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We investigate the magnetic and metal-insulator (M-I) phase diagram of the 1
5 -depleted square-lattice Hubbard

model at 1
4 filling by the mean-field approximation. There exist three magnetic phases of nonmagnetic (N),

antiferromagnetic (AF), and ferromagnetic (F) types, each realized for the large intrasquare hopping t1, intersquare
hopping t2, and Coulomb interaction U , respectively. Within each magnetic phase, the M-I transition of Lifshitz
type emerges and, finally, six kinds of phases are identified in the U − t1/t2 plane. When t1 = t2, we find that the
Dirac cone and nearly flat band around the � point form the SU(3) multiplet. The SU(3) effective theory well
describes the phase transitions between NI, paramagnetic-metal (PM), and AF phases. The NI and AFI phases
are characterized by different Berry phases as in polyacetylene or graphene.

DOI: 10.1103/PhysRevB.88.195104 PACS number(s): 71.10.Fd, 71.30.+h, 75.30.Kz

I. INTRODUCTION

In recent years, physics emerging from anomalous dis-
persion relations, such as a complete flat band or the Dirac
cone, have attracted much attention in condensed matter
physics.1–4 For example when the Fermi energy coincides with
the flat band, a macroscopic degeneracy in the single electron
spectrum allows valence electrons to flip their spins freely
without losing extra kinetic energy. In a naive sense, therefore,
a ferromagnetism is achieved so as to minimize the Coulomb
repulsion energy, unless other instabilities are developed with
increasing of the Coulomb interaction. Such a mechanism, so
called the flat-band ferromagnetism, is occasionally realized
in tight-binding models on geometrically frustrated lattices,
generalized line graphs,5–9 and cell-construction networks.10,11

The Dirac cone in material science is frequently discussed
for the dispersion around the K and K′ points of the honeycomb
lattice in graphene,12,13 where the chiral symmetry prohibits
the crossing linear dispersion to be massive.14,15 Lately, such
Dirac electrons are demonstrated to play an important role
in the two-dimensional (2D) organic zero-gap semiconductor
α-ET2I3

16,17 or in the surface states of 3D topological
insulators.18,19 Experimentally, the Dirac-cone electronic
dispersion is really observed in the Fe-based superconductor
BaFe2As2 by ARPES.20 For the theoretical side, empirically,
the Dirac-cone system seems to be commonly found in the
nearest-neighbor (NN) tight binding models on regularly
depleted lattices. The honeycomb12 and kagomé3 lattices
are typical examples of such a system, being regarded as
the 1

3 - and 1
4 -depleted triangular lattices, respectively. The

half-filled honeycomb-lattice Hubbard model is recently
studied intensively in connection with the M-I transition at
low temperature.21,22 The stabilities of charge-ordered states
are also investigated for a spinless fermion model on the
kagomé lattice at 1

3 filling,23 which is commensurate due to
the lattice depletion. As for square-lattice systems, it is known
that the 1

4 -depleted square lattice, so called the Lieb model,5

has flat-band and Dirac-cone dispersions at the same time.
In the present paper, we study the Hubbard model on

the 1
5 -depleted square lattice, shown in Fig. 1(a), with two

different NN hoppings of t1 and t2, representing the intra- and

intersquare hoppings, respectively. The original point-group
symmetry of this lattice is C4, though, as long as the NN
hoppings are concerned; one can deform the lattice into the
square lattice of diamonds shown in Fig. 1(b). Thus, the
point-group symmetry is enlarged into C4v. In the symmetric
case of t1 = t2 = 1, diagonalizing the single-electron part of
the Hamiltonian, we find that the lowest α band and the
third γ band form the characteristic Dirac cone at the �

point [Fig. 1(c)]. The apex of the cone is just located at
the 1

4 -filling Fermi energy and, moreover, the second band
of β intersects this apex at the same time. In this model,
therefore, such exotic dispersions emerge simultaneously
and, at 1

