta-
tion relations to remain fulfilled for the transformed fields.
There are several ways to do this. The important point to note
is that it cannot be done with an orthogonal transformation
which merely rotates the matrices.

We define Tφ = P�Q�̃ and Tθ = P�−1Q�̃−1, which
automatically ensures that the commutation relations are held.
P and Q are usual rotations (i.e., orthogonal matrices), and �

and �̃ are diagonal matrices which rescale the fields. The idea
is that first we rotate and rescale such that �PT M′

φP� = I,
the identity matrix. We then define Nθ = �PT M′

θP�, which
is now a known symmetric matrix. This we diagonalize with
Q, which will of course leave the identity matrix unaffected.
Finally, we have a rescaling �̃ so that θ̃ and φ̃ have the same
eigenvalues.

The two rescalings are � = diag(λ
− 1

2
1 ,λ

− 1
2

2 ) and �̃ =
diag(λ̃

− 1
2

1 ,λ̃
− 1

2
2 ) with

λ1,2 = v1

2K1
+ v2

2K2
±

√
v2

B +
(

v1

2K1
− v2

2K2

)2

(B2)

and

1

λ̃1,2
=

√√√√Nθ
11

2
+ Nθ

22

2
±

√[
Nθ

12

]2 +
(

Nθ
11

2
− Nθ

22

2

)2

. (B3)

Therefore, in the end Mφ = Mθ = diag[u1,u2] with

(u1,2)2 = Nθ
11

2
+ Nθ

22

2
±

√[
Nθ

12

]2 +
(

Nθ
11

2
− Nθ

22

2

)2

. (B4)

The Hamiltonian becomes

Hq =
∑

ν=c,s

β=1,2

uνβ

2

∫
dx[[∂xφ̃

νβ(x)]2 + [�̃νβ(x)]2]. (B5)

Note that contrary to the basis used in the main text, we have
here rescaled the Luttinger parameters out of the Hamiltonian,
equivalent to φνβ → φ̃νβ

√
Kνβ and θνβ → θ̃ νβ/

√
Kνβ .

The generalization of the SU(2) symmetry condition on
the Luttinger parameters, see Sec. III, for asymmetric bands
leads to the condition Tφ

s = Tθ
s , or equivalently �sQs�̃s =

�−1
s Qs�̃

−1
s . This in turn tells us that λs1 = λs2 = λ̃−1

s1 = λ̃−1
s2

and from this the conditions vsA = vsB = 0, Ks1 = Ks2 = 1,
and vs1 = vs2 follow directly. That is, for an SU(2) symmetric
system the spin part of the Hamiltonian is already diagonal in
the band indices. It is therefore of course also diagonal in the
β = ± basis.

APPENDIX C: EXPRESSIONS FOR VELOCITIES AND
LUTTINGER PARAMETERS

In this appendix we give low-order expansions for the
velocities in terms of the bare interaction parameters and Fermi
velocities. Note that as before all kinematically indistinct
processes are assumed to be already appropriately rescaled.
The velocities and interband coupling terms are, for the spin
sector,

vsA = 2ḡ4‖ − ḡ4⊥ − 2ḡ2‖ + ḡ2⊥
16π

,

vsB = 2ḡ4‖ + ḡ4⊥ − 2ḡ2‖ − ḡ2⊥
16π

, (C1)

v2
sb =

(
vFb − 2g2b‖ − g2b⊥ − 4g4‖b + 2g4⊥b

8π

)

×
(

vFb − 2g2b‖ + g2b⊥ − 4g4‖b − 2g4⊥b

8π

)
with band index b = {1,2}. In the charge sector, we have

vcA = 2ḡ4‖ − ḡ4⊥ + 2ḡ2‖ − ḡ2⊥
16π

,

vcB = 2ḡ4‖ + ḡ4⊥ + 2ḡ2‖ + ḡ2⊥
16π

, (C2)

v2
cb =

(
vFb + 2g2b‖ − g2b⊥ + 4g4‖b − 2g4⊥b

8π

)

×
(

vFb + 2g2b‖ + g2b⊥ + 4g4‖b + 2g4⊥b

8π

)
.

