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The B-phase of superfluid 3He is a 3D time-reversal-invariant topological superfluid with an isotropic energy
gap, �, separating the ground state and bulk continuum states. We report calculations of surface spectrum and
spin and mass current densities originating from the Andreev surface states for confined 3He-B. The surface
states are Majorana Fermions with their spins polarized transverse to their direction of propagation along the
surface, p‖. The negative-energy states give rise to a ground-state helical spin current confined on the surface.
The spectral functions reveal the subtle role of the spin-polarized surface states in relation to the ground-state spin
current. By contrast, these states do not contribute to the T = 0 mass current. Superfluid flow through a channel
of confined 3He-B is characterized by the flow field, ps = h̄

2 ∇ϕ. The flow field breaks SO(2)Lz+Sz rotational
symmetry and time reversal (T ). However, the Bogoliubov-Nambu Hamiltonian remains invariant under the
combined symmetry, Uz(π ) × T , where Uz(π ) is a π rotation about the surface normal. As a result the B phase
in the presence of a superflow remains a topological phase with a gapless spectrum of Majorana modes on the
surface. Thermal excitation of the Doppler-shifted Majorana branches leads to a power-law suppression of the
superfluid mass current for 0 < T � 0.5Tc, providing a direct signature of the Majorana branches of surface
excitations in the fully gapped 3D topological superfluid, 3He-B. Results are reported for the superfluid fraction
(mass current) and helical spin current for confined 3He-B, including the temperature dependencies, as well as
dependencies on confinement, pressure and interactions between quasiparticles.
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I. INTRODUCTION

A universal feature of superconductors and superfluids
in which the ground state breaks one or more space-time
symmetries, in addition to U (1)N gauge symmetry, is pair-
breaking at nonmagnetic boundaries. Pair-breaking results in
Fermionic states that have energies within the continuum gap
and are confined near impurities, interfaces, and topological
defects such as vortices or domain walls.1–3 Superfluid 3He
is the paradigm for BCS pairing with complex symmetry
breaking.4 The B phase of superfluid 3He is also a paradigm for
time-reversal-invariant (TRI) topological order.5–7 Indeed the
symmetry exhibited by the ground state of superfluid 3He-B
and the nontrivial topological invariant of the Bogoliubov-
Nambu Hamiltonian are intimately related.7–9 As a conse-
quence Fermionic excitations, surface Andreev bound states
(ABS), extending to zero energy with a Dirac-type spectrum
are confined on the boundary of superfluid 3He-B.

Although the spectrum of surface ABS in 3He-B has been
known theoretically for some time,10 these predictions did
not attract much interest until the discovery that surface
ABS in high-temperature superconductors provided a novel
spectroscopy of the unconventional pairing symmetries.11–15

The first experimental evidence for surface ABS in 3He-B was
provided by transverse acoustic impedance measurements at
frequencies below the continuum edge for quasiparticle pair
production, h̄ω < 2�, by Aoki et al.,16 and measurements of
their heat capacity by Choi et al.17 These studies involved
3He-B confined by a disordered quartz or metallic surface
for which the surface Fermionic spectrum was predicted
theoretically to be a finite density of states filling the gap
from the Fermi level up to a an energy scale �′ � �.18,19

The experimental studies confirmed a subgap Fermionic
spectrum with a finite density of states at the Fermi level,
but they provided no information on the Dirac spectrum

predicted for specularly reflecting surfaces. Recent impedance
measurements carried out on transducers preplated with a
thin-layer superfluid 4He show a frequency response that is
interpreted as the evolution toward a Dirac spectrum of surface
ABS in the presence of reduced surface disorder.20

That the surface Andreev states of 3He-B are
Majorana Fermions, and are topological in origin, was recog-
nized by Volovik7,21 and by Qi et al.5 This lead to a number of
new theoretical analyses to identify the Majorana spectrum on
the surface of 3He-B, as well as new experiments and proposals
to detect these novel excitations and understand the coherence
and topological protection of emergent Majorana Fermions
in superfluid 3He-B.22–25 The Majorana Fermions are spin
polarized transverse to their direction of propagation along the
surface, p‖, with a linear dispersion relation, ε±(p) = ± c |p‖|.
The negative energy states, which are fully occupied in the
ground state, generate a helical spin current confined on the
surface. Similar ground-state helical spin currents are a key
signature of 3D TRI topological insulators, and have been
detected with spin-polarized angle-resolved photoemission on
Bi1xSbx .26 The spin current on the surface of 3He-B was first
discussed by Zhang et al.,27 but was not connected to the
Fermion spectrum, and so far has not been detected.

In this paper we discuss effects of surface scattering and
quasiparticle interactions on the Fermionic spectrum, and
ground-state currents in the vicinity of boundaries confining
the 3D TRI superfluid B phase. The spin-current spectral
function reveals the subtle role of the ABS and continuum
spectrum in determining the ground-state spin current. We
also discuss mass transport and the response of the surface
spectrum in confined superfluid 3He-B. Superfluid mass flow
occurs in response to a phase gradient, or flow field, ps = h̄

2∇ϕ,
where ϕ(r) is the phase of the B-phase Cooper pairs. The
flow field breaks the SO(2)Lz+Sz orbital rotation symmetry
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about the normal axis of confined 3He-B, as well as time-
reversal (T ) and particle-hole (C) symmetry. However, the
Bogoliubov-Nambu Hamiltonian remains invariant under the
combined symmetry, Uz(π ) × T , where Uz(π ) is a π rotation
about the surface normal. As a result the B phase in the
presence of superflow remains a topological phase with a
gapless spectrum of Majorana modes on the surface. And
in contrast to the spin current, the negative energy bound
states do not contribute to the ground-state mass current.
However, thermal excitation of the Doppler-shifted Majorana
branches leads to a power-law suppression of the superfluid
mass current for 0 < T � 0.5Tc, providing a direct signature
of the Majorana branches of surface excitations in the fully
gapped 3D topological superfluid, 3He-B. Quantitative results
are reported for the mass current and helical spin current
for confined 3He-B, including the temperature and pressure
dependencies, as well as dependencies on confinement, and
interactions between the Fermionic quasiparticles. The results
reported here are discussed in context with the recent results
on helical spin currents by Tsutusmi et al.28

Starting from the Bogoliubov-Nambu Hamiltonian in
Sec. II we review the symmetries and the topological wind-
ing number governing the surface spectrum of 3He-B. In
Sec. III we introduce Eilenberger’s quasiclassical equation
for the Nambu propagator that is the basis for investigating
the spectrum of surface states and spin and mass currents
of confined superfluid 3He-B. The Nambu propagator for
quasiparticles and pairs is obtained for a specular boundary,
and the surface ABS spectrum is discussed in Sec. III B.
In Sec. III C we connect the surface ABS to pair-breaking
of the Cooper pair spectral density. In Sec. III D we show
explicitly how the Majorana property of the surface bound state
spectrum is encoded in the Nambu propagator by introducing
Shelankov’s projection operators to construct the Majorana
Fermion spinors. In Secs. IV A and IV B we discuss the spin-
and spin-current spectral densities, and the contributions to the
ground-state spin current from the surface ABS and continuum
spectrum. Results for the spin current at finite temperature are
presented in Sec. IV C. In Sec. V we consider the effects of an
imposed phase gradient across a channel of confined 3He-B.
The breaking of time-reversal symmetry by the flow field and
its effect on the topological class and Majorana spectrum
are discussed in Sec. V A, while the mass current spectral
function in the presence of superflow, including the effects
of quasiparticle molecular field interactions, are described
in Secs. V B–V D. We begin with an introduction to broken
symmetries in the B phase of superfluid 3He and its order
parameter and residual symmetry.

II. 3D TOPOLOGICAL SUPERFLUID 3He-B

The normal phase of 3He is separately invariant under spin
and space (orbital) rotations, gauge symmetry, as well as parity
and time reversal. Thus, the maximal symmetry group of the
normal phase is29

G = SO(3)L × SO(3)S × U (1)N × P × T . (1)

The superfluid phases of 3He are condensates of p-wave (L =
1), spin-triplet (S = 1) Cooper pairs,4 described by a pairing

gap matrix (order parameter) in spin space of the form

�̂(p) = i �σσ y · �d(p) =
(

−dx + idy dz

dz dx + idy

)
, (2)

where �d(p) transforms as a vector under rotations in spin space,
and is a p-wave function of the orbital momentum of the
Cooper pairs. For inhomogeneous phases, e.g., flow states and
confined 3He, the order parameter is also a function of the
center of mass coordinate, R, of the Cooper pairs.

The B phase of superfluid 3He is the realization of the
Balian-Werthamer (BW) phase for a condensate of p-wave,
spin-triplet Cooper pairs with total angular momentum J =
0.30 This phase is defined by �d = � p/pf , where the gap
magnitude, �, is real. The corresponding pairing gap matrix,
�̂(p) = �i �σσ y · p/pf , is manifestly invariant under joint
spin and orbital rotations (J = 0). Thus, the B phase of 3He
breaks spin and orbital rotation symmetries, as well as parity
and gauge symmetry, but preserves time-reversal, particle-hole
symmetry and joint rotations of both the spin and orbital
coordinates; i.e., the residual symmetry group is

H = SO(3)L+S × T . (3)

The broken relative spin-orbit rotation symmetry leads to a
spontaneously generated spin-orbit coupling in the B phase
with an energy scale of order �, which plays a central role
in determining the excitation spectrum of superfluid 3He-B.
The stiffness associated with relative spin-orbit rotations is re-
sponsible for transverse sound, acoustic circular birefringence,
and thus Faraday rotation of the polarization of transverse
sound.31–33 Similarly, the Fermionic spectrum is defined by
Bogoliubov quasiparticles which are momentum and helicity
eigenstates derived from the broken relative spin-orbit rotation
symmetry.

