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Phases in two dimensional px + i py superconducting systems with
next-nearest-neighbor interactions
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A chiral px + ipy superconductor on a square lattice with nearest and next-nearest hopping and pairing terms
is considered. Gap closures, as various parameters of the system are varied, are found analytically and used to
identify the topological phases. The phases are characterized by Chern numbers (ranging from −3 to 3), and
(numerically) by response to introduction of weak disorder, edges, and magnetic fields in an extreme type-II limit,
focusing on the low-energy modes (which presumably become zero-energy Majorana modes for large lattices and
separations). Several phases are found, including a phase with Chern number 3 that cannot be thought of in terms
of a single range of interaction, and a phase with Chern number 2 that may host an additional, disorder-resistant
Majorana mode. The energies of the vortex quasiparticle modes were found to oscillate as vortex position varied.
The spatial length scale of these oscillations was found for various points in the Chern number 3 phase which
increased as criticality was approached.
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I. INTRODUCTION

Recently, there has been much interest in topological
features of various condensed matter systems, in particular
Majorana fermions.1–15 Majorana fermions satisfy γ † = γ ;
that is, they are their own antiparticle. In systems with
particle-hole symmetry, their energy is therefore pinned to
zero. Consequently, Majoranas can only be destroyed by
pairing with another and hybridizing into a Dirac fermion.

We focus on chiral px + ipy superconductors. In continuum
models with nonzero Chern numbers, zero-energy Majoranas
develop around defects, such as vortices.12–19 When the
vortices are well separated, the associated Majoranas are
protected from local perturbations, which could be useful in
quantum computers. Majoranas are also expected in lattice
models of chiral superconductors; if the gap is of the form
sin(nkx) + i sin(nky), where n is the range of the interaction,
it reduces to n∂x + in∂y in the continuum limit.

In contrast to the continuum case where the range of the
interaction, n, simply rescales the gap function, the range
plays a more interesting role on the lattice. Previous work20

suggested that the inclusion of longer ranged interactions leads
to novel phases. These longer ranged interactions in general
give rise to larger Chern numbers in a way that can be most
easily understood when all interactions are of the same range.
When all interactions are of the same range, a number of
nonnteracting sublattices, S(n), form. For example, in Fig. 1,
two sublattices form when only next-nearest-neighbor terms
are present. As separate systems, each sublattice has its own
Chern number, either 0 or 1. Therefore, the Chern number for
the whole system is either 0 or S(n).

To explore the more complicated case of interactions of
different ranges, we study a square lattice with a combination
of nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hopping (respectively, t1 and t2), and px + ipy pairing (re-
spectively, �1 and �2) terms. The system is kept at chemical
potential μ. Both the hopping and pairing terms are illustrated
in Fig. 2.

The five parameters t1, t2, �1, �2, and μ constitute a
parameter space rich enough to include the well-known BEC

and BCS superconducting systems, as well as their two-
sublattice versions (i.e., purely NNN interactions). Because
the BEC-BCS transition is topological in nature, we search
for the surfaces in parameter space where the bulk band gap
collapses and topological phase transitions occur.

Our analysis of the system shows that the phase diagram
depends only on three ratios of parameters: α = �1

�2
and the

scaled hopping terms t1/μ, t2/μ. For fixed values of α, all
phase transitions are lines in the t1-t2 plane. There are four
such lines, three of which are independent of α. When a
system is tuned to one of these phase transition lines, the
gap in the system collapses because a zero of �(k) is crossing
the Fermi surface. The lines constitute the phase diagram for
a given value of α, as shown in Fig. 3. When |α|2 � 2, the
phase transition lines remain fixed, and �(k) only has zeros
at the four high-symmetry points �, X, Y , and M because the
NNN pairing terms are not strong enough to introduce any
zeros into �(k). The topology of the system is unaffected by
the weak NNN pairing. When |α|2 < 2, four additional zeros
are introduced into �(k), permitting larger Chern numbers.
An analytical calculation finds all Chern numbers possible
with NN and NNN terms; they range from −3 to +3. Chern
number ±4, while conceivably possible with NNN pairing
terms, cannot be obtained with just NNN hopping terms for
the same reason that Chern number 2 cannot be obtained with
just NN pairing and hopping terms. However, the system does
take on Chern number 3, which is surprising because purely
NNN interactions yield Chern number 2.