4 filling, the interplay of them is expected to
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FIG. 1. (Color online) (a) The 1
5 -depleted square lattice with the

intrasquare (t1, thick solid lines) and the intersquare (t2, thin solid
lines) hoppings. The unit cell, including four distinct sites A, B, C, and
D, is enclosed by the dashed-line square connecting four vacant sites.
(b) Deformed 1

5 -depleted square lattice or decorated square lattice
with C4v symmetry. (c) Dispersion relations εk at t1 = t2 = 1 for α

and γ bands, forming the Dirac cone. (d) εk for β band, intersecting
the apex of the Dirac cone at the � point.
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induce intriguing physics with the inclusion of Coulomb
interaction.

At 1
2 filling with strong electron correlations, this model

is reduced to the spin- 1
2 Heisenberg model on the 1

5 -depleted
square lattice which describes the spin-gap phase of CaV4O9

where the plaquette spin-singlet ground state is realized.24,25

The ratio of J1/J2 (∝t2
1 /t2

2 ) controls the spin gap, and quantum
phase transitions take place between the plaquette (small J2),
classical AF (J1 ∼ J2), and dimer (small J1) phases. Also at
1
4 filling of the present study, electronic states of plaquette or
dimer structures give us an intuitive perspective to understand
the ground-state phase diagram with respect to U and t1/t2, as
we will see later. It may be worth mentioning that Fe ions in
K0.8Fe1.6Se2 are known to form the 1

5 -depleted square lattice,

referred to as the
√

5 × √
5 iron-vacancy structure, with Q =

(π,π ) block-AF magnetic ground state.26

The paper is organized as follows. In Sec. II we discuss
single electron properties focusing on the physics of the
SU(3) Dirac cone. In particular, it will become clear that the
ways of symmetry lowering from the SU(3) are crucial to
give rise to M-I and magnetic transitions as a consequence.
After characterizing possible ordered phases in Sec. II, the
mean-field phase diagram at low temperature is presented in
Sec. III. The NI and AFI phases are further characterized by
using the Berry phase in the latter part of this section. Finally
we summarize the conclusions and make some remarks in
Sec. IV.

II. SINGLE ELECTRON PROPERTIES

First of all, let us investigate the noninteracting model in
search of possible metallic, insulating, and magnetic phases
after including external staggered and uniform magnetic fields.
Since the Coulomb interaction is mainly treated by the mean-
field approximation in the present work, these external fields
work as the self-consistent fields reduced from the Hubbard U

term in Sec. III.

A. Model and dispersion relations

The NN tight-binding model on the 1
5 -depleted square

lattice is given by H(0) = ∑
kσ H

(0)αβ

kσ c
†
kασ ckβσ with

Ĥ
(0)
kσ =

⎛
⎜⎜⎝

0 t1 t2e
−ikx t1

t1 0 t1 t2e
−iky

t2e
+ikx t1 0 t1
t1 t2e

+iky t1 0

⎞
⎟⎟⎠ , (1)

where c
†
kασ creates a spin-σ (= ±1) electron at α(= A − D)

sublattice with the momentum k = (kx,ky). The eigenvalue
equation for Eq. (1) is given by Fk(ε) = 0 with

Fk(ε) = (
ε2 − t2

2

)2−4t2
1 (ε + t2 cos kx)(ε + t2 cos ky). (2)

The sign reversal of t1 or t2 is irrelevant, though the latter
shifts the momentum by (π,π ), therefore, we assume that t1
and t2 are positive definite. For t1 � t2 and thus ε � ±t2,
at 1

4 filling an electron occupies an antibonding orbital on
every t2 bond, which means the PM ground state. On the
other hand, for t1 � t2 and ε � −2t1,0,0,2t1, two electrons
are confined within a single t1 square and the B1 orbital of

Eq. (8) is doubly occupied, resulting in the NI ground state.
When t1 = t2, around the � point the functional forms of the
Dirac cone (α and γ bands) and the β band are, respectively,
given by

ε
(α/γ )
k � −t1

⎛
⎝1 ±

√
k2
x + k2

y

2

⎞
⎠ , (3)

ε
(β)
k � −t1

{
1 − k2

xk
2
y

2
(
k2
x + k2

y

)
}

, (4)

as shown in Figs. 1(c) and 1(d). In particular, the bottom of
the β band along the kx and ky axes is completely flat and the
system is metallic at 1

4 filling. This is in strong contrast to the
standard SU(2) Dirac cone which is a zero-gap semiconductor
in a 2D system.

