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Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
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The Berezinskii-Kosterlitz-Thouless (BKT) transition is a generic transition describing the loss of coherence in
two-dimensional systems and has been invoked, for example, to describe the superconductor-insulator transition
in thin films. However, recent experiments have shown that the BKT transition, driven by phase fluctuations,
is not sufficient to describe the loss of superconducting order, and amplitude fluctuations must also be taken
into account. The standard models that are extensively used to model two-dimensional superconductors are
the Hubbard and XY models. Whereas the XY model allows only phase fluctuations, the Hubbard model has
an extra degree of freedom: amplitude fluctuations. In this paper we compare two Hubbard models with the
same critical temperature but with different interactions and deduce the role of the amplitude fluctuations in
the superconducting transition. For this purpose, a novel approximation is presented and used. We derive an
effective phase-only (XY) Hamiltonian, incorporating amplitude fluctuations in an explicit temperature
dependence of the phase rigidity. We study the relation between amplitude fluctuations and coupling strength.
Our results support existing claims about the suppression of phase rigidity due to amplitude fluctuations not
present in the XY model.

DOI: 10.1103/PhysRevB.88.184510 PACS number(s): 74.78.−w, 74.25.Bt, 74.40.−n

I. INTRODUCTION

In two dimensions, in accordance with the Mermin-
Wagner1 theorem, there can be no spontaneous symmetry
breaking associated with a continuous order parameter. How-
ever, it has been shown by Berezinskii2 and by Kosterlitz
and Thouless3,4 that there can be a transition from an
exponentially decaying order parameter to a power-law-
decaying one, as the temperature is lowered through the
critical Berezinskii-Kosterlitz-Thouless (BKT) temperature,
Tc. This phase-driven transition was argued5 to be relevant
to the superconductor-insulator transition in disordered thin
superconducting films6 and even to part of the phase diagram
of high-Tc superconductors.7

A standard model to study the BKT transition in two
dimensions is the XY model, which allows only phase
fluctuations. This model can be derived from the negative-U
Hubbard model (both models are defined below), in the
limit of large U , where fluctuations in the pairing amplitude
can be neglected.8 However, a recent experiment9 showed a
measurable discrepancy between the observations and a theory
that takes into account only phase fluctuations. In this case,
one may expect that the full Hubbard model, which does
include amplitude fluctuations, should be more appropriate
to describe the physical system. In this paper, we explore
the negative-U Hubbard model and compare its predictions
to those of the XY model. We concentrate on two specific
values of U that give rise to the same critical temperature, one
where amplitude fluctuations are expected to be negligible
(large U ) and one where they have a substantial effect on
the physics (small U ). We show that one can characterize
the system by an effective local Josephson coupling and
study the behavior of this effective coupling as a function of
temperature for different values of U . This quantity, which
can be probed using a local measurement, highlights the
effects of amplitude fluctuations for small U , compared to
the large-U system, which is very well described by the
XY model.

II. MODELS AND METHODS

The Hamiltonian of the classical XY model is given by

HXY = −
∑
〈i,j〉

Jij cos(θi − θj ), (1)

where 〈i,j 〉 designates near neighbors, and Jij = J the bare
near-neighbor coupling, which we take to be uniform in this
paper. In the context of superconductivity, the classical phases
θi ∈ [0,2π ) mimic the local phase of the superconducting
order parameter. It is the thermal fluctuation of these phases
which is believed to be the main mechanism for the loss
of conventional superconductivity in thin films and perhaps
certain cuprates.7 Starting from the low-temperature phase and
increasing the temperature towards the transition temperature
Tc, the XY model undergoes a BKT transition at Tc ≈ 0.89J .
Usually, Tc is found by use of the helicity modulus,10 which is
expected to have a universal jump (for an infinite system) at Tc.
However, due to the exponentially diverging correlation length
at the BKT transition, numerical calculation of the helicity
modulus always suffers from finite-size effects. An alternative
technique11 relies on the expected scaling of the correlations,

〈cos(θi − θi+L)〉 ∼ 1

Lη(T )
F

(
L

ξ

)
, (2)

with η(T ) the temperature-dependent correlation exponent
and ξ the (finite-size) correlation length at temperatures
below the BKT transition. Taken with the universal BKT
prediction η(Tc) = 1

4 , this provides a numerically simple
way to determine Tc, as it requires only calculation of the
(numerically more accessible) correlation function. In Fig. 1(a)
we demonstrate how this scaling technique is used to determine
Tc for the two-dimensional Hubbard model with U = 2.
Similarly, when we employed this technique for the XY model,
we found Tc ≈ 0.89J to good accuracy, even when using only
small systems.