The numerical aspect of the present work characterizes the
response of the model system to defects in different phases. In
particular, we focus on characterizing the low-energy response,
i.e., identifying the the fundamental excitations of the system.
For the numerics, we include three kinds of position-dependent
terms into the Hamiltonian: edges, on-site disorder, and
magnetic fields in an extreme type-II limit with vortices in
the superconducting order parameter. Edges are introduced by
adding terms of the form Oic

†
i ci , where Oi is very large past the

edge, confining the states in the low-energy spectrum. On-site
disorder is added in a similar manner: Oi takes on a value
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FIG. 1. (Color online) When only next-nearest-neighbor inter-
actions are present in a 2 dimensional lattice model, two sublattices
form, each independently responding to defects, giving pairs of defect
modes. When nearest-neighbor interactions are turned on, the pairs
of defect modes persist.

of Ed with probability p

2 and −Ed with the same probability,
and 0 otherwise. For the magnetic field, we assume a very
long magnetic screening length so that the magnetic field is
constant, consistent with the sample being two dimensional.
However, the superconducting coherence length ξ is finite, and
vortices appear in the superconducting order parameter.

The output of numerical simulations are the energies and
wave functions of the quasiparticles of the Hamiltonian. The
edge modes and vortex core modes are perfectly distinct in
the ideal limit of infinite separation. In the realistic case of
finite separation, the modes hybridize. The vortex core modes
interact with each other in a similar way. The energies of
the lowest vortex core modes exhibit exponentially damped
oscillations as the vortices are separated, an effect theoretically
predicted21 and numerically observed22 in related systems. The
edges hybridize with vortices over longer length scale than
those over which the vortices hybridize with each other.
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FIG. 2. Visualization of nearest- (and second-nearest-) neighbor
hopping (t) and pairing (�) terms.

(a) α = 0.3

(b) α = 0.5

(c) α = 1.1

FIG. 3. (Color online) Phase diagrams for values of α = �1/�2,
with Chern number for each phase. The dots in panel (b) indicate
values of t1/μ,t2/μ investigated numerically.

The hybridization effects also depend on the bulk param-
eters of the system, i.e., t1, t2, �1, �2, and μ. In particular,
as these parameters are tuned to the phase transitions, the
edge-vortex length scale diverges. Such tuning is explored in
a system with (�1,�2) = (0.5,1.0) and t1 = −2 (energy is
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given in terms of the NNN hopping strength, t2) by adjusting
the chemical potential μ, i.e., by moving along the path
shown in Fig. 3, which crosses several phase transitions. In
the Chern number 3 portion of the phase diagram, we find
that the spatial period of vortex-vortex oscillation increases
linearly with the chemical potential: � ∼ 0.8μ + constant.
When μ takes on values putting the system too close to
the phase transition, edge-vortex hybridization destroys the
vortex-vortex oscillatory behavior.

Another issue addressed in the numerical simulation is
the number of low-energy modes created around defects.
When only NNN interactions are present, one Majorana
mode per vortex per sublattice forms. When the NN terms
are turned on, the Majoranas may hybridize down to zero
or one residual zero-energy mode, for even and odd Chern
number, respectively.15 Interestingly, there is some degree of
protection of the additional defect mode for the Chern number
2 phase. The numerical simulation reveals two, apparently
disorder-resistant, zero-energy vortex-core modes. The Chern
number 3 phase, however, enjoys no such additional modes:
only one low-energy vortex-core mode is observed in the
numerical simulations.

Having introduced the primary results of the paper, the
remainder of the paper explains details of our approach. First,
in Sec. II, we describe the Hamiltonian used (including both
nearest- and next-nearest-neighbor terms) and calculate its
Chern number analytically. Next, in Sec. III, we describe the
defects added to our model Hamiltonian: edges, disorder, and
magnetic fields. Finally, in Sec. IV, we discuss the numerical
attack on the system, with defects present, and the resulting
conclusions. Additional details are in the appendices: a brief
review of the calculation of Chern numbers (Appendix A),
and a discussion of a spatial inversion symmetry of the system
helpful in distinguishing different modes (Appendix B).

II. NOTATION AND DEFECT-FREE ANALYSIS

A. System definition

Here, we describe the model system: a single-band, two-
dimensional, tight-binding, spinless fermion square lattice
model with mean-field superconducting order parameter �,
and Hamiltonian

H =
∑
ij

hij c
†
i cj + 1

2

∑
ij

�ij c
†
i c

†
j + H.c.