For general (t1,t2)’s, the dispersion relations along
�-X(π,0)-M(π,π )-� are displayed in Fig. 2. As shown in
Fig. 2(c), the Dirac cone appears also at the M point, since the
relation

Fk+(π,π)(−ε) = Fk(ε) (5)

holds due to the chiral symmetry. Along the �X line, putting
ky = 0 in Eq. (2), a completely flat dispersion emerges at ε =
−t2. When the 1

4 -filling Fermi energy hits this flat dispersion,
for t1 � t2 as shown in Figs. 2(c)–2(f), the ground state is PM.
On the other hand, for t1 > t2, a finite band gap is open at the �

point as shown in Figs. 2(a) and 2(b). Lifting of the degeneracy
at the � point seems to be the key to understanding the M-I
transition.

B. SU(3) effective theory

At the � point, when t1 = t2, Eq. (1) is diagonalized into
diag(3t1,−t1,−t1,−t1) by using the C4v basis representation
of

|A1〉 = 1
2 (c†A + c

†
B + c

†
C + c

†
D)|0〉, (6)

(|Ex〉,|Ey〉) = 1√
2

(c†A − c
†
C,c

†
B − c

†
D)|0〉, (7)

|B1〉 = 1
2 (c†A − c

†
B + c

†
C − c

†
D)|0〉, (8)

where k and σ indices are abbreviated. The |A1〉 state is
energetically separated from the degenerate SU(3) multiplet.
Therefore, expanding Eq. (1) for small k and μ = t2/t1 − 1,
transforming it into the C4v basis, and tracing out the |A1〉
state, the effective SU(3) Hamiltonian is constructed for fixed
k and σ as

H(0)
eff = −

(
1 + μ

3

)
I3 − 2μ√

3
λ8 + kx√

2
λ5 − ky√

2
λ7 (9)

in the unit of t1. Here, I3 and λ’s are, respectively, the identity
and the Gell-Mann matrices of the SU(3) subspace spanned
by (|Ex〉,|Ey〉,|B1〉).

In the absence of μ, H(0)
eff can be viewed as the massless

Dirac equation embedded in the SU(3) space. From the C4v

point group symmetry, E and B1 states are always degenerate
to form the Dirac point. Including the mass term proportional
to λ8 = (|Ex〉〈Ex| + |Ey〉〈Ey| − 2|B1〉〈B1|)/

√
3, the accidental

degeneracy between E- and B1-symmetric states at the � point
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FIG. 2. (Color online) Dispersion relations for spin-up (dashed
lines) and -down (solid lines) electrons along symmetry lines for
various (t1,t2)’s. In the metallic cases of (c), (d), (e), and (f), the flat
bands along �-X match the Fermi energy, depicted by the dotted line.
The densities of states are also displayed.

is lifted, and a positive (negative) μ increases the energy
of B1(E) state. As a result, Lifshitz transition27 separates
the nonmagnetic phase into NI (t1 > t2) and PM (t1 � t2)
phases, which is consistent with the simple M-I transition
picture between the isolated-square (t2 = 0, insulating) and
isolated-bond (t1 = 0, metallic) limits.

