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Frank Verstraete
Vienna Center for Quantum Science, University of Vienna, A-1090 Wien, Austria and Department of Physics

and Astronomy, Ghent University, B-9000 Ghent, Belgium

Robert M. Konik
CMPMS Dept., Bldg. 734, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

(Received 11 September 2013; published 1 November 2013)

A tree tensor network variational method is proposed to simulate quantum many-body systems with global
symmetries where the optimization is reduced to individual charge configurations. A computational scheme is
presented, namely how to extract the entanglement spectra in a bipartite splitting of a loopless tensor network
across multiple links of the network, by constructing a matrix product operator for the reduced density operator
and simulating its eigenstates. The entanglement spectra of 2 × L, 3 × L, and 4 × L with either open or periodic
boundary conditions on the rungs are studied using the presented methods, where it is found that the entanglement
spectrum depends not only on the subsystem but also on the boundaries between the subsystems.
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I. INTRODUCTION

The entanglement entropy, a distinct property of quantum
systems, is the most valuable resource in quantum computation
and the main object of interest in the field of quantum
information.1 Low degree of entanglement of quantum states
at zero temperature is featured in an efficient description
of quantum systems by approximate computational methods
such as the density matrix renormalization group (DMRG),2–4

methods based on matrix product states,5–10 or generalized ten-
sor networks.11–15 In condensed matter physics, a connection
was made between the entanglement entropy and quantum
critical phenomena where it was found16,17 that quantum
critical systems are characterized by a logarithmic violation
of the area law18 with a central charge corresponding to the
underlying conformal field theory.19

The entanglement entropy, as the logarithmic sum of the
eigenvalues of the reduced density matrix, ρreduced, resulting
from a partition of a quantum system, does not capture all
the information available in ρreduced. Its full spectrum had
been previously studied for intuition into the operation of
the DMRG algorithm.20–22 More recently it was discovered23

that the spectrum, not of ρreduced, but of the related operator
log ρreduced, provided insight into the topological nature of the
quantum state from which ρreduced was derived. In Ref. 23
it was demonstrated that the spectrum of log ρreduced arising
from a ν = 1/3 quantum Hall state matched that of the
compactified bosonic theory expected to described the ν = 1/3
edge state. This correspondence in systems with topological
order has now been extensively elaborated on in quantum
Hall systems.24–32 This flurry of work prompted explo-
ration of other systems, systems which were not necessarily
topological. Entanglement spectra were studied for insight
into the behavior of critical and noncritical one-dimensional
systems,33–36 for the detection/reflection of topological order
in one-dimensional spin chains,37 and two-dimensional non-
topological systems.38,39

Of particular relevance for the work herein, there have been
a number of studies of the entanglement spectra of quasi-
one-dimensional systems such as spin ladders40–42 where a
lengthwise partition of the system was considered. So in the
case of a ladder geometry, a partition of the system cutting
the rungs of the ladder was studied. Remarkably for such
partitions the entanglement spectra reflected the true spectra
of the partitioned subsystem. So in the case of Heisenberg spin
ladders divided into two spin chains, the entanglement spectra
appeared to share characteristics of the spinon spectrum of a
Heisenberg spin chain,40 in particular the entanglement spectra
followed the des Cloizeaux-Pearson lower spinon boundary.43

This observation was sharpened in Ref. 42 where is was shown
for ladders with weak spin-spin couplings along the leg, the
entanglement Hamiltonian was exactly that of the Heisenberg
spin chain. One of the aims of this paper is to study the
entanglement spectra of multilegged ladders.

To achieve this goal, we must first surmount the problem
that it remains computationally expensive to extract the entan-
glement spectra for nontrivial geometries. We can of course
always have recourse to exact diagonalization but this limits
us to the study of relatively small systems. While it is trivial
to extract the entanglement spectrum in a bipartite splitting of
quantum chains using linear tensor network methods such as
DMRG where the eigenvalues of the reduced density operator
are inherent to the computational scheme, the entanglement
spectrum in a splitting of the systems where several links in
the tensor network are broken poses an exponentially difficult
problem. And this supposes we are even able to describe
accurately the ground state of the model of interest. If the
model is defined on the lattice and if one spatial dimension is
sufficiently small, the ground states of such systems are again
well approximated by DMRG. However the geometry in which
DMRG is typically run does not lend itself to the computation
of entanglement spectra in which a multileg ladder system
is divided into subsystems, each consisting of several legs
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of the ladder. One solution may be found in the approach
taken in Refs. 44 and 39, where two-dimensional systems are
studied with a one-dimensional DMRG algorithm with the
caveat that the two-dimensional systems are realized as an
array of one-dimensional continuum (not lattice) systems. If
we wish to study fully two-dimensional pure lattice systems,
we will likely need recourse to more powerful but considerably
more computationally demanding methods such as projected
entangled-pair states (PEPS)11 or multiscale entanglement
renormalization (MERA).13 It has already been shown that for
certain types of translation invariant two-dimensional models
on an infinite lattice that the entanglement spectrum can be
computed via the transfer matrix product operator.45

In this manuscript we propose a tensor network method
to describe quasi-one-dimensional quantum systems with the
help of tree tensor networks. The method is especially suit-
able to describe ladders with nonuniform coupling strengths
while its computational advantage lies in the ability to optimize
individual charge sectors efficiently for systems with a global
symmetry. This allows us to achieve higher bond dimensions
and thus higher accuracies. Most of all, it offers a convenient
way to extract the entanglement spectra by a straightforward
composition of the tensor network description for the reduced
density operator for which the eigenvectors (and thus the
entanglement spectrum) can be extracted using the existing
tools such as the DMRG2 or vNRG.46

Using this method we will revisit the connection between
the entanglement spectrum and the energy spectrum of the
real reduced system. We will study systems of two, three, and
four leg ladders. We will demonstrate that the entanglement
spectra for three and four leg ladders is not simply related to
the real spectrum of the subsystems resulting from a partition.
We will, however, confirm the general thrust of Ref. 36
that the entanglement spectrum is affected by the boundaries
separating the reduced system from the rest.

II. METHOD

We consider a Heisenberg spin- 1
2 model on an m × L ladder

defined with the Hamiltonian operator

H =
m∑

i=1

L∑
j=1

(Jleg �σi,j · �σi,j+1 + Jrung �σi,j · �σi+1,j ), (1)

where �σ = (σx,σ y,σ z) denotes a vector of Pauli matrices.
We assume antiferromagnetic couplings and impose open
boundary conditions on the legs (index j ) and either open
[Fig. 1(a)] or periodic [Fig. 1(b)] boundary conditions on the
rungs (index i). We allow the couplings on the rungs and on the
legs to be of a different strength which we denote as Jrung and
Jleg, respectively. The model conserves the total Sz quantum
number given by Sz = 1

2

∑
i,j σ z

i,j which allows us to consider
different Sz sectors separately. We shall focus only on the case
Sz = 0 which is also the sector containing the (global) ground
state.