= 1

2

∑
ij

[c†i ci]

[
hij �ij

�̄ji −h̄ij

][
cj

c
†
j

]

= 1

2

∑
ij

[c†i ci]Hij

[
cj

c
†
j

]
= Eg +

∑
n

En	
†
n	n, (1)

where the indices i and j run over all lattice sites. The
lattice separation a is set to unity. The Bogoliubov–de Gennes
Hamiltonian is diagonalized in the last step in terms of
the ground-state energy Eg , quasiparticle energies En, and
operators

	n =
∑

i

[
u

(n)
i ci + v

(n)
i c

†
i

]
. (2)

The hopping and pairing terms are stated here explicitly
and illustrated in Fig. 2. The lattice separation is set to 1, and
j runs over all lattice sites:

hj,j = Oj − μ, (3)

hj,j±x̂ = hj,j± ŷ = t1, (4)

hj,j±(x̂+ ŷ) = hj,j±(x̂− ŷ) = t2, (5)

and

�j,j±x̂ = ±i�1 and �j,j± ŷ = ±�1, (6)

hj,j±(x̂− ŷ) = ±i�2 and hj,j±(x̂+ ŷ) = ±�2, (7)

with all other terms zero. The on-site term is separated into the
chemical potential μ, and all other on-site terms Oj , such as
disorder and edges.

For both the NN and NNN pairing terms, the phase of the
order parameter advances under counterclockwise rotation,
creating the chirality of the order parameter.27 The pairing
terms explicitly break time-reversal symmetry, putting the two
dimensional system in Altland-Zirnbauer23 symmetry class D,
with topological classification Z given by the Chern number.19

Indeed, we will show that the system takes on Chern numbers
−3 through 3 in the following three subsections.

B. Gap closing momenta and symmetries

In this section, we follow a well-known program for
calculating Chern numbers; a brief review is provided in
Appendix A. After Fourier-transforming the Hamiltonian (1),
the bulk band gap is seen to collapse for momenta k = (kx,ky)
such that

0 = 1

2�2
�(k) = α[sin(kx) + i sin(ky)]

+ sin(kx − ky) + i sin(kx + ky) (8)

and

0 = 1

μ
h(k) = −1 + 2

(
t1

μ

)
[cos(kx) + cos(ky)]

+ 4

(
t2

μ

)
cos(kx) cos(ky). (9)

Our procedure identifies the zeros of �(k) and then character-
izes h(k) at these momenta.

C. Zeros of �

There are the four zeros of � at the high-symmetry points
(i.e., where sin kx = sin ky = 0). Assuming that the sine terms
do not vanish, the remaining four zeros of � can be shown to
satisfy

cot(kx)2 = α2

2 − α2

[
1 +

√
4

4 + α4

]
,

(10)

cot(ky)2 = α2

2 − α2

[
1 −

√
4

4 + α4

]
.

Thus, there are two cases: α2 � 2, in which �(k) only vanishes
at the four high-symmetry points, and α2 < 2, for which
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FIG. 4. (Color online) Plot of the wave function of a vortex mode. The lattice is 150 × 150, t1 = −2, μ = 1, and (�1,�2) = (0.5,1.0)
(energy given in units of t2). The plots are of the natural logarithm of the probability densities of the

[
u

v

]
parts of the BdG wave function. The

Hamiltonian includes two vortices of radius rV = 1.6 indicated by red circles, separated by 13.2 in the x direction. The eigenenergy is in-gap:
E/t2 ≈ 5.3 × 10−3.

the order parameter vanishes at two additional, α-dependent
momenta. A straightforward, if lengthy, consideration of cases
of the signs of the cos(ki) and sin(ki) would allow the cotangent
terms to be plotted implicitly, giving an exact solution for the
location in the Brillouin zone for each zero. Fortunately, an
explicit solution for the momenta of the zeros is not needed,
as we will see momentarily.

