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Evolution of the Fermi surface of a doped topological insulator with carrier concentration
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In an ideal bulk topological insulator (TI) conducting surface states protected by time-reversal symmetry enfold
an insulating crystal. However, the archetypical TI, Bi2Se3, is actually never insulating; it is in fact a relatively
good metal. Nevertheless, it is the most studied system among all the TIs, mainly due to its simple band structure
and large spin-orbit gap. Recently, it was shown that copper intercalated Bi2Se3 becomes superconducting and it
was suggested as a realization of a topological superconductor. Here we use a combination of techniques that are
sensitive to the shape of the Fermi surface (FS): the Shubnikov-de Haas effect and angle-resolved photoemission
spectroscopy to study the evolution of the FS shape with carrier concentration, n. We find that as n increases, the
FS becomes two-dimensional-like. These results are of crucial importance for understanding the superconducting
properties of CuxBi2Se3.
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I. INTRODUCTION

A topological superconductor is a state of matter in which
the bulk is fully gapped, but gapless surface states host
Bogoliubov quasiparticles.1,2 Point-contact experiments have
shown the existence of zero bias conductance peaks (ZBCP)
in CuxBi2Se3,3,4 and these were interpreted as a signature of
Andreev surface bound states that were theoretically predi-
cated to exist in certain classes of topological superconductor
(TSCs).5,6 While the topological properties of topological
insulator (TIs) are set by the band structure and should
not depend on the chemical potential,7 the properties of
the superconducting samples are sensitive to the chemical
potential and to the shape of the Fermi surface (FS).5

Bi2Se3 has carriers in the conduction band even when
carefully prepared.8 These carriers are believed to be the
result of Se vacancies which are always present in the
material.9 The carrier concentration can be increased further
by Cu intercalation.10,11 The band structure of Bi2Se3 is
three dimensional (3D), i.e., there is substantial electronic
dispersion in the kz direction. On the other hand, the material
is layered, cleaves easily, and its resistivity is anisotropic
with ρzz/ρxx � 10.12 Band structure calculations (BSC)7

indicate that the �Z dispersion is weaker than the �L

dispersion. Early angle-resolved photoemission spectroscopy
(ARPES) experiments have shown that the dispersion can
be even weaker than the BSC predictions.13 It therefore is
plausible that, on adding charge carriers, the FS will grow
in an anisotropic fashion, where kF along the kz direction
becomes considerably larger than kF in the kxky plane. The FS
therefore can change from being a closed spherical FS at low
carrier densities into an open cylinder-like FS at high carrier
densities. An important question is whether CuxBi2Se3 has a
closed or open FS at carrier densities in which the system is
superconducting, n � 1020 cm−3.

The Shubnikov-de Haas (SdH) effect probes extrema in the
cross section of the FS. According to the Onsager relation, the
frequency of the magnetoresistance oscillation as a function
of inverse magnetic field is F = h̄

2πe
A(εF ),14 with A(εF )

being the maximal cross-sectional area of the FS in a plane
perpendicular to the magnetic field. By rotating the field
with respect to the crystal, one can map the full momentum
dependence of the FS.

Another common method for studying the FS is ARPES,
which was found to be an ideal tool for studying the
topological insulators. ARPES allows one to observe directly
the surface states even in samples where the transport is
dominated by the bulk.15 On the other hand, the surface
of a topological-insulator is a very complicated environ-
ment for photoemission; the ARPES spectrum consists of
contributions from the bulk bands and surface states and
possibly from a confined 2D electron gas.16 One way to
disentangle these contributions is to scan the photon energy
used in the experiment. Different photon-energies provide
information about the dispersion at different kz values and
allow one to distinguish 2D-like bands from the 3D bulk
band.