Although the phase fluctuations and resulting BKT tran-
sition are well captured by the classical XY model, in real
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FIG. 1. (Color online) (a) Deducing Tc from the scaling relation
[Eq. (2)]. Scaled edge-to-edge correlation functions L1/4〈cos(θi −
θi+L/2)〉 for three different-sized systems cross at Tc ≈ 0.058.
(b) Schematic of Tc(U ) for the Hubbard model. The dashed (blue)
line is the XY model Tc ≈ 0.89J with J ∝ t2

U
. The dotted (red) line

shows the two values, U = 2 and 15 (black arrows), having the same
Tc studied in this paper.

superconductors the amplitude of the superconducting order
parameter can also fluctuate. Such amplitude fluctuations,
physically the breaking of a Cooper pair into two quasiparti-
cles, cause suppression of Tc compared with the purely phase
(XY) scenario.9 To allow such amplitude fluctuations, we use
the negative-U Hubbard model,

HHub = −
∑

〈i,j〉,σ
t C

†
iσCjσ − U

∑
i

C
†
i↑C

†
i↓Ci↓Ci↑

−
∑
i,σ

μ0C
†
iσCiσ , (3)

where 〈i,j 〉 indicates a sum over nearest neighbors; C†
iσ creates

a spin-σ electron at site i; t is the homogeneous hopping inte-
gral, taken to be the unit of energy; and −U < 0 is the on-site
attractive interaction. The chemical potential μ0 determines
the average density n and is fixed self-consistently so that the
density n = 0.875 remains temperature independent.

To simulate the model without resorting to quantum Monte
Carlo (MC), we use a well-established method that takes into
account thermal fluctuations but ignores quantum ones. Since
we wish to simulate our systems far from a (possible) quantum
phase transition, we are justified in making this approximation,
thus allowing us to enjoy the relative ease of a classical
simulation. Our simulation technique is explained in greater
detail elsewhere.12,13 We provide a brief description here for
the sake of completeness and notation.

Applying a Hubbard-Stratonovic transformation to the
Hubbard Hamiltonian, (3), with a local complex Hubbard-
Stratonovic field, �i , and ignoring the temporal dependence
of these fields (quantum fluctuations), the partition function
becomes

Z = Tr [e−βHHub ] =
∫

D({�i,�
∗
i })Trf [e−βHBdG({�i })], (4)

with the Bogoliubov–de Gennes (BdG) Hamiltonian14

HBdG({�i}) given by

HBdG = −
∑

〈i,j〉,σ
t C

†
iσCjσ −

∑
iσ

μ0C
†
iσCiσ

+
∑
iσ

(UiC
†
iσCiσ + �iC

†
i↑C

†
i↓ + �∗

i Ci↓Ci↑). (5)

Here Trf traces the fermionic degrees of freedom over
the single-body Hamiltonian HBdG and can be evaluated
exactly using its eigenvalues. Direct diagonalization of the
Hamiltonian at each MC step is extremely time-consuming,
and instead, since MC updates are local, one can use a
Chebyshev polynomial expansion.15 The integral over the
fields {�i,�

∗
i } can then be calculated using the (classical)

metropolis MC technique. One should note that, unlike
the BdG approximation, which amounts to a saddle-point
approximation of the integral, here �i are auxiliary fields.
Except at zero temperature, where our approach coincides
with the BdG solution, the fields �i are generally different
from the local superconducting order parameter 〈Ci↓Ci↑〉.

Using the scaling relation [Eq. (2)], we determine Tc as
a function of the Hubbard U for a range of values. This
technique, as well as others, was previously employed to find
the Tc of the Hubbard model.11,16–18 The resulting Tc(U ) is
schematically plotted in Fig. 1(b) and reveals a dome-like
shape. For very large values of the Hubbard coupling U � t ,
the kinetic term t can be treated as a perturbation, and a
leading-order expansion (away from half-filling) gives an
effective XY model8 with J ∝ t2

U
. The proportionality factor

depends on the electron density through the chemical potential
μ0 and is fixed so that the Tc of the effective XY model matches
the Hubbard one, with J ≈ t2

U
n (2 − n) 1

1.08 .19 (The last factor
is due to the difference between the classical and the quantum
models.)