D. h at the zeros of �

For k such that �(k) = 0, the band gap closes if and only
if h(k) = 0. Furthermore, the phase winding of � around its
zeros and the sign of h(k) at each zero indicate the Chern
number. This well-known result is reviewed in Appendix A.
At the high-symmetry points �, X, Y , and M ,

1

4μ

⎡
⎢⎢⎣

h(0,0)
h(±π,0)

h(0, ± π )
h(±π, ± π )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

t2/μ + t1/μ − 1
4

−t2/μ − 1
4

−t2/μ − 1
4

t2/μ − t1/μ − 1
4

⎤
⎥⎥⎥⎦ . (11)

By setting h(k) = 0, we get the three α-independent phase
transition lines: t2/μ = −1/4, t2/μ + t1/μ = 1/4, and t2/μ −
t1/μ = 1/4. The Chern number changes by 1 when crossing
each line (except for the t1/μ = −1/4 double line, where the
change is 2). At the α-dependent zeros of � given by Eq. (10),
h is evaluated (a tedious but straightforward considerations of
cases):

1

μ
h(k) = −1 −

(
t1

μ

)
α(2 − α2) −

(
t2

μ

)
α4. (12)

The condition that the α-dependent zeros are included or
excluded by the Fermi surface [i.e., h(k) ≶ 0] is recast by
defining

β =
[−α(2 − α2)

−α4

]
and t = 1

μ

[
t1

t2

]
, (13)

FIG. 5. (Color online) Plot of the wave function of an edge mode; compare with Fig. 4. The eigenenergy is in-gap: E/t2 ≈ 3.1 × 10−3.
The state hybridized weakly with the vortices.
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and the above condition can be restated as

0 � 1

μ
h(k) = −1 + t · β or

1

β
� t · β̂; (14)

i.e., there is a phase transition line, with closest approach to

the t1-t2 origin given by Z = β̂

β
. Plotting these four phase

transition lines, identifying the topologically trivial phase
where where (t1,t2) = (0,0), and counting the number of lines
crossed allows for the creation of phase diagrams for various
values of α, such as those in Fig. 3.

III. DEFECTS AND MAGNETIC FIELDS

A. Magnetic fields: flux tubes and vortices

Here, we explore the response of the superconductor to
magnetic fields. We assume we are in an extreme type-II
limit: flux tubes form creating real-space vortices in the
superconducting order parameter. In the two dimensional case
at hand, the associated response currents are essentially two
dimensional and therefore very weak. The natural simplifying
limit is to take the London penetration depth λ → ∞ and
neglect the response magnetic field. We therefore assume
a constant, unaffected, external magnetic field. Notwith-
standing the infinite penetration depth, we still keep the
superconducting coherence length ξ finite, allowing vortices
in the superconducting order parameter. The vortices are
therefore localized regions of vanishing superconducting order
parameter �, without associated magnetic inhomogeneity,
which we now describe more precisely.

We are guided by the relation

vs = 1

2m

(
∇φ − 2e

c
A
)

, (15)

where vs is the superfluid velocity, φ is the phase of the
superconducting order parameter, and A is the vector potential,
in London gauge. When far away from a vortex (r � λ), we
assume vs = 0 and B = 0. Integrating around the vortex yields

2πn =
∮

∇φ · d l = 2e

c
�m

(i.e., the well-known fact that an integer multiple of magnetic
flux quanta penetrates through a flux tube). Because the order
parameter is nonzero away from vortices, even for r < λ, the
winding is an integer multiple of 2π around each vortex.

With a qualitative description of the behavior of the order
parameter (the magnitude falls off near vortices, and the
phase winds an integer multiple of 2π around each vortex),
a quantitative model to perform a numerical simulation must
now be established. We use the model24,25

�jk = �
(0)
k−jD (j,k) eiθjk . (16)

The phase of the order parameter θjk is a geometric mean of
the expected phases at j and k:

eiθjk = eiφk + eiφj

|eiφk + eiφj | . (17)

(The arithmetic mean of φi and φj is insufficient, because
the phase for pairing terms crossing any branch cut would be

incorrect.) Near the vortex cores, D falls off as

D(j,k) = deff(j,k)√
deff(j,k)2 + r2

V

, (18)

where the “effective distance” is given by

d−1
eff (j,k) =

∑
n

(
min

x between j and k
|x − vn|

)−1

; (19)

x lies on the line connecting j and k. The vortex core radius rV

is a parameter of the model, on the order of the superconducting
coherence length. Provided that vortices were separated from
each other and the edge by many multiples of rV , the vortex
core size was to only weakly affect the measured properties of
the system. To reduce the required lattice sizes for numerical
stability, we set rV = 1.6, the same order of magnitude as
the coherence length in the cuprates. The hopping terms hjk

acquire a Peierls phase due to the magnetic vector potential

hjk = h
(0)
k−j e

i e
c

∫ j

k
A·d�.