C. Phase diagram under a staggered magnetic field

In order to lift the degeneracy within the E states at the �

point, we need a λ3 = |Ex〉〈Ex| − |Ey〉〈Ey| term besides H(0)
eff ,

which can open the charge gap for t2/t1 � 1 or close it for
t2/t1 < 1. For that purpose, we apply the Q = 0 staggered
magnetic field defined by

H(Bs ) =
∑
kσ

σBs(nkAσ − nkBσ + nkCσ − nkDσ ), (10)

where nkασ = c
†
kασ ckασ . For small Bs , tracing out the |A1〉 state

in the same way, we can easily show that the effective SU(3)
model for H(Bs ), with fixed k and σ , is given by

H(Bs )
eff = σBsλ

(σ )
3 , (11)
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FIG. 3. (Color online) Dispersion relations for (t1,t2) = (1,0.8)
with increasing Bs from 0 to 1.5, where symbols and lines are the
same as in Fig. 2. At k = (kc,0), as shown in (d), the flat band is
intersected by another band.

where λ
(σ )
3 is the similarly defined Gell-Mann matrix in the

spin-σ sector. Therefore the Bs term breaks the E symmetry at
the � point, which induces M-I phase transitions accompanied
by the Q = 0 AF spin order.

The eigenvalue equation for H(0) + H(Bs ) is now written as
F

(+)
k (ε) · F

(−)
k (ε) = 0 with

F
(σ )
k (ε) = {

(ε − σBs)
2 − t2

2

}{
(ε + σBs)

2 − t2
2

}
− 4t2

1 (ε − σBs + t2 cos kx)(ε + σBs + t2 cos ky).

(12)

Solving Eq. (12), we find the M-I phase diagram28 in the
Bs − t1 or Bs − t2 plane as shown in Fig. 4. For Bs �= 0, there
are two kinds of insulating phases: AFI’ (for small t2) and AFI
(small t1). In the AFI’ phase, like Fig. 3(b), the charge gap 


(c)
k

opens at �, which is estimated from Eq. (12) to be



(c)
� = −2t2 − Bs +

√
4t2

1 + B2
s . (13)

As shown in Fig. 3(c), the charge gap closes at 
(c)
� = 0, which

determines the I-M transition line;

Bs1(t1,t2) =
(

t2
1

t2
− t2

)
θ (t1 − t2). (14)

195104-3



YAMASHITA, TOMURA, YANAGI, AND UEDA PHYSICAL REVIEW B 88, 195104 (2013)

AFI’

AFI 

AFM

12 /tt 21 /tt

1/tB 2/tB

(under staggered field:B )

)0( )( ≠ΔΓ

)0( )(
X ≠Δc

3

2

1

0
0         0.5          1          0.5       0

)0( )( =Δc

11 /t
22/tB

0.2 0.8      0.8 0.2

AFI’

AFI 

AFM

12 /tt 21 /tt

1/tB 2/tB

(under staggered field:B )

)0( )( ≠ΔΓ
c

)0( )(
X ≠Δc

3

2

1

0
0         0.5          1          0.5       0

)0( )( =Δc

11 /tB
22/tB

0.2 0.8      0.8 0.2

ss

ss

ss

ss

2/tB 12/Bss

ss

FIG. 4. (Color online) M-I phase diagram (Ref. 28) under the
external staggered magnetic field H(Bs ). All transition lines are of
Lifshitz type, where only Fermi surface geometry changes and no
other symmetry is broken. At the points marked by the crosses (×)
and open circles (◦), respectively, the dispersion relations are shown
in Figs. 2 and 3. Along the horizontal dashed arrows at Bs = t1 and
2t1, the Berry phase is calculated in Fig. 7.

Once entering the metallic phase, like Fig. 3(d), the complete
flat band along �-X is intersected by the dispersive band at
kx = kc. The flat band is a localized antibonding orbital of B
and D sites with ε = −t2 − Bs , which must be the double root
of Eq. (12) at k = (kc,0) to give,

kc(t1,t2,Bs) = 2 arcsin

√
Bs

t2

{
t2
2

t2
1

(
1 + Bs

t2

)
− 1

}
. (15)

In Fig. 3(d) of (t1,t2,Bs) = (1,0.8,1), for instance, kc is
calculated to be

kc(1,0.8,1) = 2 arcsin
√

0.55 � 0.53π. (16)

Note that the dispersive band has even parity with respect to
exchanging B and D sites. That’s why there is no band splitting
at k = (kc,0).