In this work we use the two powerful experimental tools,
SdH and ARPES; their combination allows us to determine the
evolution of the FS as a function of carrier concentration. Using
ARPES we show that the Dirac surface states exist throughout
the carrier concentration range under study. However, only
parts of the bulk-band FS can be clearly seen using ARPES
due to the photon-energy dependence of the matrix elements.
The SdH effect, in principle, allows a direct mapping of
the entire FS but its amplitude depends exponentially on the
effective mass. Consequently, it is less sensitive to high-band-
mass regions on the FS. Despite the limitations of both probes,
together they bring deep insight into the shape and properties
of the FS.
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FIG. 1. (Color online) Transport and ARPES characterization. (a) Longitudinal resistivity versus temperature for Cu-doped Bi2Se3with
n � 1020cm−3. Metallic type behavior as well as supercoductivity below �3 K is observed. Different samples may exhibit various
superconducting volume fractions and Tc variations. (b) Transverse resistivity versus magnetic field at 2 K for three samples. The solid
lines are linear fits from which we extract the carrier concentration n. Inset: The same for n � 1019cm−3. (c) Typical ARPES data from a highly
doped sample measured with 20-eV photon energy. The detector image shows the dispersion along the �-K direction. One can see that both
the surface-state and the bulk-band dispersion coexist. (d) Surface-state dispersion as measured using ARPES for eight different samples with
carrier concentrations ranging from 4 × 1017cm−3 (green curve) to 4 × 1020cm−3 (gray curve).

II. METHODS

For this experiment, we prepared a series of Bi2Se3 samples
with different carrier concentrations. We used two kind of
samples: off-stoichiometric Bi2−xSe3+y with low carrier den-
sity (n � 1017–1019 cm−3), and Cu intercalated Bi2Se3 with

high carrier density (n � 1020 cm−3). All the samples were
prepared using the modified Bridgeman method as described in
Refs. 4 and 17. For transport measurements, flakes ∼1–30 μm
thick were freshly cleaved perpendicular to the C3 axis in
a nitrogen environment. Gold contact wires were attached
to the samples using silver paint. Hall measurements up to
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FIG. 2. (Color online) SdH data and analysis. (a) Longitudinal resistance versus magnetic field applied parallel to the C3 axis (θ = 0) at
4.2 K for n � 1020 cm−3 (sample A). Inset: Fast Fourier transform (FFT) of these data plotted versus 1

μ0H
after subtracting a smooth polynomial

background. The sharpness of the FFT peak indicates a well-defined frequency. Its full width at half maximum is used as an upper limit for the
uncertainty in determining the frequency. A drawing of the sample configuration used in this experiment is also shown. (b) Resistance versus

1
μ0H

after subtraction of a smooth polynomial background at various temperatures [4.2 K data are taken from Fig. 2(a)]. The field is applied
parallel to the C3 axis. Inset: Effective mass is extracted by following the oscillation amplitude at high field as a function of the temperature.
The solid line is a fit to the Dingle formula,14 yielding m*� 0.24me for this sample (n � 1020 cm−3). (c) The frequency as determined from
the FFT versus tilt angle θ between the magnetic field and the C3 axis for three carrier concentrations. Solid lines are fits for an ellipsoidal FS
(n � 1017, 1019 cm−3) and for a cylindrical FS [F ∝ 1

cos(θ) ] for n � 1020 cm−3 (sample B).

14 T were performed using dc technique. SdH measurements
up to 30 T were performed at the HFML using the standard
lock-in technique. The thickness of the flakes was measured
in a scanning electron microscope. The ARPES data were
measured at the PGM beamline at the Synchrotron Radiation
Center (SRC) (Stoughton, WI) and at the BaDElPh beamline
at Elettra (Trieste Italy). All the samples were cleaved at base
temperature (∼20 K) in a vacuum better than 5×10−11 torr and
measured at the same temperature. Each sample was measured
for no more than 6 h; within this time we did not observe any
change in the chemical potential.

III. RESULTS AND DISCUSSION

Typical resistivity versus temperature and low tempera-
ture Hall measurements are shown in Figs. 1(a) and 1(b),
respectively. Typical ARPES data from a Cu intercalated
sample with n � 4 × 1020 cm−3 are shown in Fig. 1(c). A
well-defined surface state can be seen, with a Dirac point
at about 500 meV below the Fermi level. The two linearly
dispersive surface-state branches enclose the parabolic bulk
band whose FS is the subject of this paper. Figure 1(d) shows
the dispersion of the surface states for various samples with
different carrier concentrations n. Upon changing n, the Dirac