Relation (15) expresses A in London gauge: ∇ · A = 0 and the
normal component of A · n̂ becomes the physically meaningful
boundary supercurrent. By choosing a gauge where A vanishes
at the center of the sample, the vector potential for a constant
magnetic field takes the simple form A ∝ ρφ̂, where ρ is
the distance from the center of the sample. Additionally, for
our choice of A, the boundary current vanishes for circular
geometry. For noncircular geometries, the approximation will
remain valid provided that the edge (and associated currents)
is far from the features of interest.

B. Edges

Square edges can be produced by omitting certain terms
in the Hamiltonian, i.e., setting all terms of the form hij and
�ij to zero for ij which cross an edge. While intuitive and
simple, when two edges are introduced, an artificially “sharp”
corner is produced. The low-energy edge modes that develop
are strongly concentrated at the artificial corners. One might
be concerned that such an unphysical feature might poison the
simulation.

A choice of smoother edge removes the unphysically
sharp corners, but introduces another problem: there are
now lattice sites “outside” of the region of interest. The
spectrum will include the unphysical quasiparticle modes
outside the edge, complicating the analysis. A more natural
approach is to make occupation of states beyond the edge
energetically unfavorable. On-site terms Oic

†
i ci are added with

Oi increasingly large near and beyond the edges of the system.
For our purposes, the edge is made very steep and circular; i.e.,
it goes from 0 inside a circular region of the lattice to a very
large number outside it. The lattice sites with large on-site
energies must play no role in the low-energy spectrum of the
Hamiltonian.
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C. Disorder

By adjusting the Oi terms, on site disorder is produced,
representing quenched impurities on the lattice. The model is

Oi =

⎧⎪⎨
⎪⎩

0, with probability 1 − p,

−Ed, with probability p/2,

+Ed, with probability p/2.

When vortices are moved, such as in Fig. 9, the same disorder
realization is used for each vortex placement.

IV. NUMERICAL RESULTS

Here, we discuss the results of the numerical diagonal-
ization of the Bogoliubov–de Gennes Hamiltonian (1) for
eigenvalues near zero. These midgap states arise because of
the topological nature of the system. Being deep inside the
superconducting gap, these midgap states experience strong
particle-hole mixing. As lattice sizes and vortex separation
are increased, hybridization dies off, quasiparticle energies go
to zero, and the particle and hole parts can be made equal,
|u| = |v|. In our realistic case of finite separation, there will
always be nonzero hybridization, and consequential deviation
from equality.

We put (�1,�2) = (0.5,1.0), and always work with energy
in units of the NNN hopping, t2. Our choice of parameters
creates a rich phase diagram while keeping the magnitudes of
both NN and NNN pairing terms similar. Several choices of
t1/t2 were investigated, but all focus on exploring t1 < 0 and
t2 > 0, which is similar to the superconducting band of the
strontium ruthenates.

The output of the numerical simulation is the low-energy
spectrum and associated wave functions. Both vortex core
states, such as Fig. 4, and edge states, such as Fig. 5, are part
of the output. Although presented as distinct in the examples,
they can and do hybridize. To distinguish the edge and vortex

FIG. 6. Plot of several lowest quasiparticle energies as the
separation between two vortices in the x direction is varied. The
lattice was 150 × 150, with a circular edge. The other parameters are
(�1,�2) = (0.5,1.0), μ = 1, and t1 = −2.0 (energies are given in
terms of t2). The choice of parameters leads to Chern number 3 and
a single zero-energy vortex core mode, as guaranteed for odd Chern
numbers; cf. Fig. 7. The shapes of the markers indicate the parity
of the state under spatial-inversion symmetry: diamond is even, and
triangle is odd (see Appendix B). The unimportant edge states are
indicated by the smaller, fainter markers.