With increasing Bs above Bs1, kc travels from 0 [Fig. 3(c)]
to π [Fig. 3(e)], and finally the charge gap of the AFI phase
opens at the X point [Fig. 3(f)] with



(c)
X = t2 + Bs −

√
4t2

1 + (t2 − Bs)2. (17)

Again, 

(c)
X = 0 defines the M-I transition line of

Bs2(t1,t2) = t2
1

t2
, (18)

as depicted in Fig. 4. Namely, in the shaded AFM region in
Fig. 4, kc ranges from 0 to π consistent with the relations,
kc(t1,t2,Bs1) = 0 and kc(t1,t2,Bs2) = π , as shown by using
Eqs. (14), (15), and (18). Bs1 and Bs2 transition lines are of
Lifshitz type, which are similar to the PM-NI phase transition
at Bs = 0. Although these M-I transitions are peculiar in that
Fermi surfaces of line shape along the kx and ky axes vanish
at the transition.27
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FIG. 5. (Color online) M-I phase diagram (Ref. 28) under the
external uniform magnetic field H(Bu). All transition lines are of
Lifshitz type. The dotted line in the FM phase indicates the lower
boundary of the complete ferromagnetic region. The ferromagnetic
moment in FI is fully saturated.

D. Phase diagram under a uniform magnetic field

Figure 5 shows the similarly derived M-I phase diagram28

under the external uniform magnetic field;

H(Bu) =
∑
kσ

σBu(nkAσ + nkBσ + nkCσ + nkDσ ). (19)

In the NI phase for t2/t1 < 1, the charge gap is given by 

(c)
� =

2(t1 − t2 − Bu). With increasing Bu from zero, therefore,
the NI-FM phase transition takes place at Bu1 = t1 − t2. On
the other hand, in the FM phase for t1/t2 � 0.5, the phase
transition to the fully saturated FI phase occurs at Bu2 = 2t1,
where 4t1 is the bandwidth of the majority-spin band.

When Bu is large enough compared with t1 and t2, the
present model at 1

4 filling is reduced to the spinless 1
2 -filled

problem. In that case, Fermi energy is zero because of the
bipartite symmetry, and the Fermi surface, if it exists, is defined
by the equation Fk(ε = 0) = 0 resulting in

cos kx cos ky = t2
2

4t2
1

. (20)

Therefore, t1/t2 = 0.5 determines the FM-FI phase transition
line, as shown in Fig. 5 for large Bu. At this Lifshitz transition,
electron and hole pockets at � and M points, respectively,
vanish simultaneously, see Figs. 2(d)–2(f) at 1

2 filling of ε = 0.

III. EFFECTS OF THE COULOMB INTERACTION

A. Mean-field phase diagram

Next we consider the effect of the on-site Coulomb
interaction within the Hartree-Fock approximation, where the
external fields of Bs and Bu discussed so far are replaced
by the self-consistent fields. For numerical stabilities, all
calculations have been done at a finite temperature of T =
0.03 × max(t1,t2) for the typical system size of 200 × 200.
By comparing the free energies of the nonmagnetic, ferro-
magnetic, and Q = 0 antiferromagnetic states, we obtain the
ground-state phase diagram as shown in Fig. 6. Note that
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FIG. 6. Mean-field phase diagram in the U − t2 or U − t1 plane,
where thick-solid and dashed lines represent discontinuous and
continuous magnetic phase boundaries, respectively. The symbol AF
stands for the Q = 0 antiferromagnetic order. The ferromagnetic
moment in the FM and FI is fully saturated. The M-I phase transition
lines shown by thin solid lines are of Lifshitz type.

temperature and the system-size dependence of the phase
boundaries are already very weak for the present calculations.