FIG. 3. (Color online) Evolution of the Fermi surface with carrier concentration. [(a) and (b)] Calculated ellipsoidal FS from the SdH
data in Fig. 2(c), for n � 1017,1019 cm−3, respectively. Detailed profile view of the Fermi surfaces is shown. (c) Calculated FS using tight
binding corrugated cylinder model fit to the SdH data in Fig. 2(c) (sample B, n � 1020 cm−3) (see Appendix E for more information). (D) The
Brillouin-zone momenta axes. [(e)–(g)] The Fermi surfaces of (a)–(c), respectively, plotted to scale with respect to the Brillouin zone.
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FIG. 4. (Color online) Photon energy dependence of the ARPES data. We show normal emission data for three different samples:
(a) n = 4 × 1017 cm−3, (b) n = 4 × 1020 cm−3, and (c) n = 2 × 1020 cm−3. The white dots represent the bottom of the bulk band. For
the low-carrier-density sample the bulk band is seen only around 19 eV (� point), and for the the high-carrier-density samples the bulk band is
visible at the entire photon-energy range measured. In panel (b) we show low-photon-energy data, believed to be more bulk sensitive. We find
that the bulk band is visible at the entire photon-energy range measured, which covers a momentum range larger than the �-Z separation.

dispersion remains intact with a rigid shift of the Dirac point
towards lower energies, while the Fermi velocity (i.e., the
slope) remains unchanged.

In Fig. 2 we show SdH data [see lower inset of Fig. 2(a)
for the configuration used in this experiment]. The resistance
as a function of magnetic field for a highly doped sample
(n � 1020cm−3) is shown in Fig. 2(a). Clear SdH oscillations
can be seen. The Fourier transform of these oscillations is
shown in the upper inset. A single, well-defined frequency
is observed. The oscillations persist up to surprisingly high
temperatures [see Fig. 2(b)]. From the temperature dependence
of the amplitude, the effective mass m∗ � 0.24me is extracted
[see the inset in Fig. 2(b)]. In Fig. 2(c) we show the angular
dependence of the SdH frequency for three samples. For
the low-carrier-concentration samples the oscillations persist
up to a tilt angle of 90◦ [see Fig. 2(c)], indicative of a
closed ellipsoidal FS. These results are in agreement with
previous observations.15,18–20 The FS of the n � 1019 cm−3

is clearly more elongated than the FS of n � 1017 cm−3.
For n � 1020 cm−3 the oscillation amplitude decreases with
increasing angle and cannot be observed beyond an angle of
55◦. This angular dependence of the SdH frequency follows
almost perfectly F ∝ 1

cos(θ) , which is the dependence expected

for a cylindrical FS.22

In Fig. 3 we show the FS of these samples as reconstructed
using the SdH data from Fig. 2(c). The first two samples
with n � 1017,1019 cm−3, have an ellipsoidal FS. For the
third sample (n � 1020 cm−3) we fit our data to a simplified
corrugated-cylinder model (see Appendix E for more infor-
mation). The resulting FS is shown in Figs. 3(c) and 3(g). Our
SdH data suggest a transition in the shape of the FS from a

closed ellipsoid to an open FS as n increases. Below we show
that the ARPES data verify this effect.

In an ARPES experiment the signal intensity allows a
direct mapping of the electronic dispersion along momentum
directions which are parallel to the sample surface. This is
because only the in-plane momentum is conserved. To map
the dispersion along kZ , one needs to scan the photon energy.
We used the free-electron final-state approximation21 to find
the correspondence between the photon energy and kZ (see
Appendix B for more information).

In order to map the dispersion along the kz direction, we
performed ARPES measurements at normal emission over a
wide range of photon energies in steps of 0.5 eV. This was
done for various samples with different carrier concentrations.
A set of scans is shown in Fig. 4(a) for a n � 1017 cm−3

sample and in Fig. 4(b) and 4(c) for two highly doped samples,
n � 1020 cm−3. One can see in Fig. 4 that, as expected, the 2D
surface states are insensitive to the photon energy used.

For the low-n sample shown, the bulk band is visible only
in a narrow range of photon-energies around 20 eV, which cor-
responds to the � point, and completely vanishes as the photon
energy is changed. This indicates that on going along the �-Z
direction the dispersion crosses the chemical potential and that
the FS is closed. On the other hand, for the high-n samples, the
bulk band remains visible for all photon energies. The maximal
width of the bulk band is obtained at about 20 eV (� point);
the band then disperses upward towards a minimum at both
zone boundaries located at photon energies of about 14.5 eV
and 23.5 eV. This is a clear indication of an open FS at high n.

