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There are two commonly discussed points of view in theoretical description of cuprate superconductors:
(i) Cuprates can be described by the modified t − J model; (ii) overdoped cuprates are close to the regime of nor-
mal Fermi liquid (NFL). We argue that recent resonant inelastic x-ray scattering data challenge both points. While
the modified t − J model describes well the strongly underdoped regime, it fails to describe high energy magnetic
excitations when approaching optimal doping. This probably indicates failure of the Zhang-Rice singlet picture. In
the overdoped regime the momentum-integrated spin structure factor S(ω) has the same intensity and energy distri-
bution as that in an undoped parent compound. This implies that the entire spin spectral sum rule is saturated at ω ≈
2J , while in an NFL the spectral weight should saturate only at the total bandwidth which is much larger than 2J .
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I. INTRODUCTION

Parent compounds for cuprate superconductors are anti-
ferromagnetic (AF) charge transfer insulators (CTI) with lo-
calized spins.1,2 Magnetic excitations in the parent compounds
are usual Heisenberg model spin waves with maximum energy
ωmax ≈ 2J ≈ 300 meV.3 Conductivity and superconductivity
arises when cuprates are doped with mobile charge carriers. In
this paper we discuss only the hole doping. It is generally
believed that magnetic excitations play a crucial role in
the superconducting pairing mechanism. Magnetic structure
of cuprates and magnetic excitations dramatically evolve
with doping. Magnetic structure has been studied in elastic,
quasielastic, and inelastic neutron scattering, as well as in
μSR.4–9 The three-dimensional (3D) long-range AF order is
preserved at a very low doping up to some doping level p1.
The value of p1 is about few percent and the value depends
on a particular compound and a particular way of doping. An
incommensurate spin structure starts to develop at p > p1. The
incommensurability destroys the 3D coupling between CuO2

planes and hence the magnetic structure becomes quasistatic
in the incommensurate phase. The quasistatic magnetic order
exists up to doping p2 which is a magnetic quantum critical
point (QCP). The QCP is a generic property and position of the
QCP is approximately the same for all cuprates, p2 ≈ 10%.
At p > p2 the incommensurate magnetic structure becomes
fully dynamic. The evolution of the magnetic structure is
perfectly consistent with predictions of the t − t ′ − t ′′ − J

model.10–12 The incommensurate magnetic structure is a spin
spiral. The evolution of the magnetic structure is accompanied
by redistribution of the magnetic spectral weight. The static
magnetic response is transferred to the “resonant” energy, the
position of the narrow neck in the hourglass dispersion.11 The
described evolution studied in neutron scattering is relevant
to the static magnetic structure and to the low energy, ε <

100 meV, magnetic excitations with wave vector close to
(π,π ). Magnetic excitations with energy higher than 100 meV
in doped cuprates are difficult to assess with neutrons.

Recent development in resonant inelastic x-ray scattering
(RIXS)13–20 has made it possible to probe high energy mag-
netic excitations in cuprates, complementary to the low energy
regime studied by neutrons. To avoid ambiguity in describing

data we do not use terms magnon or paramagnon; instead
we use the term “magnetic excitation.” The excitation can
contain one, two, or more magnons (paramagnons). According
to the RIXS data the energy width of the magnetic excitation
is rather large, � ≈ 200 meV. The large width itself is not
too surprising. In contrast, the following two points concluded
by RIXS are far more surprising: (i) At a given momentum
q the magnetic response is a broad peak positioned at some
energy. The position of the peak is independent of doping. In
underdoped, optimally doped, and even overdoped cuprates
the position is the same as that in undoped CTI.15,20 (ii) The
energy-integrated spectral weight at a given momentum is dop-
ing independent. Again, in underdoped, optimally doped, and
even overdoped cuprates the spectral weight is the same as that
in undoped CTI.15,20 Thus, while the low energy, ε < 100 meV,
magnetic response evolves dramatically with doping, the
high energy response, 100 meV < ε < 2J ≈ 300 meV
practically does not evolve with doping (besides the line
broadening).