The main objective of this work is to extract the entangle-
ment spectrum, in particular the spectral gap, for a bipartite
splitting of the ground state of the ladder into two parts along
the longer axis, that is, by cutting the rungs of the ladder. We
shall put a special emphasis on the scaling of the entanglement

(a) (b)

Jrung

Jleg

FIG. 1. (Color online) Heisenberg model on a ladder with three
legs with open (a) or periodic (b) boundary conditions on the rungs.

spectral gap with the length of the ladder L for various ladder
widths m = 2,3,4 and both open and boundary conditions on
the rungs. Intuitively, one might expect that the spectral gap
would be gapless for the 2 × L case, gapped for the 4 × L

case, and of a yet to be studied nature for the 3 × L, as a result
of the Haldane conjecture.23 Specifically, a single Heisenberg
spin-1/2 chain is gapless, so the entanglement spectrum for the
2 × L case should be gapless as well, since the 2 × L ladder
can be split into two Heisenberg chains. A similar reasoning
can be made for the 4 × L case. In the case of a ladder with
three legs, one would expect the entanglement spectrum to
correspond to either of the two subsystems and would as
such be gapped or gapless which would perhaps even depend
on the ratio Jrung/Jleg. We will present numerical evidence
that this reasoning is not complete. Our results support a
hypothesis that the entanglement spectrum depends not only
on the subsystems but also on the boundary separating the
subsystems. While this argument plays no role for the 2 × L

case, it makes a big difference for the 3 × L case depending
on the boundary conditions on the rungs. In case of periodic
boundary conditions, the subsystems are connected by two
boundaries while only one boundary exists in the case of open
boundaries on the rungs. Consequently, we have two different
types of entanglement spectra for a 3 × L ladder, although
the subsystems in a bipartite splitting are identical. For the
4 × L case the results suggest a gapped entanglement spectrum
regardless of the boundary conditions on the rung.

The simulation of entanglement spectra requires first
the ground state of the ladder, from which one could in
principle extract the entanglement spectra directly using the
singular value decomposition. In most cases, however, such
an approach is exponentially hard and it is advantageous to
obtain the reduced density operator by contracting over a
subsystem and then simulate the eigenstates of the reduced
density operator using some approximate method.

A. Ground-state simulation

We shall simulate the ground state of the ladder with the
help of tensor networks by representing a quantum state of
the system as a tree tensor network and then optimize a pair
of sites or a single site at a time, such that the overall energy
is minimized, and then proceed to optimize the next pair or
the next site. The approach with optimizing two sites in a tree
tensor network is new while the one-site approach has been
used before.14,15 However, in our framework we are able to
fully exploit the symmetries, which allows us to operate on the
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FIG. 2. A tensor corresponding to a node in a tree tensor network
with at most three neighbors (a). With symmetries, the tensor is sparse
(b).

level of individual symmetry sectors and thus achieve a larger
bond dimension in the network.

Let us first describe a procedure to optimize any tree
tensor network on an arbitrary geometry using variational
principles. To reduce computational complexity we assume
that each tensor in the network has at most three neighbors. Our
scheme can easily be generalized to more than three neighbors,
however this would make the computational costs grow
exponentially with the number of neighbors. Furthermore, we
make a crucial assumption that there are no loops in the tensor
network. This requirement allows us to split the network into
two subnetworks by cutting exactly one link. That said, we
define a tree tensor network on nodes μ ∈ M by associating
a tensor A

[μ]
i1,i2,i3

to the node μ [see Fig. 2(a)]. The node μ is
linked to three other nodes and the indices i1,i2,i3 enumerate
different virtual states on the links 1,2,3, respectively. Not
all nodes have three neighbors but some might have one or
two open (unlinked) legs. To some of these nodes, let us call
them μ∗ ∈ M∗ ⊆ M , we associate the physical sites, and one
of the open links of the associated tensors plays the role
of the physical index which is the local quantum number
in the Hilbert space for the individual physical site. More
specifically, a physical site j is associated with the tensor
A[μ(i)] on the node μ(i) where the tensor leg i3 is given by the
configuration of the site, e.g., 0 for spin up and 1 for spin down.
We shall use a formal notation [A[μ]]i1,i2,i3 = A

[μ]
i1,i2,i3

when
referring to tensors associated to nodes in the tree network
and [A[μ∗]s]i1,i2,i3 = A

[μ∗]
i1,i2,s

δi3,s when explicitly referring to the
tensors associated with the physical sites.

Let us now write an ansatz for a quantum state � ∈ H on
an arbitrary lattice of n sites by associating n nodes of the
network to the physical sites and adding some other nodes to
connect the network. In total, we represent the quantum states
with a tree network with m � n nodes as

|�〉 =
∑

s

Tr

[ ∏
μ∈M/M∗

A[μ]
∏

i

A[μ∗(i)]si

]
|s〉, (2)

where we have used an abbreviation s = (s1,s2, . . . ,sn) and the
trace operation Tr[•] should be understood as a tensor trace
operation, i.e., summing over all indices on the links in the
graph.

The loopless nature of the network makes it straightforward
to include the symmetries in the ansatz of Eq. (2) by simply
making the tensors A[μ] sparse as shown in Fig. 2(b). To
each link we associate an additional quantity, the charge, and
require that the sum of all charges, flowing into the node in the
network, is equal to some constant value Q = q1 + q2 + q3

which measures the total charge in the system. In the case
of the spin model, the charges (q1,q2,q3) on the links (1,2,3)
would correspond to the total Sz in the subgraphs connected
to the point μ by the links (1,2,3), respectively. All charges
should add up to the Sz in the ground state. If the tensor μ

corresponded to a physical node, then the leg 3 would be
open and q3 would simply correspond to the local quantum
number Sz for the physical site. We note that in the contraction
of the tensor network, we must contract a given charge q

with the conjugate charge, i.e., q by Q − q. The loopless nature
of the tensor network also makes it possible to easily simulate
fermionic systems without many modifications due to the
fermionic signs. In such a case, the charges would correspond
to the number of fermions flowing in from different parts of
the network. This representation of charge conservation differs
from the usual representation in a one-dimensional system
where the flow is conserved at each node, by introducing an
outflowing charge which is a sum of all inflowing charges,
including the local charge at the node, and imposing boundary
conditions where no charge flows into the first site and the
charge that flows out of the last site is equal to the total charge
in the system. The representation we use is more convenient
in the tree tensor network as it does not require to associate
the direction of the flow (for a given node all charges flow
into the node and they sum up to Q at each node) nor specify
the starting and the ending node, which makes is easier to
consider completely generic tree networks without any regular
topology. See also Refs. 47 and 48 for a general treatment of
symmetries in tensor network algorithms.

An arbitrary linear map G : H → H can be represented
as a sum of product linear maps G = ∑

g Og , where Og =∏n
j=1 o[g;j ] and each local operator o[g;j ] acting on the physical

site j is linked to the physical leg of the tensor Aμ∗(j ) as

[o(A[μ∗(j )])]i1,i2,t =
∑
s,t

o
[g;j ]
t,s A[μ∗(j )]

i1,i2,s
.

This operation is completely local to the tensor μ∗(i) and as
such does not increase the bond dimension of the tree tensor
network. An expectation value 〈�|G|�〉 can thus be obtained
by summing up all contributions of the product operators∑

g 〈�|Og|�〉 in parallel where, of course, many contributions
can be merged in the process, e.g., the ones which act in the
same subnetwork and the like.

The calculation of the expectation values therefore boils
down to the calculation of scalar products 〈�̃|�〉 and since
the network is loopless, all the contractions can be done
exactly without using any inverses. The approach is identical
to the one for matrix product states and as such has been
well studied in the literature. An important difference, though,
is that the computational complexity of contracting the tree
tensor network scales as O(D4), where D is the maximum
(typical) dimension of the bonds (i.e., the number of indices
on the links) as compared to O(D3) for matrix product states.
If we allowed four neighbors, the scaling would be O(D5),
and so on.