The Fermionic spectrum of superfluid 3He-B is governed
by the 4 × 4 Bogoliubov-Nambu Hamiltonian34

Ĥ = ξ (p)τ3 + �̂(p), �̂(p) =
(

0 �̂(p)

�̂†(p) 0

)
, (4)

where �τ = {τ1,τ2,τ3} [�σ = {σ x,σ y,σ z}] are Pauli matrices
in particle-hole (spin) space, and ξ (p) ≡ p2/2m∗ − μ is the
excitation energy of normal-state particles and holes, and
μ = 1

2 vf pf is the Fermi energy at T = 0, with pf and vf

being the Fermi momentum and Fermi velocity, respectively.
A unitary transformation of the Bogoliubov-Nambu Hamilto-
nian, ŜĤ Ŝ† → Ĥ , reduces Eq. (4) to the Dirac form,35

Ĥ = ξ (p)τ3 + c p · �σ τ1, (5)

in which the spin-orbit coupling of the “relativistic” Fermionic
states is explicit, and the “light” speed, which is determined
by the bulk gap and Fermi momentum, c = �/pf , is three
orders of magnitude below the Fermi velocity.

The bulk excitation spectrum is obtained from Ĥ
2 =

E(p)2 = ξ (p)2 + �2. The negative energy states are filled
and account for the condensation energy of the B-phase
ground state. Fermionic excitations in the bulk phase are
doubly degenerate helicity eigenstates with excitation energy,
E(p) =

√
ξ (p)2 + �2, that is gapped over the entire Fermi

surface.
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The B phase belongs to topological class DIII of 3D
topological insulators and superconductors.36 The topological
invariant is the 3D winding number,7,9,36

N3D =
∫

d3p

24π2
εijk Tr{
 (Ĥ

−1
∂pi

Ĥ )(Ĥ
−1

∂pj
Ĥ )

× (Ĥ
−1

∂pk
Ĥ )} = 2, (6)

derived from 
Ĥ 
† = −Ĥ with 
 ≡ C × T , where C =
K × τ1 is the conjugation symmetry of the Bogoliubov-
Nambu Hamiltonian. At an interface between a topological
quantum phase—with nonzero winding number and a bulk
gap—and a nontopological phase the gap must close.2 For
3He-B Majorana Fermions with a linear dispersion relation,
εB
±(p) = ±c |p‖|, form a “Dirac cone” of states at the interface,

where p‖ is the momentum in the plane of the interface.
Consider 3He confined in one dimension, i.e., a channel of

width D. For channel widths D � Dc ≈ 9ξ0 the ground state
is a “distorted” B phase defined by19

�d = �‖(p̂x x̂ + p̂y ŷ) + �⊥ p̂z ẑ, (7)

where p̂i are direction cosines of the relative momentum
p. Surface scattering leads to pair-breaking and suppression
of the normal component of the order parameter, �⊥ < �‖.
For weak confinement (D 
 Dc) �‖,�⊥ → � away from
the boundaries. But, for strong confinement the B phase is
anisotropic with �⊥ < �‖ everywhere. Surface scattering
results in multiple Andreev reflections and the formation of
a spectrum of Fermionic states confined on the surface. A
local description of the surface spectrum and order parameter
can be obtained from solutions of the Bogoliubov equations,

Ĥ

(
h̄

i
∇,R

)
|Ψ 〉 = ε|Ψ 〉, (8)

where |Ψ 〉 is a four-component Nambu spinor wave function
for an energy eigenstate of 3He in the confined geometry.

III. QUASICLASSICAL FORMULATION

For 3He the ratio of the Fermi wavelength, h̄/pf ≈ 1 Å,
to the size of Cooper pairs, ξ0 = h̄vf /2πkBTc ≈ 800 Å, is the
basis of the quasiclassical approximation to the Bogoliubov
equation.37 The expansion is achieved by factoring the fast
and slow spatial variations of the spinor wave function, |Ψ 〉 =
eip·R/h̄ |Ψp〉, and retaining leading-order terms in h̄/pf ξ0 � 1,
which yields Andreev’s equation,38

(ετ3 − �̂(p,R))|Ψp〉 + ih̄ vp · ∇ |Ψp〉 = 0, (9)

where p = pf p̂ is the Fermi momentum and vp = vf p̂ is
the Fermi velocity. The latter defines classical trajectories
for the propagation of Bogoliubov excitations, which are
coherent superpositions of normal-state particles and holes,
with amplitudes given by the Andreev-Nambu spinor, |Ψp〉.

Gorkov’s propagator is the Green’s function for the
Bogoliubov equation. In the quasiclassical limit the causal
(retarded in time) propagator, ĜR(p,R,ε), is a 4 × 4 matrix,
whose diagonal components in particle-hole space, ĝ, ĝ′, are
2 × 2 spin matrix quasiparticle (quasihole) propagators, while
the off-diagonal components, f̂ and f̂′, are the propagators
for Cooper pairs. The full structure of the quasiclassical

propagator can be expressed in terms of spin scalar and vector
components of the quasiparticle (quasihole) propagators, g

and �g (g′ and �g′), and spin-singlet and spin-triplet components
of the pair propagator (conjugate pair propagator), f and
�f (f′ and �f′),

ĜR =
(

gR + �gR · �σ fR iσy +�fR · (i �σσy)

f′R iσy +�f′R · (iσy �σ ) g′R + �g′R · �σ tr

)
. (10)

The propagator obeys Eilenberger’s transport equation

[εRτ3 − �̂(p,R) , ĜR] + ih̄vp · ∇ĜR = 0, (11)

which is supplemented by the normalization condition,39

[ĜR(p,R,ε)]2 = −π2 1̂, (12)

with εR = ε + i0+ and boundary conditions for the propaga-
tors defined on classical trajectories that scatter off surfaces or
interfaces.40

A. Propagator for 3He-B near a specular surface

Consider a specularly reflecting surface located at z = 0
bounding superfluid 3He-B in the half space, z > 0. In order
to investigate the spectrum of Fermion excitations, as well as
local magnetic and flow properties of confined 3He, we solve
Eilenberger’s transport equation along classical trajectories in
the vicinity of the boundary at z = 0 as shown in Fig. 1.
For a specularly reflecting surface that is far from any
other boundary, only a single reflection, p → p, couples the
propagators for incoming (p) and outgoing (p) trajectories.

Using the scalar and vector representation for the matrix
propagator in Eq. (10) we can transform Eq. (11) into blocks
of coupled equations for the components. This transformation
is described in Appendix A. For 3He-B in zero magnetic field
and zero flow the solution for the propagator components for
a deformed B phase defined by Eq. (7) reduces to scalar and
vector quasiparticle propagators and three spin-triplet Cooper
pair propagators; the spin-singlet propagator vanishes:

gR = −πεR

λ(ε)

[
1 − �2

⊥ cos2 θ

(εR)2 − �2
‖ sin2 θ

e−2λ(ε) z/h̄ vz

]
, (13)

�gR = π

[
�⊥�‖ sin θ cos θ

(εR)2 − �2
‖ sin2 θ

]
e−2λ(ε) z/vz e2, (14)

FIG. 1. (Color online) The incoming (outgoing) trajectory is
represented by p (p); e1 and e2 are directions transverse to p, with
e2 ≡ ẑ × p̂. The angle between incident trajectory and surface normal
is θ . The coordinates for the time-reversed trajectory pair (p′,p′) are
denoted by primes.
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fR
z = −π

�⊥ cos θ

λ(ε)

[
1 − e−2λ(ε) z/h̄ vz

]
+π

[
εR �⊥ cos θ

(εR)2 − �2
‖ sin2 θ

]
e−2λ(ε) z/h̄ vz , (15)

fR
‖ = +π

�‖ sin θ

λ(ε)

[
1 − �2

⊥ cos2 θ

(εR)2 − �2
‖ sin2 θ

e−2λ(ε) z/h̄ vz

]
,

(16)

where −π/2 � θ � π/2 is the angle between the incoming
trajectory, p, and the normal to the surface, ẑ; e1 and e2 are
unit vectors transverse to the incoming trajectory, with e2 being
perpendicular to the plane containing p and p‖, as shown in
Fig. 1. These results are obtained for the planar deformed
B-phase order parameter defined by the �d vector in Eq. (7). The
exponential in Eqs. (13)–(16) depends on the projection of the
group velocity along the normal to the interface, vz ≡ vf cos θ ,
and the function λ(ε) defined as

λ(ε) = lim
η→0+

√
|�(p)|2 − (ε + iη)2

=
√

|�(p)|2 − ε2 × �(|�(p)| − |ε|)
+ i sgn(ε)

√
ε2 − |�(p)|2 × �(|ε| − |�(p)|), (17)

where |�(p)|2 ≡ �2
‖ sin2 θ + �2

⊥ cos2 θ defines the continuum
gap edge for the anisotropic B phase.