Next, we look in more detail at the band structure of a
n � 1020 cm−3 sample. Around the � point the parabolic bulk
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FIG. 5. (Color online) Effective mass of the bulk band.
(a) Dispersion of the bulk band around the � point, where the
dispersion of the bulk is clear and allows an accurate measurement
of the effective mass. The dashed line represents the parabolic fits
to the dispersion. (b) MDCs for the 19-eV photon-energy data. The
red points are the maxima of the MDCs. These maxima are used
to extract the dispersion. (c) Summary of the fit results. The red
points (black circles) represent kF (effective mass) as a function of
the photon energy. (d) A close view of the FS calculated in Fig. 3(c).
The color code corresponds to the effective mass calculated for the
whole momentum range using the fit in Fig. 5(c). The cylindrical-type
shape has a corrugation ratio of �1.05. This corrugation ratio
together with the enhancement of the effective mass at the zone
boundary explain the absence of a second frequency and the amplitude
attenuation at high tilt angles as detailed in the text.

band is very clear; this can be seen in Figs. 5(a) and 5(b).
By following the peaks in the momentum distribution curves
(MDCs), we extract the band dispersion [Fig. 5(b)]. Fitting
the data to a simple parabolic dispersion model, we can find
kF and the effective mass at different photon energies. The
parabolic best fits are shown as dashed lines in Fig. 5(a). The
effective masses resulting from these fits are shown in Fig. 5(c)
together with kF . We find that when moving away from the �

point towards the zone-boundary kF decreases and the effective
mass increases substantially.

In Fig. 5(d) we show the same FS shown in Fig. 3(c) with a
color code representing the effective mass, which is measured
by ARPES [using the parabolic fit in Fig. 5(c)] for various kz.
Naively, for this type of FS one would expect two frequencies:
the first from the maximal cross section, at the plane going
through the � point, and the second from the minimal cross
section at zone boundary (the Z points). The kz dependence of
the effective mass extracted from the ARPES data suggests that
the SdH signal arising from the minimal cross section at the
zone boundary will be very weak, as the SdH intensity depends
exponentially on the effective mass. This, together with our
finding that the area of the cross section perpendicular to kz

changes by merely 5%, explains why the second frequency is
absent in our measurements. Furthermore, as the angle θ with
respect to the C3 axis increases, the SdH is probing parts of
the FS at which the electron’s effective mass is larger, so we
expect the signal to become weaker, as observed.

The ARPES data suggests a slightly larger corrugation
ratio compared to the SdH results, but overall the agreement
between the ARPES and the SdH results is impressive. The
two probes yield similar values of kF for the various samples
(see Appendix D for more information), and both techniques
show clearly a transition from a closed FS at low carrier
concentrations to an open FS at high carrier density. In
particular, all superconducting samples have an open FS.

IV. CONCLUSION

In order for a time-reversal-invariant superconductor with
odd-parity pairing to be a 3D topological superconductor, it
must have a Fermi surface that encloses an odd number of
time-reversal-invariant (TRI) momenta in the Brillouin zone.5

We show here that the FS of CuxBi2Se3 encloses two TRI
points, � and Z. Our results cast doubt on Cu-doped Bi2Se3as
a possible realization of a TRI 3D topological superconductor.
Interestingly, this material can be a realization of a 2D-like
weak topological SC. Such a system is predicted to have
counterpropagating edge states that can produce Andreev
bound states but not on the (001) surface. If this is the case, the
observed ZBCPs in recent point contact experiments3,4 can be
a result of tunneling into crystalline facets exposing surfaces
other than the (001) one.
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FIG. 6. (Color online) The energy position of the Dirac point and
the value of kF for the different samples appearing in Fig. 1(d) of the
main text. Error bars are 95% confidence levels.

APPENDIX A: RIGID SHIFT

The data presented in Fig. 1(d) of the main text are cuts
of the surface state in the �K direction passing through the
� point. The dispersion was obtained by tracking the peak in
the MDCs in the ARPES spectra. The energy at which we find
the Dirac point and the Fermi momentum (of the surface state)
for each of these samples is plotted in Fig. 6. There is a linear
relation between these two quantities, which is expected in
the case of a rigid shift of the chemical potential in a linearly
dispersing band, where the chemical potential is determined
by the carrier density. The scatter in the plot is a result of slight
misalignment of the different samples.