To simulate the ground state, we must find a way to
optimize individual tensors in the network, such that the total
energy of the quantum state (2) is minimal. As in the case of
one-dimensional systems, there are essentially two ways of

195102-3
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FIG. 3. (Color online) Two-site optimization scheme for tree
tensor networks: two neighboring nodes are merged to one block
(i) which is replaced by the one which minimizes the total energy (ii);
finally, the result is split back into two tensors (iii).

doing that, the two-site (the DMRG way) and the one-site
(the MPS way) optimization scheme, both of which have
advantages and disadvantages.

1. DMRG (two-site) optimization

The two-site optimization scheme is best described in the
sketch shown in Fig. 3: we isolate two nodes in the network,
merge the associated tensors into one bigger tensor [step (i)],
optimize the bigger tensor such that the total energy of the
system is minimized [step (ii)], and finally split the bigger
tensor back to two smaller tensors while keeping the bond
dimension under control [step (iii)]. We repeat the procedure
with the next pair of neighboring sites. This is the main
ingredient of the well known DMRG algorithm to find ground
states of quantum systems on a one-dimensional lattice. We
will show that exactly the same principles can be used also
with tree tensor networks, albeit with a higher computational
cost.

The advantage of the two-site optimization is that it
generates the link between the two sites of interest from
scratch and as such can create new charge sectors on the
bonds or increase the number of kept auxiliary states (on
the bond) if required. However, it requires a manipulation
of a larger structure (a joint structure describing two nodes
in the network) and, due to the nature of the Hamiltonian
operator including hopping terms, it also requires handling
several charge configurations simultaneously, albeit in a sparse
way. Comparing the procedure in tree tensor networks (Fig. 3)
with the DMRG for one-dimensional lattices, we observe
that here the block of two sites can be connected to two,
one, or no environments on either side. In the linear DMRG,
the block is always connected to a single environment on
either side. In addition, the environments are connected
through the Hamiltonian, if it involves terms which operate on
non-nearest-neighbor terms in the tensor network. When two
neighboring physical sites are optimized, then either of the
sites is connected to exactly one environment and the problem
is translated exactly to the linear DMRG.

The two-site optimization has already been used to simulate
quantum chemistry problems with tree tensor networks49

and the procedure is essentially the same as for the linear
DMRG for which there already exists a vast amount of
literature.2,3,50–52 Specifically to our case, we only mention
that the joint tensor for two sites is optimized using a sparse
Lanczos method where only 20 Lanczos steps are performed
for each pair of sites, the reason being the computational cost.
In the worst case, when the joint block of sites is connected

to four environments (and the typical bond dimension being
D), the computational cost of matrix-vector multiplication
in the Lanczos algorithm scales as O(D5), compared to
O(D3) for the linear DMRG algorithm (and the two-site
DMRG algorithm for tree tensor networks in Ref. 49). This
makes the approach relatively expensive compared to the
one-site optimization scheme described later. However, the
advantage of creating new charge sectors and suppressing
the insignificant ones makes the method very welcome for the
initial stage of simulation, where a reasonable approximation
for the ground state is obtained from a completely random
initial realization of the tensors generating the quantum state.
For such purposes, as few as 20 Lanczos steps for each pair
are sufficient to generate a good approximation for the ground
state in two or three sweeps over the network.

2. Variational (one-site) optimization

The main optimization scheme we use to approximate
the ground states of the ladders is the one-site optimization
scheme. In this scheme, we choose a node in the network,
optimize the associated tensor such that the total energy of
the system is minimized, move to the next node, and repeat
the procedure. The advantage of this scheme is that we can
reduce the optimization not just to a single tensor but to a single
configuration block in the tensor, when the symmetries are
used. This essentially means that we operate on the level of D3

parameters whereas the total number of parameters describing
the tensor A[μ] for a given node μ is a factor of 10 to 100 larger,
depending on the allowed total bond dimension. A drawback
of the scheme is, however, that we should already have a
reasonable approximation for the ground state, otherwise we
will spend unnecessary time (in the initial stage) optimizing
charge sectors which in the end become completely irrelevant.

Let us now formally write the total energy of the system
where we contract over all tensors in the network except for
A[μ]. This leads to a description in terms of an “effective”
Hamiltonian H

[μ]
eff as

〈�|H |�〉 =
∑
(q,i)

A∗
(q ′,i ′)H

[μ] eff
(q ′,i ′),(q,i)A(q,i). (3)

Here we explicitly use the double index notation q,i which
reflects the sparse nature of the tensors where q = (q1,q2,q3)
denote the charge configuration and i = (i1,i2,i3) the dense
tensor elements for this configuration q. We use the gauge
transformations to transform the tensor network in such a form
that the environment with respect to the node μ is unitary. This
allows us to write the norm of the quantum state in a simple
form,

〈�|�〉 =
∑
(q,i)

A∗
(q,i)A(q,i).

Unless we are dealing with some trivial Hamiltonian which
does not allow transfer of charges, then the charge config-
uration p at the node μ is coupled to some other charge

configurations {q} by the effective Hamiltonian H
[μ] eff
q,q ′ . We

are therefore not allowed to optimize all charge configurations
in parallel. However, we can focus on one chosen configuration
p and separate all terms in Eq. (3) which contain p from those
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FIG. 4. (Color online) One-site optimization of a tree tensor
network: one charge configuration of a single tensor in the tensor
network is optimized at a time.

which do not. For the sake of brevity, let us represent the rank-3
tensors A[μ]

p as vectors ap (equivalent to stacking columns of
a matrix to a long vector). The result reads

〈�|H |�〉
〈�|�〉 =

ap · H[eff]
p,p ap + bp · ap + ap · bp + f

ap · ap + c2
, (4)

where we have introduced the following quantities:

bp =
∑
q 
=p

H[eff]
p,q aq,

f =
∑

q,r 
=p

bq · H[eff]
q,r ar , (5)

c2 =
∑
q 
=p

aq · aq.

This now allows us to optimize the total energy (4) for
individual charge configuration p, after which we choose
some other charge configuration p′ until we explore all of
them (see the sketch in Fig. 4), at which point we reconstruct
the whole tensor and move to the next node. The question,
however, remains how to optimize (4) in an efficient way,
without resorting to a linearization as done in Ref. 14.

Let us assume that aq ∈ CN . Obviously, f ∈ R and c2 � 0.
If c2 = 0, then ap is the only configuration for the tensor
and hence ||bp|| = f = 0. If ||bp|| = 0, then the problem is
transformed to a regular eigenvalue problem where the cost
function (i.e., the energy) is minimized by the eigenvector of
H[eff] with the smallest eigenvalue. We therefore assume that
||bp|| > 0 and in the following drop the charge notation p.