The t − J model was suggested phenomenologically at the
very early stage of cuprate physics.21 It became clear very soon
that one needs to slightly extend the model by introducing
additional hopping matrix elements t ′, t ′′. The additional
matrix elements are qualitatively important, for example, they
destroy the electron-hole symmetry. The asymmetry explains
a very significant difference between the hole and the electron
doping. Dynamics of CuO2 planes in cuprates is determined
by 3d electrons of copper and 2p electrons of oxygen. In the
case of hole doping very few holes go to 3d states of Cu. Even
in overdoped samples the concentration of 3d holes differs
from that in the parent CTI insulator only by a few percent.22

Doped holes go predominantly to 2p states of oxygen. This
is a qualitative difference of a doped CTI from a doped Mott
insulator. In this situation the t − t ′ − t ′′ − J model can be
justified only by the Zhang-Rice singlet picture.23 The picture
seems well justified when the hole momentum is close to
(±π/2, ± π/2), however, away from this point the picture is
questionable as noted already in the original paper.23 This
implies that the justification of the t − t ′ − t ′′ − J model
is getting more and more questionable when the doping is
increasing; see also Ref. 24.
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In the present paper we address theoretically two issues:
(i) dependence of high energy magnetic excitations on doping,
(ii) momentum integrated spin some rule. Concerning the
first issue we show that the t − t ′ − t ′′ − J model predicts
a significant softening of the high energy magnetic response
with doping. The softening is inconsistent with RIXS data.
With respect to the second issue we argue that the RIXS data
are inconsistent with the picture of almost normal Fermi liquid
in heavily overdoped cuprates. Here, in essence we reiterate
the claim already made in the experimental paper.20 We just
use a different language to make the same point.

The structure of the paper is the following. In Sec. II we
calculate softening of the high energy magnetic response.
This section is relevant to the underdoped regime because
the applied theoretical technique is not valid above optimal
doping. In Sec. III we consider the exact spin sum rule.
The sum rule is valid for any doping, however, the most
important conclusion comes for the heavily overdoped regime.
So this section is mainly aimed at overdoped cuprates. Our
conclusions are summarized in Sec. IV.

II. SOFTENING OF HIGH ENERGY MAGNETIC
RESPONSE WITH DOPING

We have already pointed out that the low energy magnetic
response of cuprates evolves dramatically with doping. On the
theoretical side the response is well described by the t − t ′ −
t ′′ − J model. Calculation of the low energy response within
the model is a highly nontrivial theoretical problem. The only
controlled approach to this problem is the chiral perturbation
theory used in Refs. 10–12. The perturbation theory uses the
parent CTI as zero approximation and then allows one to derive
various physical properties as expansions in powers of doping
p. The theory allows one to calculate leading in p terms as
well as first corrections. The expansion is in powers of

√
p, so

the expansion is nonanalytic. We stress that usually only the
first correction can be calculated in a fully controlled way. For
example, the wave vector of the spin spiral which arises in the
model scales as p and the first correction to the wave vector
∝p3/2 is exactly zero. The static on-site magnetization behaves
as m = 0.6μB − a

√
p + bp where the coefficient a has been

reliably calculated and the coefficient b has been estimated.11

The position of the narrow neck in the hourglass dispersion
scales as Eres ∝ p3/2. The presented scalings are valid for a
single layer cuprate, for double layer scalings are somewhat
different.12,25

High energy properties of the t − t ′ − t ′′ − J model are
much simpler. The chiral perturbation theory implies that
the short range correlations are independent of doping. This
seems consistent with RIXS data and this implies that the
high energy properties are unchanged at least in the first
order of the chiral perturbation theory, i.e., the correction
∝√

p is zero. “High energy” here means that ω >> Eres. We
remind that near optimal doping Eres ≈ 40–50 meV.26,27 High
energy properties still can change in the subleading order. So a
variation proportional to (

√
p)2 = p is possible. In this section

we calculate this variation. The results of the present section
are valid up to optimal doping, p � 0.15. Below we explain
why the present section calculation is not justified at p > 0.15.

The magnetic background fluctuates with typical frequen-
cies ω ∼ Eres. These quantum fluctuations lead to the dramatic
change of the static and the low energy response. However,
the fluctuations are irrelevant for ω � Eres; the high energy
excitation “sees” a snapshot of the magnetic background
and the snapshot is the usual collinear AF. So, here we
take the simple AF background and calculate the magnetic
response using self-consistent Born approximation (SCBA).
The applied techniques are similar to that used long time
ago in Refs. 28–31. However, now we have a better level
of understanding. For instance, we know that the approach
cannot capture the static and the low energy sector, and we
also know about the qualitative importance of t ′ and t ′′.

A. Hole spectral function at finite doping

SCBA has been widely adopted to study the hole dynamics
in the presence of AF magnetic order for either single hole32–38

or at finite doping.28–31 In this subsection we remind the major
steps of SCBA. The Hamiltonian of the t − t ′ − t ′′ − J model
reads

Ht + Ht ′,t ′′ + HJ =
∑
i,j,σ

−tij c
†
iσ cjσ + J

∑
〈ij〉

Si · Sj , (1)

where ciσ is the electron annihilation operator of spin σ at
site i, tij ∈ {t,t ′,t ′′} is the nearest, next-nearest, and next-
next-nearest neighbor hopping, respectively. On the top of the
Hamiltonian (1) one has to add a no double electron occupancy
constraint. We set energy unit J ≈ 140 meV → 1. In this
section we choose t = 3.1, t ′ = −0.5, t ′′ = 0.4 according to
fitting ARPES in an undoped parent compound.39 In the next
subsection we also calculate magnon spectral function in the
pure t − J model (t ′ = t ′′ = 0) to demonstrate the generic
feature of this type of model.