APPENDIX B: INNER POTENTIAL

We relate the value of kz for electrons inside the crystals
to their kinetic energy after photoemission using the free-
electron final-state approximation kz =

√
2m/h̄2 (Ekin + V0).

The mapping of band dispersion in the kz direction is then
carried out by changing the photon energy used in the
photoemission process, thus changing the value of Ekin and
obtaining a different value for kz. The constant V0 is specific
to the material and is called the inner potential; formally it
is given by V0 = μ + φ, where μ is the chemical potential
measured from the bottom of the band and φ is the work
function. We can determine the value of V0 experimentally
from the ARPES data, similarly to what appears in Fig. 4
of the main text, by identifying the high-symmetry points
in the dispersion along kz. In Fig. 7 we plot the position of
the high-symmetry points as a function of photon energy and
obtain a value of approximately V0 � 10.3 eV.

APPENDIX C: BAND DISPERSION ALONG kz

To make a more quantitative analysis, we need to find the
bottom of the band for each kz cut. This is found to be a
tricky task, and for some photon energies, a clear parabolic
dispersion is seen in the data but for other photon energies we
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and the error bars show the uncertainty in the position. The dashed
line is the equation of free-electron final-state approximation (see
text) plotted with V0 = 10.3 eV.

find a parabolic region “filled” with almost constant intensity.
We look for the energy for which the intensity drops to half its
maximal value; this criterion is used for the entire data set. The
kz values were calculated using the free-electron final-states
assumption with an inner potential V0 = 10.3 eV.

In Fig. 8, we plot the dispersion of the bulk band along
kz, for a few samples with different chemical potential values.
The data for the different samples are plotted relative to the
bottom of the band for each sample. The horizontal solid lines
represent the chemical potential for each sample measured
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the bottom of the bulk band at the � point.
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relative to the bottom of the band. One can see that the
band shifts rigidly with the increasing doping level; this is
apparent in the way the data for different samples coincide.
The dispersion of the different samples is identical going from
the � point toward the upper Z point. Going from the � point
down, the agreement is not as good. This might be a result
of the way we define the bottom of the band. In addition, the
free-electron final-state approximation can lead to errors.

The dispersion of the sample with the low chemical
potential (36 meV) crosses the Fermi level, an indication of a
closed FS. For the other samples, we do not find a crossing of
the Fermi level, an indication of an open FS. Furthermore, for
the highly doped samples we find a saturation of the occupied
band width. This is again in agreement with an open FS and
the absence of a Fermi crossing point along �-Z.

APPENDIX D: LOWER LIMIT FOR kz
F

We make a simple estimation of kF in the z direction, which
does not require a measurement of the dispersion along kz. The
surface-state FS always encloses the bulk FS, even for highly
doped samples. The kF we find for the surface state does not
depend on the photon energy. We can use this value as an upper
limit for the kF of the bulk band in the kxky plane. Knowing the
carrier density (from Hall measurements), one can calculate
the Luttinger FS volume. Assuming an ellipsoidal FS, 3π2n

k2
F

gives a lower limit for kF in the kz direction.
In Fig. 9, we show the carrier density extracted from the

Hall measurements as a function of the surface state kF for
various samples. The solid line is the carrier density expected
for a spherical Fermi surface with a radius corresponding to kF .
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FIG. 9. (Color online) Carrier density as a function of kF . The
carrier densities are obtained from Hall measurements and they span
nearly three orders of magnitude. The kF (blue dots) was obtained
from SdH data, measured with magnetic field parallel to the C3 axis.
The kF (hollow black circles) is that of the surface state obtained
from the ARPES data, and it represents an upper bound on the kF of
the bulk. The solid line is the expected carrier density for a spherical
Fermi surface. The dashed line is the carrier density for which the
radius of the Fermi sphere equals the �-Z distance, that is, the Fermi
surface reaches the edge of the first Brillouin zone.