Let us now consider a Hermitian matrix H̃ ∈ C(N+1)×(N+1)

with the matrix elements H̃i,j = H
[eff]
i,j for i,j = 1, . . . ,N ,

H̃N+1,j = H̃ ∗
j,N+1 = bj , and H̃N+1,N+1 = f . We also define

a vector y ∈ CN+1 as yi = ai for i = 1, . . . ,N and yN+1 =
1, and a diagonal matrix Ñi,j = δi,j for i = 1, . . . ,N and
ÑN+1,N+1 = c2. Obviously, the problem (4) can now be written
as an optimization problem

〈�|H |�〉
〈�|�〉 = y · H̃y

y · Ñy

under the constraint that yN+1 = 1, known as the generalized
eigenvalue problem. Note that we are not free to rescale the
vector a but we can always rescale the vector y. This problem
is converted to a regular eigenvalue problem if c2 = 1 when
Ñ = I. However, we can always (formally) rescale the whole
tensor by 1/c in which case this would be true but now we
also have to transform f → f/c2, b → b/c, and a → a/c.
Finally, we solve the regular eigenvalue problem (by means of
the exact diagonalization for small N or the Lanczos algorithm
for larger N ), normalize the solution such that yN+1 = 1, and
multiply the solution ai = yi for i = 1, . . . ,N again with the
factor c to obtain the solution to the original problem (4). In this
procedure, we rely on a silent assumption that c is not small.
However, if c was small, this would have a physical meaning
that all the other charge configurations are negligible compared
to the configuration p and the solution would negligibly differ
from the solution if we set b = f = c = 0.

To summarize the one-site optimization scheme, we op-
timize one charge configuration of a single tensor at a time
and repeat the procedure iteratively for all charge sectors in
the tensor and for all tensors in the tensor network, until
the convergence is reached. The computational cost of each
Lanczos step in the optimization (i.e., the cost of Hx) sums
up to (m + 4)3D4 with no additional prefactor, where m is the
number of Hamiltonian terms which include the node μ (can
be zero). This renders the optimization scheme very efficient
in comparison to the two-site optimization scheme and it is
thus possible to achieve significantly larger bond dimension
D than in the case when many charge sectors are combined
into one large object.15

B. Entanglement spectrum

Let us return to our original problem, that is, to simulate
the entanglement spectrum of m × L ladders for which we
have to first calculate the ground state of the ladder. If the legs
of the ladder are weakly coupled, then they act as effective
systems which can be connected together in terms of a matrix
product states. This is the formulation proposed in Ref. 53
where the ground states of L × m ladders (see Fig. 5) were
simulated using a two-step DMRG scheme. In this scheme,
the legs of the ladder which are linear chains of length L are
considered as effective particles whose local basis is given by
the excited states of the legs, computed by the DMRG with
targeting several low energy excited states. In the next stage,
the ground state of the ladder is obtained by simulating the
ground state of a linear system of m sites where each site is
given by the effective description of the corresponding leg.
While this approach offers a nice physical description in the

s1,1

s2,1 s2,2

s1,2 s1,n

s2,n

sm,n

FIG. 5. Tree tensor network topology to represent quantum states
on ladders as used in Ref. 53.
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(a)

(b)

FIG. 6. (Color online) Bipartite splitting of a ladder along the
longer axis in a direct (a) and a rotated (b) geometry of the tree tensor
network structure.

case of scale separation, it lacks the feedback mechanism to
refine the effective description of the legs and suffers from
high computational complexity of the second simulation stage
where the DMRG is performed on a system with a large
local dimension. Nevertheless, the same geometry, depicted in
Fig. 5, can be treated as a loopless tree tensor network where
the ground state can be simulated directly, without directly
relying on the scale separation and, being an extension of
matrix product states, offering a natural way for the feedback
mechanism. Such a geometry of a tensor network is physically
well justified in the case considered in Ref. 53, that is, when the
couplings between the legs (i.e., on the rungs) are fairly weaker
than the couplings on the legs themselves, i.e., Jrung � Jleg.
By using this topology, when two, three, or four long legs
are connected by a matrix product state (Fig. 5), it is trivial to
obtain the entanglement spectrum by simply choosing a link on
the top spin [see Fig. 6(a)], reorthogonalizing the network from
both sides, and performing a singular value decomposition on
the resulting tensor. This, however, requires that the legs are
only weakly coupled otherwise the required bond dimension
on the top spin grows exponentially with the length of the
ladder.

We will be interested in the opposite scenario, when
Jrung � Jleg, and in such a case the above described procedure
is inefficient for L > 10 even for 2 × L ladders. In the end
we will be interested in scaling of the spectral gap of the
entanglement spectrum for which we shall require much larger
systems for consideration. Since we shall only deal with
ladders with up to four legs, we shall exchange the role of legs
and rungs and instead consider L legs of length m = 2,3,4.
Now, however, obtaining the entanglement spectrum is far
from trivial as cutting the system along the longer axis
produces an exponentially large reduced density operator
[Fig. 6(b)]. Fortunately, as we shall see shortly, the density
operator can also be considered as a matrix product operator
for which we know how to extract the excited states, at least the
largest ones, which in our case translates exactly to the largest
eigenvalues of the entanglement spectrum. Another advantage
of using the rotated geometry is that we can now easily consider
periodic boundary conditions on the legs because there are only

at most four physical sites on each leg and the increase on the
bond dimension due to coupling of the two boundary sites is
negligible, if any. To avoid confusion, we shall continue using
the nomenclature defined in the Introduction where the long
chains are called legs and the connections between them are
called rungs, as shown in Fig. 1; the rotation of the ladder
should only be regarded as a technical trick.

Let us now assume we have obtained the ground state of
the ladder in a form depicted in Fig. 6(b). We can formally
decompose the ground state into two parts where the part left
of the cut in Fig. 6(b) is called “the system” and the part right
of the cut is called “the environment,” by the so called Schmidt
decomposition

|�〉 =
∑

k

∣∣ψ [S]
k

〉∣∣ψ [E]
k

〉
,

where {ψ [S]
k } and {ψ [E]

k } are orthogonal sets in the subsystems
S and E. The reduced density operator is obtained by tracing
the full density operator |�〉〈�| over the environment, spanned
by an orthonormal set {φ[E]

k },

ρS =
∑

j

〈
φ

[E]
j

∣∣(∑
k,l

∣∣ψ [S]
k

〉∣∣ψ [E]
k

〉〈
ψ

[S]
l

∣∣〈ψ [E]
l

∣∣)∣∣φ[E]
j

〉
,

which can be further simplified using the fact that∑
j |φ[E]

j 〉〈φ[E]
j | = 1[E] to

ρS =
∑
k,l

〈
ψ

[E]
l

∣∣ψ [E]
k

〉∣∣ψ [S]
k

〉〈
ψ

[S]
l

∣∣. (6)

The reduced density operator is thus simply obtained from
the ground state by contracting over the physical degrees of
freedom in the environment which is schematically shown in
Fig. 7. The result of the contraction is a product of two matrix
product operators or, finally, a single matrix product operator.
The quantum state describing the ground state was normalized
and thus no additional normalization factor appears in Eq. (6).
Therefore, the eigenvectors and eigenvalues of the reduced

s1

s′1

s′1

s1

s′n

sn

sn

s′n

FIG. 7. (Color online) The reduced density operator is obtained
by tracing over physical degrees of freedom of the environment.
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density operator are precisely the eigenstates of the matrix
product operator depicted in Fig. 7. This operator, however,
is obtained from a double layer tree tensor network structure,
and the bond dimension in its MPO (matrix product operator)
representation can be very large. To simulate its eigenvectors
we have to first truncate it to a manageable size by first
eliminating redundant auxiliary degrees of freedom (by means
of matrix factorization) and then truncating the auxiliary state
by retaining at most 1000 states on each bond (by means of
a singular value decomposition). This truncation procedure
is a standard ingredient in all MPS simulations (see, e.g.,
Ref. 7). The reduced density operator retains the symmetries
of the quantum state and as such preserves the total number
of particles or, in our case, the total Sz of the subsystem. The
tensors in the MPO are therefore sparse.