FIG. 7. Compare with Fig. 6: circular lattice, (�1,�2) =
(0.25,0.5), and the chemical potential μ = 0.5. Each panel has a
different value of t1, as shown; all energies are given in terms of t2. The
vortex separation rsep is given in terms of lattice spacing. Notice the
two oscillating low-energy excitations, possibly with an exponentially
damped envelope. In the limit of large separation of the vortices,
these vortex core states could become 0-energy Majorana modes.
We suspect that that a significant portion of the Chern number −2
phase enjoys these multiple Majorana modes, suggesting analytical
investigation. Resistance to weak disorder is discussed later, Fig. 9.

states automatically, the probability of a state being present
within some distance of the edge is found and used to classify
a given state as “edge” or not. As seen in, for example, Fig. 6
with rsep ≈ 13, the edge-vortex hybridization becomes strong
enough to cause the third edge modes to hybridize strongly

FIG. 8. (Color online) Spatial period of oscillation of vortex mode
energy as two vortices are separated in the x direction, as in Fig. 6. The
spatial period changes as the chemical potential μ is varied (all other
parameters are as in the aforementioned figure). For plotted values
of μ, the Chern number was 3. Larger values of μ were inaccessible
due to edge-vortex hybridization.
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with the vortex modes, resulting in significant occupation
away from the edge. In general, however, edge modes, being
localized away from the vortices (due to the careful choice of
parameters), do not strongly influence the low-energy vortex
core modes.

A. Vortex core mode oscillations

When the separation between two magnetic vortices is
adjusted, the spectrum shifts, as seen in Fig. 6 and Fig. 7.
Most notably, the energies of the lowest quasiparticles exhibit
damped oscillation. The dominant Fourier component of these
oscillations is found (and inverted) to give a spatial period.
The spatial period � is found as a function of the chemical
potential μ in Fig. 8 for t1 = −2, �1 = 0.5 (energy given in
terms of t2). The only values of μ shown are where the vortex
core mode only hybridized weakly with the edge modes. Even
small distortions to the oscillations disturb the calculation of
the spatial period significantly. Systems close to criticality
were therefore not examined. In particular, only points in the
Chern number 3 phase were far enough from criticality to
be calculated reliably. In that region, � was found to depend
linearly on μ, with slope close to 0.8. As mentioned before,
these oscillations have been analytically21 and numerically22

investigated before (for slightly different systems) with a
period ∼ 2π

kF
, due to the oscillations in the vortex mode wave

functions on the same spatial period.

B. Majorana mode count

For Chern number 3, only one vortex mode exists; see
Fig. 6. However, for Chern number ±2, two 0-energy modes
develop when two vortices are introduced. Modes in the
−2 region near t1 = 0 are examined in Fig. 7. The Chern
number +2 region [with, e.g., (t1/μ,t2/μ) = (−1.5,2) in
Fig. 3] probably also supports an additional vortex mode,
but the issue there is complicated by the fact that the system
is usually quite close to criticality; i.e., the zeros of �(k)
occur where hk is relatively small, leading to a divergence
of correlation lengths. Effective analysis requires that the
edge-vortex hybridization be suppressed; much larger systems
would have to be simulated.

C. Disorder

Here, we discuss the results on-site disorder to Oi men-
tioned earlier. The same simulations with disorder added are
shown in Fig. 9. For weak disorder, pairs of vortex modes
that exist without disorder persist after turning on the weak
disorder. In reality, vortices would become pinned to disorder
sites. A more detailed calculation would not install vortices at
prespecified locations. Despite these caveats, we believe that
these additional modes warrant further analytical investigation.

V. CONCLUSION

Chiral p-wave superconductors on a lattice support addi-
tional, interesting phases beyond the two well-known (topo-
logically trivial) BEC and (Chern number 1) BCS phases.
The Chern number ±2 phases can be understood intuitively
as a pair of weakly interacting sublattices: the defect modes

appear to survive variation of parameters as well as the addition
of weak disorder. It is expected15 that some perturbation of
the Hamiltonian will hybridize the defect states, though the
precise form of the interaction has not been determined. The
Chern number 3 phase, on the other hand, does not support
any additional modes. The consequences of including NNN
interactions in two-dimensional chiral superconductors are
worthy of analytical attention.
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APPENDIX A: CHERN NUMBER REVIEW

Here, we review Chern number calculation in the defect-
free case, as in Sec. II for nearest- and next-nearest interactions.
In momentum space, the Hamiltonian (1) Hij becomes Hk =
nk · τ , where τ is a vector of Pauli matrices and

nk =

⎡
⎢⎣

��k

−	�k

hk

⎤
⎥⎦ . (A1)

The Chern number is obtained by integrating the Berry
curvature

1

2π
∇k × 〈0|	ki∇k	

†
k |0〉 = 1

4π
(∇k�k) × (∇knk)