We have also checked the paramagnetic susceptibility χ0(q)
for t1 < t2, which shows that the leading instability within
the random phase approximation (RPA) occurs at q = 0 and
the staggard moments develop within the unit cell consistent
with the Q = 0 AF order assumed in Fig. 4. From the largest
eigenvalue of χ0, the RPA instability is determined to be
consistent with the PM-AFM transition line shown in Fig. 6.
The other simple order parameter, like Q = (π,π ) AF order,
which is similar to the standard classical AF order in the square
lattice, is always high in energy. The other Q = (π,π ) mode
with the ferromagnetic unit cell, that is the block-AF structure
observed in K0.8Fe1.6Se2,26 has higher energy in this model.

For t1 � t2 and small U , the self-consistent field does not
develop and the NI-PM Lifshitz transition at t1 = t2 is straight
in this region. For U � t1 and t2, fully saturated FM and FI
compete with each other, separated by the Lifshitz transition
at t1/t2 = 0.5 consistent with Fig. 5.

On the right half of the phase diagram (t1/t2 � 1) with
modest U , the antiferromagnetic phases prevail over the para-
and ferromagnetic phases. Starting from the small t1 limit,
an electron resides on the antibonding orbital of the t2 bond,
labeled by i, where only the spin degree of freedom Si is left.29

The second-order perturbation by super-exchange processes
via t1 hoppings derives the effective pairwise spin Hamiltonian,

H(2)
ij = t2

1

2

(
1

2t2 + U
+ 4

U

)
Si · Sj + const. (21)

Thus, the ground state for the small-t1 region should be the
AF bond spin-density wave (SDW) which is consistent with

the Q = 0 AFI of Fig. 6. This is because, in both ordered
states, the staggard spin order in the unit cell stretches over
the entire lattice uniformly. Once self-consistent fields are
developed, there is a one-to-one correspondence between the
phase diagrams of Figs. 4, 5, and 6 by reading Bs or Bu as
U multiplied by spin densities. Accordingly, the M-I phase
boundary in the AF region in Fig. 6 is nothing but the Lifshitz
transition discussed in Fig. 4. In addition we have observed
a faint trace of the AFI’ phase in a narrow region just below
the NI-AFM boundary around t2/t1 = 0.7–1.0 (not shown in
Fig. 6).

At t2 = 0, the model is reduced to the 4-site t1-ring + U

problem, in which exact FM and mean-field NI energies of
EFM and E

(MF)
NI , respectively, are given by

EFM = −2t1, (22)

E
(MF)
NI = −4t1 + U

4
. (23)

Therefore, Uc = 8t1 is found at t2 = 0 consistent with the
left end of Fig. 6, where the finite T , 0.03t1 in the present
calculation, decreases the FM free energy and Uc is slightly
reduced. On the other end of Fig. 6 where t1 is much smaller
than t2 and U , expanding the FI and AFI mean-field energies
as a function of t1 up to the second order, we obtain

E
(2)
FI = −2t2 − t2

1

t2
, (24)

E
(2)
AFI = −2t2 − 4t2

1

(
1

U
+ 1

U + 4t2

)
. (25)

Comparing E
(2)
F and E

(2)
AFI, the mean-field Uc converges to

2(1 + √
5)t2 � 6.47t2 as t1 approaches zero. The mean-field

staggered moment in the AFI is estimated for small t1 as

M
(2)
AFI = 1 − 8t2

1

{
1

U 2
+ 1

(U + 4t2)2

}
. (26)

For small t1/t2, in reality, the AFI region extends over
U = ∞ because of the super-exchange interaction [Eq. (21)],
as mentioned above.