Having obtained the reduced density operator in a form
of a MPO, we can calculate the corresponding eigenvalues
and eigenvectors. One way to accomplish this task is to
use the DMRG algorithm2 which can, despite not being
frequently used for that purpose, target not just the ground
state but several excited states, with the only condition that
the operator is Hermitian. This is indeed the case for the
density operator and we can compute a few of its eigenvalues
and eigenvectors by simply plugging Hρ = −ρ to a ready-to-
use implementation of the DMRG algorithm with targeting
(with slight modifications for the support of matrix product
operators). The DMRG with targeting proves to be fairly
expensive, especially when the local dimension is larger than
2 and when the Hamiltonian itself is fairly complicated. In
comparison to calculating the excited states of a Heisenberg
chain of length L, calculating the same number of eigenstates
of the reduced density operator for a 2 × L ladder is 100 to
1000 times more expensive, simply because we are dealing
with a nonlocal MPO with a bond dimension 1000 instead of
a local MPO with a bond dimension 5 (i.e., for the Heisenberg
model); an additional factor stems from the fact that it is easy to
separate the charge sectors in the Heisenberg model, whereas
in our case, the MPO (after truncation) has a more complicated
structure and we have to optimize larger blocks at a time.

An alternative way to simulate the excited states is to use
the variational NRG method46 which can be seen as a one-site
version of the DMRG with targeting. It can be used in place
of the DMRG or as an additional stage in the simulation
to optimize the results obtained by the preceding DMRG
simulation. In both cases, the excited states can be described
by the following ansatz:

|ψk〉 =
∑

s1,...,sn

tr[L[1]s1 · · · L[n/2]sn/2 XkR[n/2+1]sn/2+1 R[n]sn ]

× |s1,s2, . . . ,sn〉 (7)

with unitary constraints
∑

i,s Ls
i,jL

s
i ′,j ′ = δj,j ′ ,∑

j,s Rs
i,jR

s
i ′,j ′ = δi,i ′ , and

∑
i,j Xk

i,jX
k′
i,j = δk,k′ . These

constraints guarantee that the states in Eq. (7) form an
orthonormal set. The matrices L[j ]sj , R[j ]sj , and Xk are then
optimized by minimizing the cost function

f (L,X,R) = −
∑

k

〈ψk|ρ|ψk〉 = min. (8)

The method was described in detail in Ref. 46. We start with
some initial realization of matrices L, X, and R and update
them site by site by minimizing the cost function (8) under
unitary constraints. In this way, the set of states described
by the ansatz of Eq. (7) remains orthonormal at all times.
Eventually we end up with an approximation to the eigenstates
with the smallest eigenvalues which in our setting translates
to the singular vectors corresponding to the largest singular
values. The complexity of this simulation scales as O(D3)
where D is the maximal bond dimension in the ansatz (7);
the optimization of the central tensor Xk scales as O(D3m),
where m is the number of the excited states ψk described
by (7). For our purposes we choose m = 10, which gives us
the ten largest Schmidt coefficients and their singular vectors.
This in turn gives us the entanglement spectrum. Similarly
to the ground-state simulation, it is advantageous to initialize
the tensors in Eq. (7) by performing one sweep of a two-site
DMRG simulation with targeting which eliminates insignif-
icant symmetry sectors and thus reduces the computational
costs of the one-site optimization in the next stage.

In principle, if we only wanted to calculate the spectral
gap between the sectors Sz = 0 and Sz = 1 and not higher
excited states in the entanglement spectrum, it would suffice
to calculate the ground state of the matrix product operator
(e.g., using standard DMRG) for the reduced density operator
in both subsectors.

III. RESULTS

We shall use the methods described in this manuscript
to calculate the low-lying entanglement spectrum of m × L

ladders for m = 2,3,4 with either open or periodic boundary
conditions on the rungs (Fig. 1). The simulation proceeds
in three steps: we calculate the ground state of the ladders
from which we form a matrix product operator describing the
reduced density operator in a bipartite splitting along the long
axis. Finally, to obtain the low-lying entanglement spectra, we
simulate a few eigenvectors of this matrix product operator
corresponding to the largest singular values.

A. Ground state of the ladders

The ground state of the ladders is obtained in two steps. First
we find a crude approximation for the ground state by using the
two-site optimization scheme (DMRG-like) and then optimize
the results using the variational one-site optimization scheme.
In all cases, we use an ansatz with symmetries restricting
to the Sz = 0 subsector. As mentioned previously, we in
fact described the tree tensor network in a rotated geometry
[Fig. 6(b)], since we consider the ratios between the couplings
Jrung/Jleg = 1,2,10.

In the simulation we keep at most 1000 overall states
for each bond in the tree tensor network and at most D

states in each charge sector where D = 20,30. The results
are presented in Fig. 8 where the points connected by solid
lines correspond to open boundary conditions and the dashed
lines to the periodic boundary conditions on the rungs. The
bond dimension D used in simulations is denoted by various
symbols: cross for D = 20 and plus for D = 30. In all cases,
the symbols essentially overlap and no visible difference can
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FIG. 8. (Color online) Ground-state energy per site for m × L

ladders with m = 2,3,4 (top to bottom) with rung-periodic (dotted
lines) and open (solid lines) boundary conditions. In all cases,
Jrung = 1. Bond dimensions D used: 20 (cross), 30 (plus).

be observed. In Fig. 9, we give a table of normalized energies
for a fixed bond dimension D obtained by extrapolation of the
data in Fig. 8 to L → ∞. The results agree with Ref. 54 where
the extrapolated energy for a 2 × L ladder with Jrung/Jleg = 1
was found to be limL→∞ E0/(2L) = −2.312 (in our units).

We shall briefly mention the computational parameters used
to obtain the results in Fig. 8. The initial two-site (DMRG-like)
optimization was done by sweeping twice over the network
where at each step the joint tensor was optimized by perform-
ing at most 30 Lanczos iterations. The result of the DMRG
simulation was used as an initial state for the variational

Jleg b 2 × L 3 × L 4 × L

0.1 o −1.50786650301 −1.39739531959 −1.62535055215

0.5 o −1.71869127504 −1.75880276836 −1.86629861886

1.0 o −2.31201208933 −2.40018707942 −2.473345887054

0.1 p −1.09465154452 −2.00733345726

0.5 p −1.56190824628 −2.19712045516

1.0 p −2.27972332710 −2.73289318696

FIG. 9. Extrapolated normalized ground-state energies E0/(m ×
L) for L → ∞ with m = 2,3,4 and open (o) or periodic (p) boundary
conditions. We used D = 30 as the bond dimension.

one-site optimization which was performed until the relative
difference between the energies after two consecutive sweeps
became less than 10−14. The ground state for smaller systems
(all 2 × L and up to 3 × 20 and 4 × 12) can be obtained in
less computational time by forgoing the two-site scheme and
starting with the one-site scheme on a random realization of
�. However, for larger systems, it is advantageous to initialize
the state by the DMRG which eliminates the unneeded charge
configurations. The computational time required to obtain the
results shown in Fig. 8 is in the range of a few seconds to 3 h
in the worst case.