The Luttinger parameters are

K2
sb =

(
vFb − 2g2b‖ − g2b⊥ − 4g4‖b + 2g4⊥b

8π

)

×
(

vFb − 2g2b‖ + g2b⊥ − 4g4‖b − 2g4⊥b

8π

)−1

(C3)

and for the charge sector

K2
cb =

(
vFb + 2g2b‖ − g2b⊥ + 4g4‖b − 2g4⊥b

8π

)

×
(

vFb + 2g2b‖ + g2b⊥ + 4g4‖b + 2g4⊥b

8π

)−1

. (C4)

The multitude of g parameters will depend on the specific
microscopic model under consideration.

For the symmetric band model which we consider in the
main text, we find, with vνb = vν and Kνb = Kν ,

(uν±)2 = (vν ± vνBKν) (vν ± vνA/Kν) ,
(C5)

1

(Kν±)2
= 1

K2
ν

vν ± vνBKν

vν ± vνA/Kν

for the velocities and Luttinger parameters of the normal
modes.

APPENDIX D: INTERACTIONS WITH FINITE
MOMENTUM TRANSFER

At special fillings where the total transferred momentum
in a scattering process becomes commensurate with the
lattice, additional interactions to those considered in Sec. II
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can become important. For completeness we list them here.
For 2(kF1 + kF2) = 2π we have the following additional
processes, which we have neglected. First,

H̄1 =
∑

σ,σ ′,b,r

∫
dx

ḡ1

2
ψ

†
σ ′b̄r

ψσ ′b̄r̄ψ
†
σbr̄ψσbr ,

H̄ ′
2⊥ =

∑
σ,b,r

∫
dx

ḡ′
2⊥
2

ψ
†
σ̄ br̄ψσ̄ b̄r̄ψ

†
σ b̄r

ψσbr , (D1)

H ′
4⊥ =

∑
σ,σ ′,b,r

∫
dx

g′
4⊥
2

ψ
†
σ ′b̄r

ψσ ′brψ
†
σ b̄r

ψσbr .

Bosonized they are, first,

H̄1‖ = ḡ1‖
(πα)2

∫
dx cos[

√
4πφs−] cos[

√
4πφc−],

H̄1⊥ = ḡ′
2⊥

(πα)2

∫
dx cos[

√
4πφs+] cos[

√
4πφc−], (D2)

H̄ ′
2⊥ = ḡ′

2⊥
(πα)2

∫
dx cos[

√
4πθs−] cos[

√
4πφc−].

Finally,

H ′
4‖ = g′

4‖
(πα)2

∫
dx

×
{∏

ν

cos[
√

4πφν−] cos[
√

4πθs−] cos[
√

4πθc−]

+
∏
ν

sin[
√

4πφν−] sin[
√

4πθs−] sin[
√

4πθc−]

}
,

H ′
4⊥ = g′

4⊥
(πα)2

∫
dx cos[

√
4πφc−] cos[

√
4πθc−]. (D3)

There is also a particular umklapp process for which the
oscillations can become commensurate with the lattice. This

is a 3kF2 − kF1 momentum transfer process:

HU = gU

∑
σ,σ ′,b,r

∫
dx e−ir(3kF2−kF1)xψ

†
σ ′b̄r̄

ψσ ′brψ
†
σ2r̄ψσ2r .

(D4)

In the bosonic form this becomes

HU = gU

(πα)2

∑
σ

∫
dx cos[

√
π (θc− − σθs−)]

× cos[(3kF2 − kF1)x−√
π (

√
4φc+−φc−−σφs−)].

(D5)

In particular, though not solely, one can see that this umklapp
scattering term will become important for the highly symmet-
ric scenario kF2 = 3kF1 = 3π/4 as then 3kF2 − kF1 = 2π . In
this case all of these momentum transfer processes listed in
this appendix will be present.

The scaling dimensions of these interactions necessary for
the first-order RG equations are, in the band symmetric model,

γ̄1‖ = Ks− + Kc−, γ̄1⊥ = Ks+ + Kc+,

γ̄ ′
2⊥ = Kc− + 1

Ks− , γ ′
4⊥ = Kc− + 1

Kc− ,

(D6)

γ ′
4‖ = Ks− + Kc− + 1

Ks− + 1

Kc− ,

γU = Kc+ + 1

4

[
Ks− + Kc− + 1

Ks− + 1

Kc−

]
.

g′
4‖ is irrelevant and g′

4⊥ is at best marginal. In the general
non-SU(2)-symmetric case we consider, the rest would have
to be taken into account. In principle, all of these processes
can also show up in the double and single spin-flip versions
as well. An exhaustive list of all these possibilities and their
influence on the phase diagram is beyond the scope of this
paper.
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