The retarded components of the quasiclassical propagator in
Eq. (10) have the following meanings: The scalar component,
gR, is related to the local quasiparticle spectral function, while
the spin vector component, �gR, determines the spin density
spectral function. The off-diagonal component in particle-hole
space, �fR, determines the spectral function for spin-triplet
pairing correlations. The conjugate spin-triplet component
is related by symmetry: �f′R = −�fR(−p,z, − ε)∗. For a non-
magnetic interface and for zero magnetic field the spin-singlet
pairing correlations vanish; i.e., fR = f′R = 0. Finally, note that
the spin-vector component of the quasiparticle propagator is
normal to both ẑ and �p‖, while the spin-triplet components are
projected onto the film coordinates: �fR = fR

x x̂ + fR
y ŷ + fR

z ẑ,
with fR

‖ ≡ −(fR
x + ifR

y ) e−iφ .

B. Density of states

The quasiparticle spectral function, or momentum-resolved
local density of states (LDOS), is given by the imaginary part
of the quasiparticle propagator,

N (p,z,ε) = − 1

π
Im gR(p,z,ε), (18)

where gR is the scalar contribution to the retarded Green’s
function in Eq. (13). The LDOS is in units of the single-spin,
normal-state DOS at the Fermi energy, Nf , and consists of two
contributions: the continuum spectrum defined by |ε| > |�(p)|
and the surface Andreev bound-state spectrum for energies
below the continuum |ε| < |�(p)|. The surface bound state
spectrum is reflected in the poles of gR. There are positive and
negative energy branches of Fermionic states with dispersion
relations corresponding to a pair of Dirac cones,

εB
±(p‖) = ± c |p‖|, (19)

where p‖ is the in-plane momentum of the Fermions confined
on the surface, and c = �‖/pf is their velocity. The bound-
state contribution to the LDOS is given by

NB(p,z,ε) = π�⊥ cos θ

2
e−2�⊥ z/h̄ vf

× [δ(ε − εB
+(p‖)) + δ(ε − εB

−(p‖))]. (20)

The Andreev bound states are confined to the surface within a
distance defined by the length scale

ξ� = h̄vf /2�⊥. (21)

Under strong confinement, �⊥ → 0, the Andreev states
penetrate deep into the bulk; however, their spectral weight
also vanishes.

There are two contributions to the continuum spectrum. The
first term in Eq. (13) gives the bulk contribution to the LDOS,
Nbulk(p,ε) = �(|ε| − |�|) |ε|/

√
ε2 − |�|2. In addition there

is a surface-induced contribution to continuum spectrum
obtained from Imλ(ε) in the spatially varying term of Eq. (13).
The full LDOS for |ε| > |�| is then given by

NC(p, z,ε) = |ε|√
ε2 − |�|2

[
1 −

(
�2

⊥ cos2 θ

ε2 − �2
‖ sin2 θ

)

× cos

(
2 z

√
ε2 − |�|2

h̄ vf cos θ

)]
. (22)

Note that the divergence in the LDOS for |ε| → |�| of the bulk
spectrum is converted to a square root threshold for z = 0, with
the transfer in spectral weight appearing in the bound-state
spectrum. The full LDOS is shown in Fig. 2. The bound-
state energies (red dots) disperse linearly with the in-plane
momentum p‖. The continuum spectrum is shown for energies
above (below) |�| (−|�|).

ε/Δ−2
−1

0
1

2

p
/p

f

−1.0

−0.5

0.0

0.5

1.0

0

2

4

6
N(p||, ε)

FIG. 2. (Color online) Spectral function (LDOS) at a specular
boundary (z = 0) as a function of the in-plane momentum −pf �
p‖ � pf and energy ε/�. The Fermi level is the line ε = 0. The red
dots denote the energy and momentum of the Andreev bound states.
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C. Pair-breaking

The spectral density for spin-triplet pairing correlations is

�P (p,z,ε) = − 1

π
Im�fR(p,z,ε), (23)

also in units of Nf , and determines the components of the
mean pair potentials, �⊥(z) and �‖(z), via the self-consistency
condition, i.e., the weak-coupling BCS “gap equation,”

�d(p,z) = 〈v(p,p′)
∫ +�c

−�c

dε tanh
( ε

2T

) �P (p′,z,ε)〉p′ , (24)

where �c � EF is the bandwidth of attraction for the
spin-triplet, p-wave pairing interaction, v(p,p′) = 3v1 p̂ ·
p̂′, which is integrated over the occupied states defining
the pair spectrum and averaged over the Fermi surface,
〈. . .〉p′ ≡ ∫

d�p′/4π (. . .). The pairing interaction, v1 > 0,
and cutoff, �c, are eliminated in favor of the T = 0 bulk
gap, � = 2�e−1/v1 , or the transition temperature, kBTc =
1.13�c e−1/v1 . Integration over the thermally occupied spec-
trum can be transformed to a sum over Matsubara energies,
εn = (2n + 1)πT , using the analyticity of �fR in the upper half
of the complex energy plane. Projecting out the normal (z) and
in-plane (x,y) components of �d(p,z) yields the gap equations,

�⊥ = 3v1

∫
d�p̂′

4π
p′

z T
∑
εn

fz(p,z,εn), (25)

�‖ = 3v1

∫
d�p̂′

4π
p′

x T
∑
εn

fx(p,z,εn), (26)

where fz (f‖) is obtained from Eq. (15) [Eq. (16)] by analytic
continuation: ε → iεn with λ(ε) → √

ε2
n + |�(p)|2, and fx =

f‖ cos φ where φ is the azimuthal angle of incident trajectory.
The results for �⊥,‖(z) are shown in Fig. 3 for T = 0.2Tc.
The normal component of the order parameter, �⊥(z), is
suppressed to zero at the boundary. The strong pair-breaking of
the p̂z component of the mean-field order parameter is explicit
in Eq. (15): the even frequency pairing correlations vanish at
the boundary, while the odd frequency pairing correlations do
not contribute to the mean-field order parameter. By contrast,
the in-plane components are weakly enhanced at the boundary
compared to the bulk value. The enhancement originates

1 2 3 4 5 6
z/ξΔ

0.0

0.2

0.4

0.6

0.8

1.0

Δ /Δ

Δ⊥/Δ

FIG. 3. (Color online) Spatial variation of the B-phase order
parameter near a specularly reflecting boundary. The order parameter
components vary on the scale of ξ�.

from the bound-state contribution to the in-plane pairing
correlations that is explicit in Eq. (16). Both components
converge to the bulk gap on a scale set by the bound-state
confinement length, ξ�. Exact gap profiles for the B-phase
order can be obtained by computing the propagators with
updated values of the order parameter until self-consistency
is achieved.27

D. Projection operators and Majorana Fermions

The normalization condition [Eq. (12)] for the quasiclassi-
cal Green’s function provides a sum rule on the spectral weight
shared between continuum states for Fermions and Cooper
pairs, as well as Andreev bound states. The normalization
condition can also be used to extract information on the internal
structure (particle-hole coherence) of the states identified in the
LDOS. In particular, Shelankov showed that the Nambu matrix
propagator, ĜR, is related to projection operators,41

P̂
R
± ≡ 1

2

[̂
1 ± i

π
ĜR(p, z,ε)

]
, (27)

for Fermionic quasiparticles (+) and quasiholes (−). The

normalization condition implies that P̂
R
± obey the identities

for projection operators in Nambu space,

(̂P
R
±)2 = P̂

R
±, P̂

R
+P̂

R
− = P̂

R
−P̂

R
+ = 0, P̂

R
+ + P̂

R
− = 1̂. (28)

In the normal state, ĜR
N = −iπτ3, and we immediately obtain

the projection operators in Nambu space for normal-state

quasiparticle, P̂
R
+ = 1

2 (̂1 + τ3), and quasihole states, P̂
R
− =

1
2 (̂1 − τ3). The remarkable feature is that Shelankov’s oper-
ators retain their interpretation as projection operators even
for inhomogeneous superfluid condensates.

Consider the projection of a normal-state quasiparticle with
spin |z ↑〉 onto the 4 × 4 Nambu space defined by the B-phase
projectors in the vicinity of a surface,

|Ψ 〉 = P̂
R
+

⎛⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎠ = 1

2

⎛⎜⎜⎜⎜⎝
(
1 + i

π
gR
)

i
π

(
gR

x + igR
y

)
i
π

(
fR
x + ifR

y

)
− i

π
fR
z

⎞⎟⎟⎟⎟⎠. (29)

The azimuthal angle, φ, of the in-plane momentum, p‖, factors
out of the chiral components:

gR
x + igR

y = gR
‖ × (−ieiφ), fR

x + ifR
y = fR

‖ × (−eiφ).
(30)

For the surface bound states, the projected state is evaluated
by integrating over an infinitesimal bandwidth around the
delta function at the bound-state energy. Thus, we obtain two
branches of Fermionic bound states corresponding to εB

+(p‖)
and εB

−(p‖),

|Ψ (±)(p‖)〉 = u(θ,z) [e−iφ/2|�+〉 ∓ e+iφ/2|�−〉], (31)

where the amplitude is

u(θ,z) = π

4
�⊥ cos θ e−z /ξ�, (32)
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and the Nambu spinors, |�±〉, are given by

|�+〉 =

⎛⎜⎜⎜⎝
1

0

0

−i

⎞⎟⎟⎟⎠, |�−〉 =

⎛⎜⎜⎜⎝
0

+i

1

0

⎞⎟⎟⎟⎠. (33)

Note that |�+〉 is an equal-amplitude superposition of a
normal-state quasiparticle with spin |z ↑〉 and a normal-state
quasihole with spin |z ↓〉, while |�−〉 is an equal-amplitude
superposition of a normal-state quasiparticle with spin |z ↓〉
and a normal-state quasihole with spin |z ↑〉. These two spinors
are eigenvectors of the Nambu spin operator,

Ŝz = h̄

2

(
σ z 0

0 σ yσ zσ y

)
, (34)

with

Ŝz|�±〉 = ±h̄

2
|�±〉. (35)

Thus, for the negative energy bound state, which is fully
occupied at T = 0, for any momentum eigenstate with 0 �
p‖ � pf and φ = 0 the state is described by the Nambu spinor,

|Ψ−(φ = 0)〉 ∼ |�+〉 + |�−〉, (36)

which is the equal-amplitude particle-hole spinor with Sy =
+h̄/2; i.e., the spin is polarized along the +y direction for all
p‖|| + x. Similarly, for φ = π/2 we have

|Ψ−(φ = π/2)〉 ∼ |�+〉 − |�−〉, (37)

which describes equal-amplitude particle-hole states with
Sx = −h̄/2 for p‖|| + y. The spinors |�±〉 obtained from the
Nambu propagator describe Majorana Fermions confined on
the surface of 3He-B for any value of p‖, and are equivalent to
Majorana spinors obtained by Nagai et al.25 and Mizushima23

directly from solutions of the Bogoliubov equations. This
construction shows that the Majorana property of the surface
Andreev bound states is encoded in the Nambu propagator,
and thus the spectral functions for the spin and mass currents.