B. Entanglement spectrum

As a benchmark of the method we calculate the entan-
glement spectrum in a bipartite splitting of a 2 × L ladder
for various ratios Jrung/Jleg. The reduced density operator is
invariant with respect to Sz in the subsystem and we simulate
the most significant values separately for Sz = 0,1,2. The
results shown in Fig. 10 are essentially a reproduction of the
results presented in Ref. 40 but for open boundary conditions
on the legs and a slightly larger system size. The entanglement
spectra shown in Fig. 10, however, differ from Ref. 42 due
to different boundary conditions on the legs. Confirmed by

10−1 100 101

Jrung /Jleg

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(J
ru

ng
/J

le
g
)(

−
0
)

FIG. 10. (Color online) The entanglement spectrum for a 2 ×
32 ladder as a function of Jrung/Jleg and various Sz sectors of the
subsystem: Sz = 0 (black circle), Sz = 1 (red cross), and Sz = 2
(blue plus).
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an exact diagonalization for a 2 × 10 ladder, we find that the
second excited state is a triplet for open boundary conditions
as opposed to a singlet for periodic boundary conditions on
the legs.

The entanglement spectrum {ξj } was obtained from the
eigenvalues of the reduced density operator {ρj } as ξj =
− log ρj . For presentation purposes, the “ground state” (i.e.,
the lowest state for Sz = 0) was subtracted from the spectra
and the result was multiplied by the ratio Jrung/Jleg. The charge
sectors (Sz) are given by the shapes of the symbols: a circle for
Sz = 0, a cross for Sz = 1, and a plus for Sz = 2. Each point
is replotted several times corresponding to the different bond
dimensions of the underlying ground state (D) and maximal
number of states in the representation of the MPO. Ideally
the points should overlap. When they do not, we obtain an
idea of the uncertainty in the determination of the spectra.
The structure of the low-lying entanglement spectrum (singlet,
triplet, ...) agrees with the structure of the energy spectrum for
a one-dimensional Heisenberg spin-1/2 model. We observe
that the lowest levels of the entanglement spectra are well
represented for any simulation parameters whereas the excited
states require more computational power and are less precise, a
fact known already from the method of DMRG with targeting
many excited states.

C. Entanglement spectral gap

We will focus in the remainder of this section on computing
the entanglement gap. We will be interested in particular in
investigating whether the presence of an entanglement gap
implies the presence of a gap in the actual spectrum of the
subsystem arising from the partition (and vice versa). We
know that this is the case of two-leg ladders where it was
shown in Ref. 40 that the entanglement spectra associated
with dividing the ladder into two chains mimicked that of
the actual spectrum of an individual chain. We verify this
observation by our simulations, where we observe (Fig. 11)
that the spectral gap vanishes for N → ∞ for all considered
ratios Jrung/Jleg. Here, the symbols denote the bond dimension
of the singular vectors (7) whereas the connecting line denotes
the bond dimension of the corresponding ground state (dashed

4 6 8 12 16 24 32 40 64
L

0.01

0.02

0.05

0.1

0.2

0.5

1.0

Jrung = 1, Jleg = 0.1

Jrung = 1, Jleg = 0.5

Jrung = 1, Jleg = 1.0

FIG. 11. (Color online) Entanglement spectral gap in a bipartite
splitting of 2 × L ladders into two chains of length L.

for Dvnrg = 10, solid for Dvnrg = 20, dotted for Dvnrg = 30).
The results practically overlap in all cases.

In all cases, including those that follow, we set the bond
dimension for the singular vectors (i.e., the eigenvectors of the
reduced density operator) described by the ansatz in Eq. (7)
to Dvnrg = 10, 20, and 30 and no limit was imposed on the
total bond dimensions (sum over all charge sectors). We
considered three different maximal bond dimensions for the
matrix product operator representation of the reduced density
operator: 700, 900, and 1100. The corresponding ratio between
the minimal allowed singular value and the maximal one in
the bipartite splitting of the MPO was 10−7, 10−9, and 10−11,
respectively.

In the case of 3 × L ladders it is not clear what to expect
as we divide the ladder into a chain and a two-leg ladder.
A two-leg Heisenberg spin ladder (with antiferromagnetic
interactions) is expected to effectively behave as a Heisenberg
spin chain of an integer spin and thus display a gap in the
thermodynamic limit whereas the gap of a single Heisenberg
spin-1/2 vanishes in the thermodynamic limit. It is not a priori
clear then which of these two options the entanglement gap
will mimic. Surprisingly, the results depend on the particular
boundary conditions we impose on the rung. We see this in the
numerical results shown in Fig. 12 where we observe a clear
difference between open boundary conditions and periodic

4 6 8 12 16 24 32 40
L

0.6
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Jrung = 1, Jleg = 0.1

Jrung = 1, Jleg = 0.5

Jrung = 1, Jleg = 1.0
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0.0
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4 6 8 12 16 24 32 40
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Jrung = 1, Jleg = 0.5

Jrung = 1, Jleg = 1.0

10 20 30 40
0.0

1.0

2.0

FIG. 12. (Color online) Entanglement spectral gap for the 3 × L

ladder with open (top) and periodic (bottom) boundary conditions on
the rungs; the main plots are in the log-log scale, the insets in the
normal scale.
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FIG. 13. (Color online) Spectral gap of the 3 × L ladder with
asymmetric boundary condition on the rungs, J12 = J23 = 1, and
various J31. In all cases, Jleg = 0.5. The inset shows the spectral gap
vs the system size in a log-log scale.

boundary conditions. In the case of open boundary conditions
(top) where it suffices to make a single cut to separate the
three-leg ladder into two parts, we observe a similar behavior
as in the 2 × L case, that is, a vanishing gap for L → ∞.
However, in the case of periodic boundary conditions on the
rungs (bottom) the gap remains finite for L → ∞.

This result is less surprising once we consider that it has
been shown55,56 that the spectrum of the 3 × L ladder itself
depends on the boundary conditions. With periodic boundary
conditions, frustration is present on each of the rungs on
the ladder and the system is seen to be gapped. As soon as
the frustration is removed by making one bond on the rung
weaker or stronger, the system becomes gapless. We confirm
this behavior by computing the gap of the 3 × L ladders where
Jrung are chosen as (1,1,J31) with J31 = 0,0.9,1 and Jleg = 0.5.
The results shown in Fig. 13 confirm that the system is gapped
at J31 = 1 and gapless otherwise. Thus we see for the three-leg
ladders the entanglement gap does not necessarily mimic that
of the subsystem arising from the partition, but rather follows
the full system itself.

The behavior of the entanglement for three-leg ladders
has implications for the perturbative (in Jleg) entanglement
Hamiltonian. At zeroth order in Jleg, the entanglement
Hamiltonian for a single chain (supposing we trace out two
legs of the three-leg ladder) must be equal to the identity

Hentanglement = a0I + O(Jleg), (9)

where a0 is some constant This is followed by SU(2) invariance
and that the only SU(2) invariant operator involving operators
sitting at a single site is the identity. At next order, SU(2)
invariance gives the entanglement Hamiltonian for the chain as

Hentanglement

= (a0 + Jlegb0)I + b1Jleg

∑
i

Si · Si+1 + O
(
J 2

leg

)
, (10)

i.e., the Heisenberg Hamiltonian and where b0,1 are constants.
This follows as the first-order entanglement Hamiltonian
must involve terms which are no more nonlocal than nearest
neighbor. However, such a Hamiltonian is necessarily gapless.