The data points for samples with low carrier density lie slightly
below the line, as expected, whereas the points representing
high density samples are found above the line. Furthermore, the
values we get for kF in the kz direction for the samples with n ∼
1020 cm−3 are larger than the �-Z distance, indicating that the
FS crosses the top zone boundary, meaning that the FS is open.

The blue dots in Fig. 9 are the kF from the SdH data, one can
clearly see the good agreement between the values obtained
using ARPES and SdH.

APPENDIX E: CORRUGATED CYLINDER MODEL

We use a simple tight-binding model to fit the SdH
data. Expanding around kx � ky � 0, we get the equation
describing the entire Fermi surface:

1

2
t⊥

(
k2
x + k2

y

)
a2 + tz [1 − cos(kzc)] = εF , (E1)

where a and c denote the crystals constants in the xy plane and
z axis, respectively, and t⊥ and tz denote the transfer integrals
in the xy plane and z axis, respectively, where t⊥ > tz > 0.

Applying a magnetic field directing at an angle θ relative to
the z axis and due to symmetry in the xy plane (taking φ = 0,
where φ is the angle in the xy plane), the equation for the
Fermi surface boundary of the cross sectional region is

1

2
t⊥

(
k2
x + k2

y

)
a2 + tz [1 − cos(kxc tan θ )] = εF . (E2)

Measuring wave numbers in units of a−1 and energies in units
of t⊥ this equation becomes

k2
x + k2

y + 2η [1 − cos (kxγ tan θ )] = 2εF ,
(E3)

η ≡ tz

t⊥
< 1,γ ≡ c

a
> 1,

The solutions for the cross sectional curve is

ky = ±
√

2εF − k2
x − 2η[1 − cos(kxγ tan θ )]. (E4)

Finally, we calculate the cross-sectional area perpendicular to
the magnetic field. Using the Onsager relation, the correspond-
ing frequency is given by

F (θ,η) = h̄

2πea2

∫
kyd(kx/ cos θ )

= 1

cos θ

h̄

2πea2

×
∫ √

2(εF − η) − k2
x + 2η cos(kxγ tan θ )dkx.

(E5)

Expressing the Fermi energy using the zero angle frequency
(where the magnetic field is perpendicular to the xy plane),

F0 ≡ F (θ = 0,η) = h̄εF

ea2
.

The final equation for the angular dependence of the SdH
frequency is

F (θ,η) = �(θ,η)

cos θ
,

�(θ,η) = h̄

2πea2

∫
{2(F0ea

2/h̄ − η)

− k2
x + 2η cos(kxγ tan θ )}1/2dkx. (E6)
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FIG. 10. (Color online) Sample with n3D � 1017. (a) Longitudinal resistance versus magnetic field at various tilt angles between the C3
axis and the magnetic field. (b) Frequency versus tilt angle. The solid line is a fit for an ellipsoidal Fermi surface model. Inset: FFT analysis of
each tilt angle.

Performing a numerical integration (on kx) combined with
a numerical fit (frequency versus magnetic field tilt angle),
one can extract the desired parameter η (which defines the
corrugation of the cylinder). Our experimental data (the
frequency F at different magnetic field tilt angles θ ) enables
us to perform this analysis. We note that this simple theoretical
model does not allow us to find the dependence of the cyclotron
mass on kz as experimentally determined in Fig. 5 in the
paper.

APPENDIX F: ADDITIONAL SDH DATA AND ANALYSIS

In Figures 10, 11, and 12 we present the SdH measurement
of three different samples with various carrier concentrations
(presented in the paper itself). The measurements are at
various tilt angles between the C3 axis and the magnetic field.
For these measurements we present FFT after background
substraction for each tilt angle and a fit for each samples Fermi
surface.
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FIG. 11. (Color online) Sample with n3D � 1019. (a) Longitudinal resistance versus magnetic field at various tilt angles. 0◦ corresponds to
magnetic field parallel to the C3 axis. (b) Frequency versus tilt angle. The solid line is a fit for an ellipsoidal Fermi surface model. Inset: FFT
analysis of each tilt angle.
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FIG. 12. (Color online) Sample with n3D � 1020. (a) Longitudinal resistance versus magnetic field at various tilt angles. (b) Frequency
versus tilt angle. The solid line is a fit for a cylindrical Fermi surface model [F ∝ 1

cos(θ) ]. Inset: FFT analysis for each tilt angle.
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