= 1

4π
n̂ · ∂ n̂

∂kx

× ∂ n̂
∂ky

(A2)

over the Brillouin zone (|0〉 is the vacuum state). Both equali-
ties are due to straightforward calculation. The vector-valued
function n maps momentum space to R3, and characterizes the
Cooper pairing (and corresponding quasiparticles) at a given
momentum. The vanishing of n corresponds precisely to nodes
in the band structure. Therefore, in the fully gapped regime,
the unit vector n̂ maps T 2 to S2, and the above integral is
just the degree of the map n̂, an integer.26 According to the
Hopf classification, the degree characterizes the mapping n̂
topologically, i.e., up to homotopy. We emphasize here that
we have so far said nothing about the presence of zero-energy
modes or sublattices, only the topologically invariant Chern
number.

One can do slightly better. By smoothly deforming n so
that n is ±ẑ except when hk vanishes, the Chern number
is seen to depend only on the winding of the phase of the
superconducting order parameter around the Fermi surface (of
the parent state, i.e., where hk = 0). Because such a smooth
deformation will not close the band gap, the topological
invariant is unchanged. The integral over the Brillouin zone
therefore becomes a line integral over the hk = 0 surface,
which is sensitive only to the winding of the superconducting
order parameter’s phase φ.
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The winding of φ can only occur around zeros of �, and
always in multiples of 2π . Neglecting higher order zeros of
�, one simply counts the number of zeros enclosed by the
Fermi surface, and notes whether their winding is clockwise
or counterclockwise to get the Chern number. To get the sign
of the answer correct, “enclosed” is taken to mean the
particle-like side of the Fermi surface. We emphasize now
that we are dealing with a quadratic, single-band Hamiltonian.
Analogous results for multiband Hamiltonians would be more
complicated.

APPENDIX B: SPATIAL INVERSION SYMMETRY

In the absence of added disorder, the model systems we
consider have a spatial inversion symmetry which can be
exploited to enhance the clarity of some plots (especially in
highlighting oscillatory behavior). The hopping terms straight-
forwardly satisfy h−i,−j = hij , while the p-wave symmetry of
the superconducting order parameter implies �−i,−j = −�ij .

Let I realize the inversion symmetry in position space [i.e.,
(Ih)ij = h−i,−j ] and put I = τ3 ⊗ I (τ3 acts on the space
of Nambu spinors). Clearly, I 2 = 1, and I † = I , so the
eigenvalues of I are ±1. The inversion symmetry’s action on
the Hamiltonian,

I †HijI = I†τ †
3Hij τ3I,

I†
[

hij −�ij

−�̄ji −h̄ij

]
I =

[
h−i−j −�−i−j

−�̄−j−i −h̄−i−j

]

=
[

hij �ij

�̄ji −hij

]
= Hij , (B1)

shows that the inversion symmetry I relates quasiparticles
of the form (ui,vi) to (u−i , − v−i). For appropriate energy
eigenstates, ψ = ±I ψ and the subparts u and v therefore
have separate (and opposite) inversion symmetries given by
Iu = ±u and Iv = ∓v. These eigenvalues can be changed
using the Bogoliubov–de Gennes particle-hole symmetry

FIG. 9. Compare with Fig. 7; the choice of parameters is the same. The focus of these figures is on the disorder, of strength Ed = 1
10

and probability p. All energies given in terms of t2. Although disorder destroys inversion symmetry (discussed in Appendix B), there is still
significant overlap of wave functions with their spatial inversion partner. The different markers indicate the sign of the overlap: positive is
diamond, negative is triangle, and weak overlap is indicated by a circle. Weak disorder should not destroy exponentially damped oscillating
behavior if it already exists; no qualitative changes occur when weak disorder is added.
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(i.e., � = τ1 ⊗ K , where K is complex conjugation); the
symmetry-related negative-energy pair has opposite I eigen-
value:

�I = τ1Kτ3I = −iτ2I = −I �. (B2)

In the case of disorder, the symmetry I is clearly broken by
the additional terms. Nonetheless, the overlap 〈ψ |I ψ〉 is still
meaningful: if positive, we can still identify ψ as “symmetric”-
like or otherwise. In the figures, e.g., Fig. 9, the sign of the
overlap is plotted as the shape of the symbol.
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