AF background implies two sublattices, “up” and “down,”
and this allows one to introduce two spin-wave excitations,
a
†
i ∈↑ and b

†
j ∈↓. Using Fourier and Bogoliubov transforma-

tion,

aq = uqαq + vqβ
†
−q, b−q = vqα

†
q + uqβ−q, (2)

one can diagonalize the HJ part of Hamiltonian (1):

HJ =
∑

q

(α†
qαq + β†

qβq)ωq, ωq = 2
√

1 − γ 2
q , (3)

where the Bogoliubov coefficients are

uq =
√

1

ωq
+ 1

2
, vq = −sign(γq)

√
1

ωq
− 1

2
. (4)

The corresponding bare magnon Green’s function is

D0(ω,q) = −i

∫ ∞

−∞
〈T αq(t)α†

q(0)〉eiωtdt

= −i

∫ ∞

−∞
〈Tβ

†
−q(t)β−q(0)〉e−iωtdt

= 1

ω − ωq + iη
. (5)
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The hole operators with pseudospin up and down are defined
in different sublattices,38

dk↑ =
√

2

N

∑
j

c
†
j↓e−ik·rj , dk↓ =

√
2

N

∑
i

c
†
i↑e−ik·ri , (6)

where N is the number of lattice sites. The bare hole dispersion
is then given by Ht ′,t ′′ ,

Ht ′,t ′′ =
∑
k,σ

ε
(0)
k d

†
kσ dkσ ,

(7)
ε

(0)
k = 4t ′ cos kx cos ky + 2t ′′(cos 2kx + cos 2ky).

The hole-magnon vertex comes from Ht (see, e.g., Ref. 38):

Ht =
∑
k,q

gk,q(d†
k+q↓dk↑αq + d

†
k+q↑dk↓βq) + H.c.,

(8)

gk,q = 4t

√
2

N
(γkuq + γk+qvq).

SCBA is equivalent to summation of magnon rainbow
diagrams for the hole Green’s function Gd . The summation
is equivalent to the solution of the Dyson equation,

Gd (ε,k) = [
ε − ε0

k − �(ε,k) + iη sgn(ε − μ)
]−1

, (9)

shown diagrammatically in Fig. 1(a); � is the self-energy.
Note that at a finite doping one must use Feynman Green’s
function, therefore the imaginary shift of the denominator,
±iη, depends on energy and chemical potential μ. This leads
to complications in the numerical solution of Eq. (9). To over-
come these complications we utilize a spectral representation
for the Feynman Green’s function,

Gd (ε,k) = −i

∫ ∞

−∞
〈T dkσ (t)d†

kσ (0)〉eiεtdt

=
∫ ∞

μ

dx
A(x,k)

ε − x + iη
+

∫ μ

−∞
dx

B(x,k)

ε − x − iη
, (10)

and solve Eq. (9) with respect to spectral densities A(x,k)
and B(x,k). The self-energy is determined by diagrams in
Fig. 1(b):

�(ε,k) =
∫

d2q
(2π )2

g2
k−q,q

∫ ∞

μ

dx
A(x,k − q)

ε − ωq − x + iη

+
∫

d2q
(2π )2

g2
k,−q

∫ μ

−∞
dx

B(x,k − q)

ε + ωq − x − iη
. (11)

= +

(a)

(b)

= +

FIG. 1. (a) Dyson’s equation of hole Green’s function described
by Eq. (9). (b) Retarded and advanced part of hole self-energy
[Eq. (11)].
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FIG. 2. (Top panel) Hole spectral function along nodal direction
at doping p = 0.056. (Bottom panel) Hole spectral function at nodal
point k = (π/2,π/2) at different doping levels.

The hole density is given by the negative frequency part of the
spectral function,

p = 2
∫

d2k
(2π )2

∫ μ

−∞
dxB(x,k). (12)

All momentum integrations are limited inside the magnetic
Brillouin zone (MBZ). Note that in (11) we use bare magnons
described by Eq. (6).