The mean-field analysis is qualitatively justified for the
Coulomb interaction U smaller than the noninteracting band-
width of W = 4t1 + 2t2. When U exceeds the maximum
bandwidth of around 6t1 or 6t2, it seems that the first order
transitions to fully saturated ferromagnetic states take place
mostly irrespective of t1/t2. This may be an artifact due
to neglecting electron correlations, though electron kinetic
energy is favorable for the spin to be aligned in parallel at
1
4 filling, generally speaking.

B. Calculations of the Berry phase

The AFI’ (including the NI as a special case of Bs = 0) and
AFI phases are also distinguished by using the bulk properties
of Berry phase30–32 as a function of kx , which is defined for
Lx × Ly lattice under periodic boundary conditions as follows:

γ
(α)
kxσ

= −i

∫ π

−π

dky

〈
�

(α)
kσ

∣∣ ∂

∂ky

∣∣�(α)
kσ

〉
(27)

=
∑
ky

Im
〈
�

(α)
kσ

∣∣�(α)
k+(0, 2π

Ly
),σ

〉
, (28)
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γ

s

x

x x

s

x

FIG. 7. (Color online) Berry phase γ
(α)
kx ,+ for Lx = Ly = 512 as

a function of t2/t1 for Bs = t1 and 2t1 with kx = 0 and π . We have
checked that γ

(α)
kx ,+ converges to a step function as the system size

increases. The positions of critical (t2/t1)c are indicated by vertical
arrows.

where |�(α)
kσ 〉 is the eigenvector of the lowest α band with spin

σ . In the numerical calculations, we take the unit cell as shown
in Fig. 1(b) and Lx = Ly = 512.

Figure 7 displays the numerically evaluated γ
(α)
kx ,+ as a

function of t2/t1 for fixed values of Bs = t1 and 2t2. In the
Bs − t2 plane, γ

(α)
kx ,+’s are calculated along the dashed arrows

as shown in the left-hand side of Fig. 4. With increasing t2/t1

for a fixed Bs , we find that γ (α)
kx ,+ for kx = 0(π ) jumps from zero

to π , like a step function, when t1/t2 crosses Bs = Bs1(Bs2).
Solving Bs = Bs1 or Bs2 with respect to t2/t1 using Eqs. (14)
and (18), the critical values of t1/t2 for kx = 0 and π are given
by

(
t2

t1

)
c1

=
√

1 +
(

Bs

2t1

)2

− Bs

2t1
, (29)

(
t2

t1

)
c2

=
(

Bs

t1

)−1

, (30)

respectively. These critical values are indicated by the vertical
arrows in Fig. 7 for Bs = t1 and 2t1. Eventually, we can
reproduce the MI phase diagram shown in Fig. 4 by looking
at γ

(α)
kxσ

for kx = 0 and π .
When kx is fixed at an intermediated value between 0 and

π , we have numerically found that γ
(α)
kx ,+ = 0 for a given

parameter set of (t1,t2,Bs), satisfying kx < kc(t1,t2,Bs) and
γ

(α)
kx ,+ = π otherwise. At (t1,t2,Bs) = (1,0.8,1), for example,

kc(t1,t2,Bs) � 0.53π , see Eq. (16) and Fig. 3(d). Therefore,
γ

(α)
0.53π,+ behaves like π · θ (t2/t1 − 0.8) as a function of t2/t1

for Bs = t1 or like π · θ (Bs/t1 − 1) as a function of Bs/t1
for t2/t1 = 0.8, where θ (x) is a step function. In other words,
the AFI’ (including the NI at Bs = 0) and AFI phases are,
respectively, characterized by γ

(α)
kxσ

= 0 and π for any value of
kx .