Note that here J is temperature independent, as is the
case in the familiar XY model. The value for Tc for the
XY model is plotted as a dashed line, which agrees with
the Hubbard critical temperature for U > 12. Indeed, in the
following section, we explicitly show that in the large-U limit,
amplitude fluctuations are suppressed due to the high energy
cost associated with breaking a Cooper pair. Thus, in the
large-U limit, the fermionic degrees of freedom in the Hubbard
model become effectively frozen and the model becomes one
of interacting bosons on a lattice, i.e., an XY model, with only
the phases free to fluctuate.

III. RESULTS

Having established the shape of the Hubbard dome, we see
that a given Tc, below the maximal possible Tc, corresponds
to two systems with different values of Hubbard U . This
nontrivial situation leads us to the main question we wish to
address in this paper, namely, What is the difference between
the low-U and the high-U Hubbard models that share the
same Tc?

We chose to concentrate on two values of U , U = 2 and
U = 15, both leading to Tc ≈ 0.058t , shown in Fig. 1(b)
as the dotted horizontal line (for readability, let us refer
to them as weak and strong coupling). The advantage of
the choice of these values of U is twofold: the strong-
coupling side is well approximated by the equivalent XY
model; the weak-coupling side still maintains a (relatively)
small superconducting coherence length, ξ ≈ h̄vF

�
≈ 5 lattice

sites. The coherence length measures the effective size of
an amplitude excitation. Therefore a large coherence length
necessitates simulation of a larger lattice. We find that for
the parameters we chose and temperatures T < Tc, finite-size
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FIG. 2. (Color online) Distribution function of the nearest-
neighbor phase difference (circles) and effective Josephson fit [lines;
according to Eq. (6)] for a range of temperatures. Results shown for
a 20 × 20 Hubbard model with U = 2.

effects are negligible. To demonstrate this important point we
have simulated two system sizes (12 × 12 and 20 × 20), which
indeed behave very similarly for T < Tc. In what follows, we
present results for both system sizes and compare them to
the results of the XY model. Above the critical temperature
Tc, vortex and amplitude fluctuations proliferate, necessitating
much larger system sizes. Therefore, to avoid finite-size
effects, we limit our investigation to the T < Tc temperature
range.

To characterize a given system, we calculate the distribution
P (θ ) of the phase difference θ = θi − θj between two neigh-
boring sites, i and j . In the absence of an external magnetic
field, the probability of a phase difference, must be symmetric
about θ = 0, with θ ∈ [−π,π ). Since the system is invariant
under translations (we use periodic boundary conditions), the
distribution is identical for any nearest-neighbor pair, and we
thus average it over all the pairs in the lattice. The filled
circles in Fig. 2 show the numerical results for P (θ ) for
a U = 2 Hubbard model on a 20 × 20 lattice for a range
of temperatures. Interestingly, we find that the distribution
function can be fit quite accurately by that of a single, isolated
link (or Josephson junction), with an effective, temperature-
dependent coupling Jeff(T ) (solid lines in Fig. 2). In other
words, we find

P (θ ) = 1

Z
eβJeff (T ) cos(θ), Z = 2πI0(βJeff), (6)

with Z the partition function, β = 1
T

the inverse temperature,
and I0 the zeroth Bessel function. The procedure of singling
out two spins, i and j , and integrating out all the other
spins in the lattice makes the effective coupling Jeff(T )
explicitly temperature dependent. Such an explicit temperature
dependence resulting from partial integration was investigated
long ago.20–22 Before proceeding we wish to clarify the
following:

(1) As the temperature is increased, coherence between i

and j gets decreasing contributions from other lattice sites.
Indeed, at temperatures well above Tc the lattice contribution
to Jeff vanishes, leaving Jeff with only the bare near-neighbor
coupling. Therefore, at high temperatures in the strong-
coupling Hubbard model, Jeff → J ∝ t2

U
. Naturally, this result

also applies for the XY model.
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FIG. 3. (Color online) Effective Josephson coupling Jeff (T/Tc)
extracted using the fitting procedure shown in Fig. 2 with Tc = 0.058.
Weak-coupling (U = 2) and strong-coupling (U = 15) Hubbard
models are shown (system sizes, 12 × 12 and 20 × 20 each), as well
as the Jeff (T/Tc) for the XY model (size, 20 × 20). The U = 15
Hubbard behaves as an XY model, whereas for U = 2, Jeff is much
larger at low temperatures but decreases rapidly with temperature,
showing the dramatic effect of amplitude fluctuations. The two
curves cross at Tc, consistent with the expectation that global phase
coherence is lost at the same Jeff . Error bars show the fit with 95%
confidence.