IV. HELICAL SPIN CURRENT

The correlation between the spin projection and momentum
of the negative energy surface states is encoded in Eqs. (31)–
(37) for the Nambu spinors. Occupation of the negative energy
states at T = 0 leads to a ground-state helical spin current.
This is a key signature of a 3D TRI topological superfluid. The
existence of a ground-state spin current, with spin polarization
transverse to p, can also be inferred from Eq. (14) for the
spin-vector component of the quasiparticle propagator, which
depends explicitly on the spectrum of Majorana Fermions.

A. Spin-current spectral function

The spin density spectral function is a vector in spin space
that provides the contribution to the spin density from states
with energies in the interval (ε, ε + dε). This spectral function,
in units of Nf h̄/2, is derived from the vector component of

the quasiparticle propagator in Eq. (14),

�S(p,z,ε) = − 1

π
Im �gR(p,z,ε). (38)

The vector propagator, �gR(p,z; ε), has the same pole as the
scalar propagator corresponding to the spectrum of Majorana
Fermions on the surface. The two branches of surface states
carry oppositely oriented spin polarization with equal spectral
weight,

�SB = π�⊥ cos θ

2
[δ(ε − εB

−(p‖))

− δ(ε − εB
+(p‖))]e−2�⊥z/h̄ vf e2. (39)

Furthermore, the spin polarization of surface excitations are
opposite for any pair of time-reversed trajectories, p and p′ =
−p. This implies a net spin current confined on the surface at
any temperature T < Tc. We define the spin-current spectral
density as the local spin-current density of states for a pair of
time-reversed trajectories,

Jα(p,z,ε) = 2Nf × h̄

2
vp[Sα(p,z; ε) − Sα(p′,z; ε)], (40)

where Jα is the α spin component of spin current flowing in the
vp direction, Nf is the normal-state density of states at Fermi
level for one spin, and p′ denotes the time-reversed trajectory
of p, with vp′ = −vp. The spin-current density is then obtained
by thermally occupying this spectrum and integrating over all
incident trajectories,

�J(z) =
∫

in

d�p̂

4π

∫ +∞

−∞
dε f (ε) �J(p,z,ε), (41)

where f (ε) = 1/(eβε + 1) is the Fermi function and β = 1/T .
Note that �J(z) is a tensor under SO(3)L+S rotations, and can be
represented by a 3 × 3 matrix with components Jαi(z).

B. Ground-state surface spin current

For the ground state only negative energy states are
occupied; however there are contributions to the spin current
from both the surface bound states and the continuum. The
bound-state contribution to the spin-current density is obtained
by evaluating Eq. (41) with the bound-state spectral density
obtained from Eqs. (39) and (40). The matrix representation is
then

�JB(z) = h̄

2

πNf vf �⊥
6

⎛⎜⎝ 0 −1 0

+1 0 0

0 0 0

⎞⎟⎠ e−2�⊥z/h̄ vf . (42)

Note that for fixed z the spin current is a spatially homo-
geneous, in-plane current of spins, also aligned in-plane and
normal to the direction of flow; i.e., the current flowing along
+x̂ carries spins polarized along +ŷ, while the current flowing
along +ŷ carries spins polarized along −x̂. This is a helical
spin current in which the current flowing along a direction
ê in the xy plane transports spin polarized along ẑ × ê. It is
also clear from Eqs. (14) and (17) that the negative energy
continuum spectrum contributes to the ground-state spin
current. This is a “response” of the condensate to formation of
the surface Majorana spectrum. Bound-state and continuum
contributions to the spin current are shown clearly in Fig. 4
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FIG. 4. (Color online) Spectral function for the surface spin
current, �J(p,z,ε), vs depth, z, for trajectory angle, θ = π/6 (in-plane
momentum p‖ = pf /2). The gray region represents the thermally
occupied states at low, but finite, temperature. Tomasch oscillations
develop for z > 0.

for the magnitude of the spin-current spectral function at
p‖ = pf /2. In particular, the continuum contribution to the
spin density spectral function becomes

�SC = �⊥�‖ sin θ cos θ

ε2 − �2
‖ sin2 θ

sgn(ε) sin(2
√

ε2 − �2 z/h̄ vz) e2,

(43)

and the corresponding continuum contribution to the spin-
current density can be expressed as

JC
αi(z) = −Nfh̄vf

2π

∫
in

d�p �⊥�‖ sin θ cos θ eα
2 p̂i I(p),

(44)

where the I(p) is defined as an integration over the occupied
negative energy continuum,

I(p) =
∫ −�

−∞

dε

ε2 − �2
‖ sin2 θ

sin(2
√

ε2 − �2 z/h̄ vz). (45)

Note that even though the spin-density spectral function
exhibits Tomasch oscillations into the bulk of the condensate,
the continuum contribution to the spin current is confined
to the surface on the scale of ξ�. The integration over the
spectrum in Eq. (45) is evaluated by extending the energy
integration to positive and negative energies, and transforming
to an integration over the radial momentum, or equivalently,
ξ = vf (p − pf ) = √

ε2 − �2. Thus, we can write Eq. (45) as

I(p) = 1

2
Im

∮
CR

dξ
ξ√

ξ 2 + �2

1

ξ 2 + �2
⊥ cos2 θ

e2iξz/h̄ vz ,

(46)

where CR is the real axis. The integrand has simple poles on
the imaginary axis at ±i�⊥ cos θ and branch cuts at [±i�, ±
i∞] as shown in Fig. 5. The integral along the real axis is
transformed to integrals around the pole at C1 and around the
branch cut from +i � to +i ∞: I(p)CR

= IC1 (p) + IC2 (p). The

1
R

2

iΔ
iΔ⊥ cos

FIG. 5. (Color online) Singularities defining the continuum con-
tribution to the ground-state spin current in Eq. (46). Integration along
the real axis, CR, is transformed to integration around the resonance
pole, C1, at ξ = +i�⊥ cos θ , plus the branch cut, C2, extending from
+i� along the imaginary axis.

resonance pole at ξ = +i�⊥ cos θ gives a contribution to the
ground-state spin current that exactly cancels the bound-state
contribution to the spin current from Eq. (42). Thus, the net
spin current is determined by the the nonresonant contribution
IC2 (p) from the branch cut, which evaluates to

IC2 (p) = −
∫ ∞

0

dε

ε2 + �2
‖ sin2 θ

e−2
√

�2+ε2 z/h̄ vz , (47)

which shows explicitly the response of the continuum states
originating from the (off-resonant) surface bound state. The
cancellation of the spin current carried by the surface bound
state by a resonant contribution from the negative energy
continuum is essentially identical to the cancellation of mass
current carried by the chiral edge states from a similar
resonance term for the continuum states of 2D 3He-A.42 The
resulting ground-state spin-current density is then given by
Eq. (44) evaluated with Eq. (47). While it is clear from Eq. (47)
that the spin current is confined to the surface, there is no
single confinement scale as was the case for the bound-state
contribution in Eq. (42). However, we can evaluate the sheet
spin current by integrating the spin-current density from the
surface into the bulk. The resulting sheet spin current confined
on the surface of 3He-B is given by

�K =
∫ ∞

0
dz �J(z) = K(0)

⎛⎜⎝ 0 −1 0

+1 0 0

0 0 0

⎞⎟⎠, (48)

with the magnitude given by

K(0) = Nf v2
f h̄2 �⊥�‖

∫
in

d�p

4π
sin θ cos2 θ sin2 φ

×
∫ ∞

0
dε

1

(ε2 + �2
‖ sin2 θ )

√
�2 + ε2

(49)

= IK

(
�‖
�⊥

)
× Nf v2

f h̄2, (50)
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where the function IK(x) is given in Appendix B. For weak
confinement, �⊥ = �‖, we obtain a ground-state spin current

K(0) ≡ 1

18
Nf v2

f h̄2 = 1

6
n2D vf

h̄

2
(51)

that is independent of the pairing energy scale �, and depends
only on the spin current carried by a normal-state quasiparticle,
vf

h̄
2 , and the areal density of 3He atoms, n2D ≡ nh̄/pf . This

result agrees with that of Tsutusmi and Machida28 if we neglect
the Fermi-liquid correction to effective mass in the expression
Nf v2

f = 3
2n/m∗ in Eq. (51), i.e., if we set m∗ = m3, the atomic

mass of 3He.
However, for strong confinement, �⊥ � �‖, the universal-

ity is destroyed, K(0) ≈ 1
4 (�⊥/�‖)3 n2D vf

h̄
2 , which vanishes

for �⊥ = 0. This is expected as there is no Andreev bound state
or spin current on the surface of the planar phase of 3He, as is
clear from Eq. (32) for the Majorana amplitude.