5 10 15 20
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Jrung = 1, Jleg = 1.0
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FIG. 14. (Color online) Entanglement spectral gap for a bipartite
splitting of a 4 × L ladder into two 2 × L ladders for the ground state
of the ladder Heisenberg Hamiltonian with open (top) and periodic
(bottom) boundary conditions on the rungs.

Thus in order to produced a gapped entanglement Hamiltonian
(as we find for the case of PBCs), we must consider the J 2

leg con-
tribution to it. While it is beyond our ability to easily compute
this correction, it will involve next nearest interaction terms
that for the case of PBCs lead to a gapping out of the spectrum.

Finally, we consider the entanglement gap of four-leg
ladders. We first consider the case where we split the system
into two 2 × L ladders. Here both subsystems are gapped
and we might expect that the entanglement spectrum is
also gapped regardless of the boundary conditions on the
rungs. The numerical results shown in Fig. 14 confirm our
expectations and we observe a tendency toward a finite gap for
L → ∞, both for open (top) and periodic (bottom) boundary
conditions on the rungs. While the system sizes considered
are insufficient to draw definitive conclusions, no qualitative
difference between open and periodic boundary conditions can
be observed from the plots.

For the 4 × L ladders we can obtain further insight by
analyzing the entanglement Hamiltonian in the weak leg
coupling limit. We first consider the case of open boundary
conditions on the rungs at Jleg = 0. The ground state of the
ladder in this case is

|GS〉 = ⊗i |s〉i , (11)
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where |s〉i is the lowest-lying singlet state on a rung:

|s〉i = α(|↑↑↓↓〉 + |↓↓↑↑〉) + β(|↑↓↓↑〉 + |↓↑↑↓〉)
+ γ (|↑↓↑↓〉 + |↓↑↓↑〉), (12)

and the parameters α, β, and γ are defined as

α = 1√
12(2 + √

3)
,

β = 2 + 2
√

3

2
√

12(2 + √
3)

, (13)

γ = − 4 + 2
√

3

2
√

12(2 + √
3)

.

If we now perform a partial trace of sites 1 and 2 on each rung,
we obtain a reduced density matrix of the form

ρ0
red =

∏
i

{[
4

(
α2 − 1

4

)
S3i · S4i + I

4

]}
, (14)

which in turn implies an entanglement Hamiltonian given by

H 0
entanglement = −

∑
i

log

[
4

(
α2 − 1

4

)
S3i · S4i + I

4

]
. (15)

This implies the ground state of H 0
entanglement is a product of rung

singlets with an excitation gap to a rung triplet of Eent.gap =
− log[α2/(1 − 3α2)].

We now consider the effects of the presence of a weak Jleg.
In first-order perturbation theory, the ground-state product of
singlets is mixed in with various excited rung triplets (three
in total). The correction to the ground-state energy takes the
form

δ|GS〉 = Jleg

Jrung

∑
μ=1,2,3

cμ

∑
i

|s〉1 ⊗ · · · ⊗ |s〉i−1

⊗ (|t+μ 〉i |t−μ 〉i+1 + |t−μ 〉i |t+μ 〉i+1 + ∣∣t0
μ

〉
i

∣∣t0
μ

〉
i+1

)
⊗ |s〉i+2 ⊗ · · · ⊗ |s〉L, (16)

where the coefficients cμ and the states |t+,−,0
1,2,3 〉 are defined in

the Appendix. This correction to the ground-state energy then
leads to a correction to the reduced density matrix of the form

δρ = Jleg

Jrung

N−1∑
i=1

{
i−1∏
j=1

[
4

(
α2 − 1

4

)
S3j · S4j + Ij

4

]
δρi,i+1

×
N∏

j=i+2

[
4

(
α2 − 1

4

)
S3j · S4j + Ij

4

]}
,

(17)
δρi,i+1 = (J33S3i · S3i+1 + J34S3i · S4i+1 + J43S4i · S3i+1

+ J44S4i · S4i+1 + J3344S3i · S3i+1S4i · S4i+1

+ J3443S3i · S4i+1S4i · S3i+1),

where the J ’s are given in the Appendix. We see that
δρ contains all possible couplings consistent with SU(2)
invariance between nearest-neighbor rungs including a number
of four spin terms. Unlike the two-leg ladder,40,42 we will thus
not obtain a particularly simple form for the entanglement
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FIG. 15. (Color online) Entanglement spectral gap for a bipartite
splitting of a 4 × L ladder into two 2 × L ladders for the ground
state of the ladder Heisenberg Hamiltonian with open (top) and
periodic (bottom) boundary conditions on the rungs. The analytic
computations are plotted with open (black) circles.

Hamiltonian. The lowest entanglement excitation is a k = π

triplet,

|ψt+,−,0〉(k = π ) =
∑

i

(−1)i |ψt+,−,0〉i ,

where

|ψt+,−,0〉i ≡
i−1∏
j=1

|s〉j ⊗ |t+,−,0〉i ⊗
N∏

j=i+1

|s〉j .

Here |s〉 and |t+,−,0〉 are states on a two-site rung. The
entanglement gap is then

Eent.gap = − log

(
α2

1 − 3α2

− Jleg

Jrung

L − 1

2L

J33 + J44 − J34 − J43 + J3344

(1 − 3α2)2

)
.

(18)

We note that this expression is only valid at relatively small
Jleg, see Fig. 15 (top) for Jleg = 0.001,0.01.

We also consider the entanglement Hamiltonian for the
four-leg ladder with periodic boundary conditions. At Jleg = 0
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L

10−1

100

Jrung = 1, Jleg = 0.1

Jrung = 1, Jleg = 0.5

Jrung = 1, Jleg = 1.0

FIG. 16. (Color online) Entanglement spectral gap for a bipartite
splitting of a 4 × L ladder into a chain of length L and 3 × L ladders
for the ground state of the ladder Heisenberg Hamiltonian with open
(solid lines) and periodic (dashed lines) boundary conditions on the
rungs.

we find

H
0,PBC
entanglement = −

∑
i

log

(
−2

3
S3i · S4i + I

4

)
. (19)

This leads to an entanglement gap (to a triplet) of Eent.gap =
log 9 for Jleg = 0.

And again we will compute the correction at first order in
Jleg to the entanglement gap. For periodic boundary conditions,
the correction to the ground-state energy again involves mixing
with the three possible rung triplet excitations [as in Eq. (16)].
Correspondingly, the correction to the reduced density matrix
has the same form as in Eq. (17). We give some of the details of
this computation in the Appendix. The entanglement excitation
with a minimal gap for this case is also a k = π triplet. Its gap
is equal to

EPBC
ent.gap = − log

[
1

9
− Jleg

Jrung

L − 1

L

1

2

(
4

3

)2

× (
J PBC

33 + J PBC
44 − J PBC

34 − J PBC
43 + J PBC

3344

)]
. (20)

Again this is only valid for small Jleg; see Fig. 15 (bottom).
As our final result, we consider splitting the 4 × L ladder

into a chain and a 3 × L ladder. In this case, both of the
subsystems are gapless and we expect a gapless entanglement
spectrum. The numerical results shown in Fig. 16 confirm this
hypothesis. Unlike the case of three-leg ladders, the boundary
conditions on the four-leg ladder do not play a significant role
here.