(2) Amplitude fluctuations occupy a length scale of approx-
imately ξ . Therefore, to measure their effect, it is advisable to
examine the coherence of near neighbors.

(3) We have made vigorous tests, all showing that the above
distribution also holds for spin pairs arbitrarily far apart.
Moreover, the fitting function is robust for both the XY model
and the Hubbard model at arbitrary U .

(4) The procedure we employ, integrating out part of
the system, is identical to the procedure used to cal-
culate entanglement entropy. Thus we are in a position
to calculate the entanglement entropy of one pair with
the rest of the lattice. The result can be analytically
approximated, S = − ∫

dθ P (θ ) ln P (θ ) ≈ −βJeff
I1(βJeff )
I0(βJeff )

+
ln 2πI0(βJeff). We do not include further discussion of the
entanglement entropy in this work.

Using this fit one can extract Jeff , which is plotted, as a
function of temperature, in Fig. 3. Together, Figs. 2 and 3
constitute the main numerical result of this paper. Figure 3
shows results for both the weak- and the strong-coupling
Hubbard models in two lattice sizes, along with the XY
model with the same Tc. Our main observation is that Jeff

for the weak-coupling Hubbard is large at low temperatures
but decreases rapidly with temperature, showing a dramatic
suppression of near-neighbor coherence due to amplitude
fluctuations. In contrast, the strong-coupling Hubbard shows
only a modest suppression of Jeff for temperatures T � Tc,
similarly to the XY model. (We note that different lattice sizes
produce nearly the same results, demonstrating that indeed
our results are insensitive to finite-size effects.) These results
underscore the equivalence of the strong-coupling model to
the XY model, in contrast to the weak-coupling model, where
amplitude fluctuations are significant.

Moreover, the weak- and strong-coupling curves cross at Tc,
where both systems measure the same Jeff . This agrees with
an intuitive percolative description23 of Tc as the temperature
which overcomes near-neighbor coupling, thus destroying
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FIG. 4. (Color online) (a) The bare coupling Jbare,U of the XY
model that gives rise to the same correlations as that of the respective
Hubard model [scaled by J of the XY model with the same Tc; see
Eq. (7)], as a function of T. Jbare,U=2 shows a stronger temperature
dependence, reflecting the effect of amplitude fluctuations. Dashed
(black) lines, low-temperature estimate using Eq. (9). (b) Relative
amplitude fluctuations δ� [see Eq. (10)] for U = 2 . . . 12. The
weak-coupling values show significant amplitude fluctuations which
diminish as coupling is increased.

the BKT order, regardless of the microscopic details of the
model.13

In principle, since the local correlations in the negative-U
Hubbard model are fully captured by Jeff(T ), one can reverse-
engineer a phenomenological XY model, which will lead to
the same Jeff(T ) if, for each temperature, an appropriate bare
coupling Jbare(T ) is chosen. Indeed, if we assume that

Jbare,U (T )

Jbare,XY

= Jeff,U (T )

Jeff,XY (T )
, (7)

we can extract the bare coupling on the left-hand side, using
the results for the quantities on the right-hand side from Fig. 3.
The resulting bare coupling ratio for both U = 2 and U = 15
is shown in Fig. 4(a). For the strong-coupling case, the ratio
is temperature independent; it behaves as an XY model. In
contrast, the weak-coupling case shows an enhanced bare XY
coupling at low temperatures which decreases significantly
with temperature, to account for amplitude fluctuations.18,24

For T 
 Tc it is possible to deduce Jbare(T ) by a more
analytic method. Let the temperature be low enough so that for
two nearest neighbors we neglect non-Gaussian contributions,
giving a low-energy effective Hamiltonian:

H0 = Jbare

2

∑
〈i,j〉

(θi − θj )2 ≈ HXY . (8)

According to the equipartition theorem, 〈(θi − θj )2〉0 = T
2Jbare

.
The ensemble average 〈. . .〉0 is taken with H0, which means
that

〈ei(θi−θj )〉0 = e− 1
2 〈(θi−θj )2〉0 (9)

− ln〈cos(θi − θj )〉 ≈ T

4Jbare
(T 
 Jbare) .

Here, 〈cos(θi − θj )〉 is taken from the MC simulation of the
full model. Thus, using the MC data without any additional fit,
we can extract Jbare(T 
 Jbare) which should, naturally, agree
with the Jbare ratio we extract using Eq. (7).