C. Temperature dependence of the spin current

The analysis of the ground-state spectral current also
applies at finite temperature, leading to the following result
for the kernel of Eq. (44) for the temperature-dependent
spin-current density,

I(p) = 1

2
Im

∮
C2

dξ
ξ tanh

(√
ξ 2 + �2/2T

)
(
ξ 2 + �2

⊥ cos2 θ
)√

ξ 2 + �2
e2iξz/h̄ vz .

(52)

The thermal distribution transforms the branch cut into a sum
over pole contributions at ξn = i

√
ε2
n + �2, where εn = (2n +

1)πT for n = 0, ± 1, ± 2, . . . are the Fermion Matsubara
energies.43 The resulting kernel is given by

I(p) = −πT
∑
εn

1

ε2
n + �2

‖ sin2 θ
e−2

√
�2+ε2

n z/h̄ vz . (53)

We can then express the sheet current at finite temperature as

�K(T ) = 2Nf v2
f h̄2 �⊥�‖

∫
in

d�p

4π
sin θ cos2 θ (e2 p̂)

×πT
∑
εn

1(
ε2
n + �2

‖ sin2 θ
)√

ε2
n + �2

(54)

≡ K(T )

⎛⎜⎝ 0 −1 0

+1 0 0

0 0 0

⎞⎟⎠, (55)

which is easily evaluated numerically for any temperature.
Figure 6 shows that the sheet current, K(T ), decreases rapidly
at finite temperatures compared to the bulk B-phase gap.
This is a key signature of the Majorana spectrum. At low
but finite temperatures, T � �, thermal excitation of the
positive-energy Majorana branch, which carries oppositely
directed spin current to the negative energy bound states (see
Fig. 4), leads to a reduction of sheet spin current from the
ground state. In particular, the leading-order correction to
the ground-state spin current is K(T ) − K(0) ∝ −T 3, which
dominates thermal excitations above the continuum gap of the
bulk B phase.

0.0 0.2 0.4 0.6 0.8 1.0
T/Tc

0.2

0.4

0.6

0.8

1.0

Δ(T )/Δ(0)
K(T )/K(0)

leading order: T 3

FIG. 6. (Color online) The temperature dependence of sheet spin
current, K(T ), calculated for the isotropic B phase (�⊥ = �‖), is
shown in red. The leading-order correction, ∝ −T 3, to the ground-
state spin current is shown in black. The temperature dependence of
the bulk B-phase gap �(T ) is shown in blue.

The leading-order low-temperature correction is obtained
by transforming the Matsubara sum in Eq. (54) to an integral
over real energies,

SK(T ) = T
∑
εn

1(
ε2
n + �2

‖ sin2 θ
)√

�2 + ε2
n

(56)

= 1

2πi

∮
Cu+Cl

dz f (z)
1

(z2 − �2
‖ sin2 θ )

√
�2 − z2

,

(57)

where the contours Cu,l enclose the poles, {iεn|n = 0, ±
1, . . .}, of the Fermi Function f (z) = (1 + eβz)−1. The rest
of the integrand has poles on the real axis at the Majorana
branches, z = ±�‖ sin θ , and branch cuts for the continuum
spectrum at [∓∞, ∓ �]. Transforming the integration to the
real axis we obtain contributions from the Majorana branches,

S
Majorana
K = tanh(�‖ sin θ/2T )

2�⊥�‖ sin θ cos θ
, (58)

and the fully gapped continuum states, which can be expressed
as a single integral for both positive-energy excitations and
depopulation of the negative-energy continuum,

S
gapped
K = 1

π

∫ ∞

�

dε
tanh (ε/2T )

(ε2 − �2
‖ sin2 θ )

√
ε2 − �2

. (59)

First note that the T = 0 result for the sheet current is obtained
from the leading term in the Euler-Maclaurin expansion of
Eq. (56); i.e., πSK(0) reduces to the integration over the
spectrum in Eq. (49). Alternatively, we take the limit T → 0 in
Eqs. (58) and (59) to obtain SK(0) = S

Majorana
K (0) + S

gapped
K (0).

The leading-order correction for finite temperatures is obtained
from an expansion of SK(T ) − SK(0). For the continuum
branches we transform Eq. (59) to obtain

S
gapped
K (T ) − S

gapped
K (0)

= − 2

π

∫ ∞

0
dξ

1

ξ 2 + �2
⊥ cos2 θ

1√
ξ 2 + �2

1

1 + e
√

ξ 2+�2/T
.

(60)
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The spectrum is gapped provided �⊥ �= 0, and the correc-
tion from the continuum spectrum is exponentially small,
Kgapped(T ) − Kgapped(0) ∼ −Kgapped(0) e−�⊥/T for T � �⊥.
However, for the Majorana branches

S
Majorana
K (T ) − S

Majorana
K (0)

= −1

�⊥�‖| sin θ | cos θ

1

1 + e�‖| sin θ |/T
. (61)

The resulting temperature dependence of the sheet spin current
arising from the Majorana spectrum is given by

KMajorana(T ) − KMajorana(0)

= −πNf v2
f h̄2

4

(
T

�‖

)3 ∫ �‖/T

0
dx

x2

1 + ex

≈ −3π

8
ζ (3) Nf v2

f h̄2

(
T

�‖

)3

, (62)

where the second line gives the leading-order correction for
T � �‖. Thus, the leading-order correction to the sheet
current is obtained from thermal excitation of the Majorana
branches. For weak confinement (�⊥ = �‖ = �) we obtain

K(T ) ≈ K(0)

(
1 − 27π

4
ζ (3)

(
T

�

)3
)

, (63)

which is the black curve plotted in Fig. 6 and compared with
the numerical result for all T from Eq. (54). Also note that the
coefficient of the T 3 correction in Eq. (62) is consistent with
the bounds obtained in Ref. 28. This temperature dependence
of the surface spin current is a direct signature of the Majorana
excitations. An experimental probe of the equilibrium spin
current would provide a key signature of the Majorana surface
spectrum. Alternatively, there are well-known experimental
probes to measure the temperature dependence of the mass
flow through a “superleak.”

V. MASS CURRENT IN A CHANNEL

Consider the response of the surface and bulk spectrum
to a phase bias between two bulk reservoirs of 3He-B as
shown in Fig. 7. The bias will generate a phase gradient along

D

Δ
x y

z

ϕ1 ϕ2ps =
2
∇ϕ

FIG. 7. (Color online) The bulk B phase is gapped, while the
surface spectrum is a gapless Dirac cone. Mass flow is repre-
sented by the pair momentum, ps = 1

2 h̄∇ϕ, in a channel of width
D > Dc ≈ 9ξ0.

the channel which we express in terms of the Cooper pair
momentum, ps ≡ h̄

2∇ϕ, or “flow field,” and which we take to
be directed along the ŷ axis of the channel. Andreev bound
states are present on both surfaces of the channel. In zero flow
these are gapless Majorana branches. However, the spectrum
is expected to be modified by the flow field.

A. Gauge transformation and Doppler shift

The flow field, ps = h̄
2∇ϕ(R), is generated by spatial

variations of the phase of the order parameter,

�̂ϕ(p,R) =
(

0 �̂(p,R) eiϕ(R)

�̂(p,R)† e−iϕ(R) 0

)
, (64)

where �̂(p,R) is the order parameter in the absence of flow. A
local gauge transformation defined by

Û = exp

(
i

2
ϕ(R)τ3

)
(65)

“removes” the phase of the order parameter

�̂ = Û
†

�̂ϕÛ (66)

and transforms the Bogoliubov-Nambu Hamiltonian to

Ĥ ϕ
U−→ Ĥ

′ = Ĥ + ps · v(p)̂1, (67)

where Ĥ is the Hamiltonian in the absence of the flow field
[Eq. (4)] and ps · v(p) is the Doppler shift from the condensate
flow. The Hamiltonian, including the Doppler shift, again
anticommutes with the conjugation symmetry,

C Ĥ
′
C† = −Ĥ − ps · v(p) 1̂ = −Ĥ

′
, (68)

but the flow field breaks time-reversal symmetry, defined as
complex conjugation (K) combined with a π rotation in spin
space T = iσyK ,

T Ĥ
′
T −1 = Ĥ − ps · v(p) 1̂ �= Ĥ

′
. (69)

Given the role that T symmetry plays in defining the topolog-
ical winding number for 3He-B in Eq. (6),5,7,23 the question
is, if T symmetry is broken will a gap develop in the surface
spectrum? In the case of broken T symmetry by a magnetic
field a gap typically develops.44 However, for in-plane fields
the situation is more subtle. A discrete rotation symmetry
combines with time reversal to protect the topological invariant
and thus the Majorana spectrum and zero-energy state, at least
at sufficiently low magnetic fields.24

Similarly, the broken T symmetry by the flow field can be
repaired by a joint π rotation about the normal to the surface,

Uz(π ) T Ĥ
′
T †Uz(π )† = Ĥ + ps · v(p) 1̂ = Ĥ

′
. (70)

Thus, under the repaired time-reversal and conjugation
symmetry, 
 ≡ Uz(π ) × T × C, we have 
 Ĥ

′

† = −Ĥ

′
.