The bulk-edge correspondence33,34 tells us that the non-
trivial Berry phase γ in the AFI suggests an existence of the
zero-energy edge state when making a cut on t2 bonds. Since
the wave function in NI(AFI’) and AFI phases are mainly

confined within the t1 squares and the t2 bonds, respectively,
then different types of edge state are expected to characterize
these two insulating phases. Physics of the edge state lies in
the fact that the antibonding orbitals on t2 bonds are occupied
in the AFI phase and, when making a cut, the dangling bonds
remain. This is a 2D analog of polyacetylene where the cut on
a double covalent bond produces an edge state.35,36

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have revealed a rich variety of magnetic and
M-I phase diagrams of the 1

5 -depleted square-lattice Hubbard
model at 1

4 filling within the mean field approximation. The
mean-field phase diagram in U − t1 or U − t2 plane consists
of three magnetic phases of nonmagnetic, Q = 0 antifer-
romagnetic, and completely ferromagnetic type. The phase
transition between nonmagnetic and antiferromagnetic phases
is continuous, which is consistent with the RPA instability
for t1 < t2; the other magnetic transitions to ferromagnetic
states are discontinuous. The SU(3) effective theory and the
spectrum analyses under the external staggered or uniform
magnetic fields elucidate the properties of Lifshitz-type M-I
phase transitions in each magnetic phase, which separate the
phase diagram into 3 × 2 = 6 parts. In particular, the existence
of the AF bond SDW order is shown based on the perturbation
theory for small t1, which corresponds to an extension of the
AFI phase for t1 < t2 and t1 � U in the mean-field phase
diagram. When U = 0 and t1 � t2, the model is reduced to the
1
2 -filled square-lattice tight-binding model of the antibonding
orbitals on the t2 bonds. Then the weak-coupling theory tells
us that the perfect nesting leads to the AF SDW insulating
order at infinitesimal U , which corresponds to the very small
onset of U/t2 toward the AFI phase shown in Fig. 6. This
AFI phase may be regarded as the two-dimensional analog of
the 4kF charge order discussed in the one-dimensional 1

4 -filled
Hubbard model for the organic conductor (TMTTF)2X.37,38 In
this sense, despite the Hartree-Fock treatment of the present
study, we can say that the emergence of the four distinct phases
for the small U region and the hidden symmetry in the AFI
phase, which is characterized by the nontrivial Berry phase,
should be robust.

One of the most interesting issues to be addressed is whether
the FM and FI phases appearing in the large U region survive or
not after including effects of electron correlation beyond the
Hartree-Fock approximation. As mentioned for t1 � t2 and
U , the answer is no. In the opposite limit of t2 = 0,t1 � U ,
unfortunately, ENI = −2

√
2t1 < EFM = −2t1 always holds

by solving a 4-site Hubbard model with two electrons for no
double occupancy. Then what about the case of t1 � t2 � U?
To partly answer this question, we have applied numerical
exact diagonalization for the 16-site cluster shown in Fig. 1(a)
with eight electrons. For any of open, periodic, and antiperiodic
boundary conditions, as a result, the ground-state energy is
always found in the spin-singlet sector for U at least smaller
than 20 at t1 = t2 = 1. We need much more sophisticated
treatments to settle this issue, which is beyond the scope of
this paper.

The Dirac-cone and flat-band dispersions are characteristic
of the present model, and the lifting degeneracy of the SU(3)
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multiplet rules the physics around the SU(3) point. The
SU(3) effective Hamiltonian can be constructed solely by the
symmetry arguments and, therefore, the present peculiar band
structure may be relevant to some realistic cases. For example,
complex hopping matrices, like the Haldane model39 (due to
a magnetic flux) or Kane-Mele model1 (spin-orbit couplings),
introduce a λ2 term and a staggered modulation in t1’s, due to a
lattice symmetry lowering from the original C4 to C2, bringing
a λ3 term in the SU(3) model.

The AFM phase is rather specific in that the flat band
along �-X does not hybridize with the crossing band at
kx = kc because of the different parity symmetry of these
two states with respect to exchanging B and D sites.40 This
parity protected AFM phase separates the NI and AFI phases,
which are classified according to the different Berry phases.

This is the manifestation of the fact that topologically different
insulating phases can not be connected unless the charge gap
closes at the junction.
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