The thick dashed (black) lines in Fig. 4(a) show the low-
temperature limit for Jbare,U derived from the procedure in
Eq. (9), agreeing well with the assumption outlined in Eq. (7).

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

U

δ
Δ

1 1.5 2 2.5
−6

−4

−2

0

ln U

ln
δ

Δ

(a)

0 0.02 0.04 0.06 0.08
−2.1

−2

−1.9

−1.8

−1.7

−1.6

Temperature

x

(b)

FIG. 5. (Color online) (a) Relative amplitude fluctuations [as in
Fig. 4(b)] as a function of U (filled circles). A power-law fit (lines)
shows the relation δ�(U,T ) ∼ Ux(T ) at several temperatures (T =
0.01,0.02, . . . ,0.08; colors, blue to red). Inset: Double-log plot of
the same data (filled circles) and fit (lines). (b) x(T ) extracted from
the power-law fit showing that δ� drops more rapidly with U as the
temperature increases.

Thus the reverse-engineering process we have suggested is
consistent with its expected low-temperature limit.

So far we have discussed the effect of amplitude fluctuations
without providing explicit evidence of their existence. Taking
Ci↑ as the (up) electron destruction operator at site i, we define
the relative root-mean-square (RMS) amplitude fluctuations
δ�,

δ�(T ,U ) = 1

N

∑
i

√
〈|Ci↓Ci↑|2〉 − 〈|Ci↓Ci↑|〉2

〈|Ci↓Ci↑|〉2
, (10)

with 〈. . .〉 the MC (ensemble) average, N the total number of
lattice sites, and

∑
i the sum over all lattice sites.

We plot δ� in Fig. 4(b) for values of U ∈ [2,12]. Clearly,
significant RMS amplitude fluctuations exist only in the
weak-coupling case and are, of course, stronger at higher
temperatures. Figure 5(a) shows that these curves, for the
limited range of U that we have calculated, satisfy a power-law
relation, δ�(T ,U ) ∼ Ux(T ). The exponent x(T ) and its 95%
fit confidence values is plotted in Fig. 5(b). Interestingly,
δ�(T ,U ) drops more rapidly with U at higher temperatures.

IV. SUMMARY AND CONCLUSIONS

Realistic superconducting thin films support both phase and
amplitude fluctuations of the order parameter. The simplest
model that allows these two degrees of freedom is the
attractive two-dimensional Hubbard model. It is known that
the critical temperature Tc(U ) of the Hubbard model has a
dome-like dependence on the coupling U . Therefore, there
exist two values of U , which we call weak (|U | < 4) and
strong (|U | � 4), that satisfy the same Tc. In this paper,
we have suggested a Josephson approximation that probes
the phase coherence of near neighbors. The approximation
is robust across a wide range of temperatures and is model
independent. Using this approximation we were able to extract
an effective coupling Jeff(T ) which we use as a probe to
compare the two sides of the Hubbard dome. We have found a
qualitative difference between the two sides of the dome in the
temperature dependence of Jeff(T ). Specifically, in contrast
to the strong-coupling side, which agrees quantitatively with
XY model, the weak-coupling model shows a steep decrease
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in Jeff(T ) as the temperature is increased towards Tc. We
explain this behavior by the effect of thermal fluctuations
on the superconducting amplitude and show evidence to
support our explanation. Thus, both processes contribute to
the quantitative way in which superconductivity is lost in
weak-coupling films, in contrast with the simpler (phase only)
mechanism in the strong-coupling regime. In the regime where
amplitude fluctuations are important, our approach can be used
to generate an effective phase-only action with a temperature-
dependent J (T ) as shown in Fig. 4(a). The resulting J (T )
can be compared with analytical attempts that integrate
out the amplitude fluctuations. It can also be used when
analyzing heterolayered systems (e.g., Refs. 25 and 26), where
different layers can have different couplings and therefore
different amplitude fluctuations effects. Specifically, it will be
interesting to use our technique to analyze bilayered systems
where both layers have the same Tc but one layer is weakly
coupled whereas the other is strongly coupled. Experimentally,

Jeff could be measured by a two-tip STM experiment, perhaps
by coupling the two tips to a SQUID or other sensitive device.
Single-tip STM experiments have already been successfully
used to probe inhomogeneous thin films.27,28

One advantage of our approach is that it readily generalizes
to disordered systems. In fact, our approach is likely to apply
to a wide range of systems such as cuprates, heavy fermion
and organic superconductors, and magnetic systems, as well as
any coherent system where both phase and nonphase degrees
of freedom exist.
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