The combined symmetry preserves the topological winding
number and thus the Majorana zero mode.23,24 This result is
born out by the calculation of the spectral response to the flow
field, which provides an important signature of the Majorana
spectrum.

The unitary transformation to the Doppler-shifted Hamil-
tonian carries over to the quasiclassical transport equation for
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the Nambu matrix propagator in the presence of the flow field.
In particular, the local gauge transformation used in Eq. (66)
applied to the transport equation gives

[(εR − ps · vp)τ3 − �̂(p,R),ĜR ] + ih̄vp · ∇ĜR = 0, (71)

where ĜR(p,R,ε) = Û
†

ĜR
ϕ Û is the gauge-transformed

propagator, and the Fermi velocity, vp = vf p̂, determines
the Doppler shift. The normalization condition in Eq. (12)
is unchanged. Thus, the solutions for the quasiparticle and
Cooper pair propagators in the presence of a flow field near
a surface are given by Eqs. (13)–(16) evaluated with the
Doppler-shifted excitation energy, εR → εR − ps · vp.

In particular, the surface bound-state energies are shifted
by ps · vp = vf ps p̂ · ŷ, which leads to positive and negative
Dirac cones,

εB
±(p) = ± c±(φ)pf | sin θ |, (72)

with anisotropic velocities, c±(φ) = �‖/pf ± ps/m∗ sin φ,
and a zero-energy state for zero in-plane momentum. Thus,
none of the bound-state energies cross the Fermi level for
ps � �‖/vf . This leads to two important results for mass
transport in a channel: (i) The ground-state mass current is
unaffected by the surface bound state and (ii) the anisotropy in
the Majorana spectrum is reflected in a power-law temperature
dependence of the mass current at finite temperatures.

B. Mass current spectral density

The mass current spectral density is defined in terms of
the net momentum transported by time-reversed pairs of states
(p, − p) in the energy interval (ε,ε + dε),45

jM(p,z,ε) = 2Nf pM [N+(p,z,ε) − N−(p,z,ε)] , (73)

where pM ≡ m3vp, N+(p,z,ε) is the DOS for quasiparticles co-
moving with the flow field, εD = vp · ps > 0, and N−(p,z,ε) =
N+(−p,z,ε) is the DOS for the counter-moving states, εD < 0.
The mass current is then obtained by thermally occupying the
spectrum of current-carrying states and integrating over all the
trajectories,

jM(z) =
∫

εD>0

d�p̂

4π

∫ +∞

−∞
dε f (ε)jM(p,z,ε). (74)

Note that the full Fermi surface is covered by summing over
the co-moving trajectories. This result for the mass current
is valid for Galilean invariant Fermi liquids.37 However, the
Doppler shift of the quasiparticle spectrum leads to a change
in the quasiparticle energy due to molecular field interactions
with the modified spectrum and thermal distribution of
quasiparticles. The Fermi liquid effect is substantial for 3He
in the case of mass flow, and is discussed and calculated for
confined 3He-B in Sec. V D. In this and the following section
we omit the Fermi liquid interaction, in which case the Fermi
momentum and Fermi velocity are related by m3 vf = pf .

At T = 0 the negative-energy bound states give a net
zero contribution to the ground-state mass current. For every
pair of co-moving and counter-moving bound states, either
both have positive energies (both unoccupied) or both have
negative energies (both occupied), and even though these pairs
have different energies, they contribute equal spectral weight to
the ground-state current [see Eq. (20)]. Thus, the ground-state

mass current is given by the occupied continuum states. The
difference in co-moving and counter-moving contributions
can be transformed via the following integration over the
continuum spectrum,

jM(z) = 2Nf

∮
εD>0

d�p̂

4π
pM lim

Ec→∞

∫ −Ec+εD

−Ec−εD

dε
−ε√

ε2 − �2

×
(

1 + �2
⊥ cos2 θ

�2
‖ sin2 θ − ε2

cos
2z

√
ε2 − �2

vf cos θ

)
, (75)

where the limiting procedure enforces the restriction that only
the low-energy part of the spectrum contributes to the current.
In particular, the Tomasch oscillations average to zero and the
bulk DOS term yields the well-known result for the ground-
state superfluid density for bulk 3He-B,

jM = 2Nf

∮
εD>0

d�p̂

4π
pM[2 ps · vp]

= 2Nf pf vf

3
ps ≡ n ps , (76)

where n is the density of 3He atoms.

C. Mass current at finite temperatures

At finite temperature the mass current is reduced by thermal
excitations. The leading-order contribution to the mass current
from the continuum states at finite temperature is essentially
that of bulk 3He,

jC
M = 2Nf

∮
εD>0

d�p̂

4π
pM[2 ps · vp](1 − Y (p,T )), (77)

where the temperature-dependent term is given by the Yoshida
function for the anisotropic B-phase,

Y (p,T ) ≡ 1

2T

∫ ∞

|�(p)|
dε

ε√
ε2 − |�(p)|2 sech2

( ε

2T

)
. (78)

Angular integration gives

jC
M = [1 − Y‖(T )] n ps , (79)

where

Y‖(T ) = 3

2

∫ 1

0
d(cos θ ) sin2 θ Y (p,T ) (80)

is the “normal” component for flow in the plane of the film,
which in the limit of weak confinement, �⊥ → �‖ = �, is
the Yoshida function for the bulk B phase.

There is also a surface contribution from the continuum
states given by

Y C
S (p,T ) = −1

2

∫ +∞

−∞
dξ

�2
⊥ cos2 θ

ξ 2 + �2
⊥ cos2 θ

e2i ξ z/h̄vz

× 1

2T
sech2

(√
ξ 2 + |�(p)|2

2T

)
, (81)

where we use the change of variables ξ =
√

ε2 − |�(p)|2 in
the surface contribution to the continuum spectrum in Eq. (13).
This term is confined near the surface since the oscillations
average to zero for z 
 ξ�. If we first average over the film
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for D 
 ξ�,

1

D

∫ D

0
dz exp 2iξ z/h̄vz ≈

(
πh̄vf cos θ

2D

)
δ(ξ ), (82)

we obtain the net contribution from the surface term

Y C
S (p,T ) = −πh̄vf cos θ

4D

1

2T
sech2

( |�(p)|
2T

)
. (83)

This gives a surface correction to the bulk term in Eq. (79),
which in the weak confinement limit reduces to

Y C
S,‖(T ) = −3π

32

h̄vf

D

1

2T
sech2

(
�

2T

)
. (84)

At low temperatures both continuum corrections to the ground-
state mass current are exponentially small, ∝ e−�/T , and the
correction from the surface bound-state dominates.

The Doppler shift of the surface bound-state spectrum leads
to a power-law reduction in the superfluid density that reflects
the energy difference between co-moving and counter-moving
Majorana excitations. In particular, thermal occupation of the
bound-state contribution to the spectral density gives

jB
M(z) = 2Nf

∮
εD>0

d�p̂

4π
pM

(π

2
�⊥ cos θ

)
e−2z�⊥/h̄vf

×
[

tanh

(
�‖ sin θ − εD

2T

)
− tanh

(
�‖ sin θ + εD

2T

)]
,

(85)

which reduces to

jB
M(z) = −3π

8

�⊥
T

I (�‖/T ) e−2�⊥z/h̄vf n ps (86)

in the low-velocity limit, psvf � �‖, where

I (�‖/T ) =
(

2T

�‖

)4 ∫ �‖/T

0
dx x3sech2(x). (87)

Thus, the leading low-temperature (T � �‖) correction is

jB
M(z) = −27πζ (3)�⊥

4 �‖
e−2�⊥z/h̄vf

(
T

�‖

)3

× n ps . (88)

The average mass current for confined 3He-B, including a
factor of 2 for both surfaces, is then

jM = {1 − [Y‖(T ) + YS,‖(T )]} n ps , (89)

where Y‖(T ) is the bulk normal fluid fraction [Eq. (80)]
and YS,‖(T ) is the total surface contribution from Eqs. (83)
and (86),

YS,‖(T ) = 3π

4

ξ�

D

�⊥
T

∫ 1

0
dx x3

[
sech2

(
�‖x
2T

)
− sech2

(
�

2T

)]
. (90)

Thus, the leading-order correction to the the mass current at
low temperature becomes

jM =
(

1 − 27πζ (3)

2

ξ�

D

�⊥
�‖

(
T

�‖

)3
)

× n ps . (91)

As in the case of the spin current, the reduction ∝ T 3 reflects
the linear dispersion and spectral weight of the Majorana
excitations.

D. Fermi liquid correction to the mass current

The motion of a 3He quasiparticle is strongly influenced
by its interaction with the medium of low-energy excitations
near the Fermi surface. These Fermi liquid interactions are
equally significant below Tc where they give rise to a large
renormalization of the superfluid fraction in bulk 3He-B.46,47

Since the surface Majorana excitations are linear superposi-
tions of normal-state particle and hole excitations, the current
carried by the Majorana excitations will also be renormalized
by Fermi liquid interactions. We include this effect by treating
the Doppler effect associated with the condensate flow as an
external vector potential that couples to the group velocity of
normal-state particles and holes,

�̂flow(p) = ps · vp τ3. (92)

The flow perturbs the equilibrium distribution of quasiparticles
and the condensate. This leads to a Fermi liquid correction
described by Landau’s molecular field self-energy,48

�̂FL(p,R) =
∫

d�p̂′

4π
T
∑
εn

As(p,p′) g(p′,R,εn) τ3, (93)

where As(p,p′) is the forward scattering amplitude, which can
be expanded in terms of Legendre polynomials, As(p,p′) =∑

l>0 As
l Pl(p̂ · p̂′). The scattering amplitudes are related to the

Fermi liquid parameters by As
l = F s

l /1 + F s
l /2l + 1. Since

we are considering interaction effects on the mass current we
have included only the spin-independent interactions. With
the additional self-energies, Eilenberger’s transport equation,
in the Matsubara representation, becomes

[ iεnτ3 − �̂flow − �̂FL − �̂ , Ĝ ] + ih̄vp · ∇Ĝ = 0. (94)

The molecular field self-energy vanishes in the absence of flow
since g(p,R,εn) is odd in εn [Eq. (13) with εR → iεn]. Thus,
we can obtain the linear response of confined 3He-B to the
imposed flow field by expanding the propagator in vf ps � �,
g = g(0) + g(1) + . . .. The zeroth-order propagators are given
in Eqs. (13)–(16), and the linear correction is obtained by
perturbation expansion of Eqs. (94) and (12).