From the computational point of view, the simulation of
the excited states for the entanglement Hamiltonian of the
four-leg ladders requires at most an hour. However, obtaining
the reduced density matrix as a manageable MPO requires
substantial memory resources (several gigabytes) as the matrix
product operator obtained by simply contracting the tensor
network for the ground state (Fig. 7) is very large (in a
redundant way) and must be aggressively truncated, requiring
up to an hour of processor time for each case.

The spectral gap (but not other levels in the entanglement
spectrum) could alternatively have been simulated by simulat-
ing separately the “ground state” of the matrix product operator
ρS in the Sz = 0 and in the Sz = 1 sector.

IV. CONCLUSIONS

We have described a method to simulate quantum many-
body systems using tree tensor networks where the global
symmetries are employed to reduce the minimization costs
of the tensors to a minimum by optimizing each charge
configuration in the tensor individually. Furthermore, we have
presented a method to calculate the entanglement spectrum for
large many-body systems which can be described in terms of
tensor networks by constructing the reduced density operator
as a matrix product operator and calculating eigenvectors in
various symmetry sectors. The method can be used on top of
our tree tensor network method to simulate the ground states
but also on top of the standard DMRG algorithm.

We have used the methods described in this manuscript
to simulate the entanglement spectra of 2 × L, 3 × L, and
4 × L ladders with either open or periodic boundary conditions
on the rung. From numerical results we have found that the
nature of the entanglement spectrum depends not only on the
subsystem in the bipartite splitting but also on the number of
boundaries connecting the systems, as a result of the boundary
conditions in the Hamiltonian operator. Unlike the case of two-
leg ladders, in the limit of weak coupling along the legs of the
ladder, we in general did not find a simple relationship between
the entanglement Hamiltonian and the minimal Heisenberg
Hamiltonian of the untraced subsystem.
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APPENDIX: COMPUTATIONAL DETAILS FOR THE O( Jleg)
CORRECTION TO THE BIPARTITE REDUCED DENSITY

MATRIX, ρ, FOR THE FOUR-LEG LADDER

1. Open boundary conditions

The excited rung triplets of the four-site rung have the form

|t−1 〉 = −|↓↓↓↑〉 + (1 +
√

2)|↓↓↑↓〉
− (1 +

√
2)|↓↑↓↓〉 + |↑↓↓↓〉,

|t+1 〉 = −|↑↑↑↓〉 + (1 +
√

2)|↑↑↓↑〉
− (1 +

√
2)|↑↓↑↑〉 + |↓↑↑↑〉,∣∣t0

1

〉 = −|↑↑↓↓〉 + (1 +
√

2)|↑↓↑↓〉
− (1 +

√
2)|↓↑↓↑〉 + |↓↓↑↑〉,
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|t−2 〉 = |↓↓↓↑〉 − |↓↓↑↓〉 − |↓↑↓↓〉 + |↑↓↓↓〉,
|t+2 〉 = |↑↑↑↓〉 − |↑↑↓↑〉 − |↑↓↑↑〉 + |↓↑↑↑〉,∣∣t0

2

〉 = −|↓↑↑↓〉 + |↑↓↓↑〉,
|t−3 〉 = −|↓↑↑↓〉 + |↑↓↓↑〉 + (−1 +

√
2)|↓↑↓↓〉

+ |↑↓↓↓〉,
|t+3 〉 = −|↑↑↑↓〉 + (1 −

√
2)|↑↑↓↑〉

+ (−1 +
√

2)|↑↓↑↑〉 + |↓↑↑↑〉,∣∣t0
3

〉 = −|↑↑↓↓〉 + (1 −
√

2)|↑↓↑↓〉
+ (−1 +

√
2)|↓↑↓↑〉 + |↓↓↑↑〉. (A1)

Their energies are, respectively, Et1 = 1
4 (−1 − 2

√
2),Et2 =

−1/4, and Et3 = 1
4 (−1 + 2

√
2). The coefficients, cμ, that

determine how these states contribute to δ|GS〉 [see Eq. (14)]
are as follows:

c1 = 11 + 7
√

2 + 6
√

3 + 4
√

6

6(2 + √
2)(2 + √

3)

1
1
2 (−2 − 2

√
3 + 2

√
2)

,

c2 = −11 + 7
√

2 − 6
√

3 + 4
√

6

6(−2 + √
2)(2 + √

3)

1
1
2 (−2 − 2

√
3)

, (A2)

c3 = 1

3

1
1
2 (−2 − 2

√
3 − 2

√
2)

.

Finally the couplings defining δρ in Eq. (17) at O(Jleg) are
given by

J33 = c1
9 + 5

√
2 + 5

√
3 + 3

√
6

12(2 + √
2)(2 + √

3)
+ c2

6

+ c3
−9 + 5

√
2 − 5

√
3 + 3

√
6

12(−2 + √
2)(2 + √

3)
,

J44 = c1
13 + 9

√
2 + 7

√
3 + 5

√
6

12(2 + √
2)(2 + √

3)
+ c2

6

+ c3
−13 + 9

√
2 − 7

√
3 + 5

√
6

12(−2 + √
2)(2 + √

3)
,

J34 = J43 = −c1
10 + 7

√
2 + 6

√
3 + 4

√
6

12(2 + √
2)(2 + √

3)
− c2

6

+ c3
10 − 7

√
2 + 6

√
3 − 4

√
6

12(−2 + √
2)(2 + √

3)
,

J3344 = −J3443 = −c1
1

6
(2 +

√
2) − c2

2 + √
3

3

+ c3
3 − 2

√
2

3(−2 + √
2)

. (A3)

2. Periodic boundary conditions

We now present a similar set of data for the case of periodic
boundary conditions. The excited triplets on the four-site rung
are as follows:

|t−1 〉 = −|↓↓↓↑〉 + |↓↓↑↓〉 − |↓↑↓↓〉 + |↑↓↓↓〉,
|t+1 〉 = −|↑↑↑↓〉 + |↑↑↓↑〉 − |↑↓↑↑〉 + |↓↑↑↑〉,∣∣t0

1

〉 = −|↑↓↑↓〉 + |↓↑↓↑〉,
|t−2 〉 = −|↓↓↓↑〉 − |↓↓↑↓〉 + |↓↑↓↓〉 + |↑↓↓↓〉,
|t+2 〉 = −|↑↑↑↓〉 − |↑↑↓↑〉 + |↑↓↑↑〉 + |↓↑↑↑〉, (A4)∣∣t0

2

〉 = −|↑↑↓↓〉 + |↓↓↑↑〉,
|t−3 〉 = |↓↓↓↑〉 − |↓↓↑↓〉 − |↓↑↓↓〉 + |↑↓↓↓〉,
|t+3 〉 = |↑↑↑↓〉 − |↑↑↓↑〉 − |↑↓↑↑〉 + |↓↑↑↑〉,∣∣t0

3

〉 = −|↓↑↑↓〉 + |↑↓↓↑〉.
Their energies are, respectively, Et1 = −1,Et2 = 0, and Et3 =
0. The coefficients, cμ, that determine how these states
contribute to δ|GS〉 are equal to

cPBC
1 = − 1

3 , cPBC
2 = − 1

24 , cPBC
3 = − 1

24 . (A5)

Finally, the couplings defining δρ in Eq. (17) at O(Jleg) are
given by

J PBC
33 = J PBC

44 = c1

3
+ c2

12
+ c3

12
,

J PBC
34 = J PBC

43 = −c1

3
+ c2

12
− c3

12
, (A6)

J PBC
3344 = −J PBC

3443 = −c1

3
− 4c3

3
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