To obtain the mass current in the film we average the
molecular field over the width of the film,

�FL(p) = 1

D

∫ D

0
dz �FL(p,z), (95)

and similarly for the response function, g(1)(p,z,εn), to obtain

ḡ(1)(p,εn) = π�tot

{
|�(p)|2[

ε2
n + |�(p)|2]3/2 + h̄vf �2

⊥ cos3 θ

D

× 3ε4
n + ε2

n|�(p)|2 + �2
‖ sin2 θ

[
ε2
n − |�(p)|2][

ε2
n + |�(p)|2]2(

ε2
n + �2

‖ sin2 θ
)2

}
,

(96)

where �tot = �flow + �FL. To linear order in vf ps the molec-
ular field self-energy is obtained by evaluating Eq. (93)
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with the linear response propagator ḡ(1)(p,εn). Only the
odd-parity interactions contribute to the renormalization of
the mass current, and in bulk 3He-B only the l = 1 Fermi
liquid interaction contributes due to the isotropic bulk gap.49

For confined 3He-B higher order odd-parity terms will also
contribute to the renormalization of the mass flow, but the
dominant contribution is expected to be from the l = 1
interaction since F s

1 ≈ 6–15 is large at all pressures. With only
the l = 1 interaction channel, we can express �FL = As

1 p̂ · X,
where

X =
∫

d�p̂

4π
p̂ �(p) (vp · ps + As

1 p̂ · X), (97)

and �(p) ≡ T
∑

εn
δḡ(1)/δ�tot is the Matsubara representation

of the bulk and surface contributions to the superfluid fraction.
The solution for the vector self-energy X can then be expressed
in terms of bulk and surface contributions to the normal fluid
fraction obtained in Sec. V C,

X =
(

1 + 1

3
F s

1

)
1

3
vf ps

1 − [Y‖(T ) + YS,‖(T )]

1 + 1
3F s

1 [Y‖(T ) + YS,‖(T )]
.

(98)

This vector potential also determines the mass current,

jM = 2Nf

∫
d�p̂

4π
pM T

∑
εn

g(1)(p,εn) = 2Nf m3vf X,

(99)

which reduces to

jM = 1 − [Y‖(T ) + YS,‖(T )]

1 + 1
3F s

1 [Y‖(T ) + YS,‖(T )]
n ps , (100)

which is the same functional form as that of bulk 3He-B,49 but
with the surface continuum and bound-state corrections to the
bulk Yoshida function included. Note that the first factor of
1 + 1

3F s
1 in Eq. (98) for the vector potential X is the effective

mass ratio for 3He obtained from Galilean invariance of the
interactions. This factor renormalizes m3vf → m∗vf = pf ,
and guarantees that we recover ground-state current, n ps , at
T = 0. In the low-temperature limit, the T 3 power law for the
reduction of the mass current from the Majorana excitations is
preserved,

jM =
(

1 − 27πζ (3)

2

ξ�

D

�⊥
�‖

m∗

m3

(
T

�‖

)3
)

× n ps , (101)

but the prefactor is increased by the factor m∗/m3 = 1 + F s
1 /3

compared to that in Eq. (91).
The temperature dependence of the superfluid fraction

for confined 3He-B calculated from Eq. (100) is shown
in Fig. 8 for D = 7.5ξ� over the full pressure range of
0–34 bars. The pressure dependence of the effective mass
and bulk transition temperature were obtained from the
helium calculator.50 For p = 34 bars the superfluid fraction
for bulk 3He-B is included, which highlights the role of
thermally excited surface Majorana Fermions in suppressing
the superfluid fraction over the full temperature range below
Tc. For T � 0.9 mK these excitations give the T 3 power
law for the reduction in superfluid mass current calculated
from Eq. (101). Experimental observation of the power-law

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

T [mK]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ρ
s/

ρ

Total Mass Current at P = 34 bar

Bulk Mass Current at P = 34 bar

leading order correction ∼ T 3

with mini-gap δ = 0.06πTc

FIG. 8. (Color online) Superfluid mass fraction for a 3He-B film
of width D = 7.5 ξ� (D ≈ 13.2 ξ0) for pressures p = 0 . . . 22 bars
in steps of 2 bars (green) and p = 34 bars (solid blue). Tc at each
pressure is indicated by the orange circles. The bulk superfluid
fraction at 34 bars is shown for comparison (dashed blue), and the
shaded region represents the reduction in supercurrent from thermal
excitation of the surface Majorana states. For T � 0.9 mK these
excitations give a T 3 power law (black) for the reduction in mass
current. The effect of the minigap, δ = 0.06πTc, in the surface
spectrum on the superfluid fraction is shown for p = 34 bars (red
circles).

correction from the Dirac spectrum in the fully gapped B phase
would provide direct evidence of surface Majorana Fermions.

E. Majorana Fermions on opposing surfaces of a channel

For well-separated surfaces, D 
 ξ�, we need only con-
sider single reflections as shown in Fig. 1 in order to calculate
the surface propagator, surface spectral function of gapless
Majorana modes. In particular the Majorana mode with zero
energy at p‖ = 0 corresponds to the reflection p → −p at
normal incidence. For 3He-B in a channel of width D � Dc ≈
9ξ0 the wave functions for the Majorana modes on opposite
surfaces, which are confined near the surfaces of the channel
on the length scale ξ� = h̄vf /π�⊥, are expected to overlap.
This situation typically leads to level splitting and a gap in the
otherwise gapless Dirac cone. Numerical calculations reported
in Ref. 51 for 3He-B confined in a rectangular channel, i.e.,
confinement in two directions, suggest that overlap between
states confined on opposing walls generates a finite excitation
energy, i.e., a “minigap,” in the spectrum at p‖ = 0, of
magnitude δ = 0.06πTc for a spacing of D = 13.2ξ0 and
T � Tc.

However, for 3He-B confined in one direction we find that
there is no minigap in the spectrum (i.e., δ = 0) even for strong
confinement. Our result is presented in Appendix A where the
propagator, and thus the Fermionic spectrum, is calculated for
the case of confinement by two surfaces separated by distance
D > Dc ≈ 9ξ0. In the case of strong confinement we must
include reflections p → p at z = 0 and p → p at z = D as
shown in Fig. 9.

Double reflections couple the Majorana modes on the
two surfaces, modify the spectral weight and profile of the
local density of states, but do not destroy the zero mode
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= 0

= D

D
p

p p

θ

FIG. 9. (Color online) Slab geometry of finite width D. Trajecto-
ries p and p are specularly reflected pairs for which the propagators
are continuous at both z = 0 and z = D surfaces.

or the linear dispersion of the Majorana Fermions with
p‖. This result is shown explicitly in the solution for the
quasiclassical propagator in Eqs. (A13)–(A18) for double
reflecting trajectories from opposite surfaces. For any finite D

the pole of the propagator is given by the Dirac cone, Eq. (19),
with a zero mode at p‖ = 0. The spectral weight is a maximum
on both surfaces (z = 0 and z = D), and reduced by a factor
of order e−D/2ξ� in the center of the channel. The absence
of a minigap in the surface spectrum for strong confinement
results from the orthogonality of the Majorana spinors on the
opposing surfaces. In particular, the Nambu spinor for the
state localized near z = 0 describes a right-handed helical
spin state (RHSS) in the coordinate system of Fig. 9, while
the Nambu spinor for the state localized on the opposing
surface (z = D) describes a left-handed helical spin state,
which is orthogonal to the RHSS. This result holds for strongly
confined B phase with a self-consistently determined order
parameter profile satisfying �⊥(0) = �⊥(D) = 0, �⊥(z) �= 0
elsewhere, �‖(z) �= 0 and both gap functions symmetric about
the midplane of the channel.19

The numerical result of Ref. 51 is at odds with our analytic
results, which we have also carried out for a self-consistently
determined order parameter profile in a channel confined in
one direction. The origin of the discrepancy is not known
at present, but is perhaps related to the multiple reflections
from three or four surfaces in a rectangular channel. If
we assume that nonspecular scattering, or confinement in a
rectangular channel with four surfaces, generates a minigap
as obtained in Ref. 51, we can examine the effect of the
minigap on the surface contribution to the mass current
by modifying the surface bound-state dispersion relation,
εB(p‖) = c|p‖| → √

c2 |p‖|2 + δ2, in the calculation of the
surface bound-state contribution to the current in Eq. (85).
The resulting temperature dependence of mass current is only
weakly modified by the minigap (red circles for p = 34 bars),
and barely discernible compared to the T 3 power law that
results from the Dirac cone as shown in Fig. 8.
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APPENDIX A: SOLUTION FOR THE SURFACE
PROPAGATOR OF 3He-B

For the B-phase order parameter in Eq. (7) the Nambu
matrix form of Eilenberger’s equation can be transformed into
three-component, first-order matrix differential equations,

h̄

2
vp · ∇|gL,T〉 = M̂L,T|gL,T〉, (A1)

where the column vectors

|gL〉 =

⎛⎜⎝g−

f
+
L

f
−
L

⎞⎟⎠, |gT〉 =

⎛⎜⎝g
−
T

f
+
T

f
−
T

⎞⎟⎠ (A2)

are defined in terms of the scalar, longitudinal, and transverse
components of the quasiparticle and Cooper pair propagators
defined in Eq. (10). The longitudinal and transverse compo-
nents of a vector in spin space are defined with respect to
the �d vector for the anisotropic B phase [Eq. (7)]; i.e., AL =
�A · �d/|�(p)| and �AT = �A − AL �d/|�(p)|. The ± notation

corresponds to sum and difference of the upper (particle)
and lower (hole) components of the Nambu propagator, A± =
(A ± A′)/2. The matrices that couple the propagators in the
Matsubara representation are then given by

M̂L =

⎛⎜⎝ 0 0 −i|�(p)|
0 0 −εn

i|�(p)| −εn 0

⎞⎟⎠, (A3)

M̂T =

⎛⎜⎝ 0 −|�(p)| 0

−|�(p)| 0 −εn

0 −εn 0

⎞⎟⎠, (A4)

with eigenvalues μ = 0, ± λ, where λ = √
ε2
n + |�(p)|2. The

longitudinal eigenvector for μ = 0,

|0; p〉L = 1

λ

⎛⎜⎝ iεn

|�(p)|
0

⎞⎟⎠, (A5)

generates the bulk equilibrium propagator,

ĜL,0(p,εn) = −π

λ

(
iεn −i �σσy · �d(p)

−iσy �σ · �d(p) −iεn

)
. (A6)

This solution satisfies Eilenberger’s normalization condition
in Eq. (12). The eigenvectors corresponding to μ = ±λ are

|±; p〉L = 1√
2λ

⎛⎜⎝∓|�(p)|
∓εn

λ

⎞⎟⎠. (A7)

These generate “exploding” (∼ e+2λs/vf ) and “decaying” (∼
e−2λs/vf ) solutions to Eq. (A1) as a function of the coordinate
s along the trajectory vp, and thus are physically relevant
only in the vicinity of a boundary.52 The Nambu propagators
corresponding to eigenvectors |±; p〉L are

ĜL,± = −π√
2λ

(
∓i|�(p)| (i �σσy) · d̂(λ ∓ εn)

(iσy �σ ) · d̂(−λ ∓ εn) ±i|�(p)|

)
,

(A8)
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where d̂(p) ≡ �d/|�(p)| is the unit vector in spin space defining
the quantization axis for Cooper pairs with spin projection d̂ ·
�S = 0. These matrices are nonnormalizable and anticommute
with the bulk propagator,

(ĜL,±)2 = 0, [ĜL,0,ĜL,±]+ = 0. (A9)

For the transverse vector components, the eigenvectors are
given by

|0; p〉T = 1

λ

⎛⎜⎝ εn

−|�(p)|
0

⎞⎟⎠, |±; p〉T = 1√
2λ

⎛⎜⎝±|�(p)|
λ

±εn

⎞⎟⎠,

(A10)

with corresponding Nambu matrices

ĜT,0 = −π

λ

(
εn(�σ · ĝ) −(i �σσy) · f̂ |�(p)|

−(iσy �σ ) · f̂ |�(p)| −εn(�σ tr · ĝ)

)
,

(A11)

ĜT,± = −π√
2λ

(
±�(�σ · ĝ) −(i �σσy) · f̂ (λ ∓ εn)

−(iσy �σ ) · f̂ (λ ± εn) ∓�(�σ tr · ĝ)

)
.

(A12)

For the transverse components we introduce an orthonormal
basis in spin space for each trajectory p: {d̂,f̂ ,ĝ}. The two
transverse directions will be fixed by boundary conditions.
The transverse matrices also satisfy Eqs. (A9).

Although ĜT,0 is normalizable it is not realized in bulk 3He-
B, and does not contribute to general solution for confined 3He-
B. However, the transverse exploding and decaying solutions
are coupled to the longitudinal components by the surface
boundary condition, and thus play an important role in defining
the spectral functions for quasiparticles and Cooper pairs near
the boundary of 3He-B.

For the slab geometry of width D shown in Fig. 9, and
specular reflection on both surfaces, the propagators defined
on trajectories p and p = p − 2ẑ(ẑ · p) have the form

Ĝin(p,εn)

= ĜL,0(p,εn)

+ e−2λ z/h̄vz
[
C in

L,+(p) ĜL,+(p,εn) + C in
T,+(p) ĜT,+(p,εn)

]
+ e+2λ z/h̄vz

[
C in

L,−(p) ĜL,−(p,εn) + C in
T,−(p) ĜT,−(p,εn)

]
,

(A13)

Ĝout(p,εn)

= ĜL,0(p,εn)

+ e−2λ z/h̄vz

[
Cout

L,−(p) ĜL,−(p,εn) + Cout
T,−(p) ĜT,−(p,εn)

]
+ e+2λ z/h̄vz

[
Cout

L,+(p) ĜL,+(p,εn) + Cout
T,+(p) ĜT,+(p,εn)

]
,

(A14)

where vz and vz > 0. Continuity of the propagators with
trajectories p and p at both z = 0 and z = D boundaries
determines the coefficients
C in

L,+ = −Cout
L,−

= −
√

2 εn �2
⊥ cos2 θ

|�(p)|(ε2
n + �2

‖ sin2 θ
) e2λ D/h̄vz − 1

e2λ D/h̄vz − e−2λ D/h̄vz
, (A15)

C in
L,− = −Cout

L,+

= +
√

2 εn �2
⊥ cos2 θ

|�(p)|(ε2
n + �2

‖ sin2 θ
) 1 − e−2λ D/h̄vz

e2λ D/h̄vz − e−2λ D/h̄vz
,

(A16)

C in
T,+ = −Cout

T,− =
√

2
√

ε2
n + |�(p)|2�⊥�‖ sin θ cos θ

|�(p)|(ε2
n + �2

‖ sin2 θ
)

× e2λ D/h̄vz − 1

e2λ D/h̄vz − e−2λ D/h̄vz
, (A17)

C in
T,− = −Cout

T,+ =
√

2
√

ε2
n + |�(p)|2�⊥�‖ sin θ cos θ

|�(p)|(ε2
n + �2

‖ sin2 θ
)

× 1 − e−2λ D/h̄vz

e2λ D/h̄vz − e−2λ D/h̄vz
, (A18)

as well as the transverse coordinate axes in spin space: ĝ =
ẑ × d̂ (e2 in Fig. 1) and f̂ = (ẑ × d̂) × d̂ for each p.

For a surface at z = 0 that is well separated from the other
surface, i.e., D 
 ξ�, we take D → ∞ in the above solution
for slab geometry and obtain the propagator for an isolated
specular surface with coefficients,

C in
L,+ = −Cout

L,− = −
√

2 εn�
2
⊥ cos2 θ

|�(p)|(ε2
n + �2

‖ sin2 θ
) , (A19)

C in
T,+ = −Cout

T,− =
√

2
√

ε2
n + |�(p)|2�⊥�‖ sin θ cos θ

|�(p)|(ε2
n + �2

‖ sin2 θ
) ,

(A20)

C in
L,+ = −Cout

L,− = C in
T,+ = −Cout

T,− = 0. (A21)

The vanishing of coefficients C in
L,+, Cout

L,−, C in
T,+, and Cout

T,−
reflects the exclusion of unphysical solutions that would
explode into the bulk. Analytic continuation (iεn → εR) of
this solution for an isolated surface gives Eqs. (13)–(16) for
the components of the retarded propagator. Note also that for
any finite thickness of the channel, the states confined near the
two surfaces have a common dispersion relation given by the
Dirac cone, Eq. (19).

APPENDIX B: SHEET SPIN CURRENT

The magnitude of ground-state sheet spin current defined
by Eq. (49) reduces to the integral over the trajectory angles,

IK

(
�‖
�⊥

)
= 1

4

∫ π/2

0
dθ sin2 θ cos θ tan−1

(
�⊥ cos θ

�‖ sin θ

)
.

(B1)

Integration by parts and a change of variables, u = cos θ and
x = �‖/�⊥, gives

IK (x) = 1

12x

∫ 1

0
du

1 − u2

x2 − (x2 − 1)u2

= 1

12x(x2 − 1)

(
1 − ln(x + √

x2 − 1)

x
√

x2 − 1

)
. (B2)

The two limits of interest are weak confinement (�⊥ → �‖),
for which we evaluate the limit using L’Hôpital’s rule,

lim
x→1

IK(x) = 1
18 , (B3)
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and strong confinement (�⊥ � �‖),

IK(x) ≈ 1

12 x3
, x 
 1. (B4)

Thus, the limiting ground-state sheet spin currents are

K(0) = 1

18
Nf v2

f h̄2

{
1 ,�‖ = �⊥,

3
2 (�⊥/�‖)3 ,�⊥ � �‖.

(B5)

1A. V. Balatsky, I. Vekhter, and Jian-Xin Zhu, Rev. Mod. Phys. 78,
373 (2006).

2M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).
3J. A. Sauls and M. Eschrig, New J. Phys. 11, 075008 (2009).
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