Spectral function obtained by the numerical solution of the
Dyson equation is shown in Fig. 2. We plot A(ε,k) when
ε − μ > 0 and B(ε,k) when ε − μ < 0. The top panel in
Fig. 2 shows the spectral function along the nodal direction
for doping p = 0.056. Note that the spectral function is
identical inside and outside of MBZ. This is not the spectral
function measured in angle resolved photoemission (ARPES).
To recover the ARPES spectral function, one needs to take into
account additional diagrams.38 The ARPES spectral function
is highly asymmetric with respect to MBZ with only a tiny
intensity outside of MBZ.39 The bottom panel in Fig. 2 shows
the spectral function for k = (π/2,π/2) and for three different
values of doping. As usually spectral functions contain coher-
ent quasiparticle peaks, and a large incoherent background that
extends over a wide energy range of the free hole bandwidth,
�E ≈ 8t ≈ 24. So, we can represent spectral functions as

A(ε,k) = Zkδ(ε − εk) + Ã(ε,k),
(13)

B(ε,k) = Zkδ(ε − εk) + B̃(ε,k).

184501-3



WEI CHEN AND OLEG P. SUSHKOV PHYSICAL REVIEW B 88, 184501 (2013)

Schematics of this separation are shown in the bottom panel
of Fig. 2. The quasiparticle residue at k = (π/2,π/2) is about
Z ≈ 0.35. The residue gradually decreases as moving away
from k = (π/2,π/2) practically vanishing at the top of the
band. The hole dispersion, identified by the position of the
quasiparticle peak, clearly shows a hole pocket centering at
k = (π/2,π/2). Similar to the investigation in the double
layer compound,39 the hole dispersion is practically rigid
against hole doping, i.e., the shape of the dispersion is roughly
unchanged at small doping, despite a minor correction on ellip-
ticity of hole pockets (doping makes the pockets more elliptic).

The Fermi energy scales linearly with doping. According to
Fig. 2 the Fermi energy at p = 0.094 is εF ≈ 0.6J ≈ 90 meV.
We already pointed out that assuming AF ordering we make
a snapshot of the fluctuating magnetic background. The back-
ground fluctuates with typical frequency about Eres ∝ p3/2;
see Ref. 11 For validity of the snapshot approach the Fermi
energy, εF ∝ p, must be much larger than Eres, Eres � εF . The
inequality is violated at about optimal doping. This is why our
snapshot approach is justified only at p < 0.15.

B. Magnon softening at finite doping

To address the renormalization of magnon due to Gd , we
define the following matrix elements for dressed magnon
Green’s functions,28

Dαα(q) = −i

∫ ∞

−∞
〈T αq(t)α†

q(0)〉eiωtdt = D(q),

Dββ(q) = −i

∫ ∞

−∞
〈Tβ

†
−q(t)β−q(0)〉eiωtdt = D(−q), (14)

Dαβ(q) = −i

∫ ∞

−∞
〈T αq(t)β−q(0)〉eiωtdt = D(q),

where q = (ω,q). Dyson’s equation for D(q) and D(q) is28,40

D(q) = D0(q) + D0(q)�11(q)D(q) + D0(q)�02(q)D(q),

D(q) = D0(−q)�20(q)D(q) + D0(−q)�11(−q)D(q).

(15)

= + +

= +

FIG. 3. Dyson’s equations of magnon Green’s function, Eq. (15).
The open circle shows the normal polarization operator and the solid
circle shows the anomalous polarization operator.

These equations are graphically presented in Fig. 3. Here �11

and �02 = �20 are the normal and the anomalous polarization
operators, respectively. The solution to Eq. (15) is

D(q) = D0(−q)−1 − �11(−q)

λ(q)
, D(q) = �20(q)

λ(q)
,

λ(q) = [D0(q)−1 − �11(q)][D0(−q)−1 − �11(−q)]

−�02(q)�20(q). (16)

The normal and the anomalous polarization operators are
calculated by the spectral function of holes,

�11(q) =
∫

d2k
(2π )2

g2
k−q,qP (ω,k,q),

�02(q) =
∫

d2k
(2π )2

gk−q,qgk,−qP (ω,k,q),

P (ω,k,q) =
∫ μ

−∞
dε

∫ ∞

μ

dε′
[
A(ε′,k)B(ε,k − q)

ω + ε − ε′ + iη

− B(ε,k)A(ε′,k − q)

ω + ε′ − ε − iη

]
. (17)

Integrals in Eq. (17) are pretty singular having in mind
that the spectral functions contain coherent δ-function con-
tributions. Therefore, for accurate numerical integration we
split the coherent and incoherent dynamics. Practically this
means that the integrand in (17) is split in four parts which we
calculate separately.

P = P ZZ + P ZÃ + P ZB̃ + P ÃB̃,

P ZZ(k,q) = ZkZk−q�(εk − μ)�(−εk−q + μ)

ω + εk−q − εk + iη
− ZkZk−q�(−εk + μ)�(εk−q − μ)

ω + εk−q − εk − iη
,

P ZÃ(k,q) =
∫ ∞

μ

dε′ Zk−q�(−εk−q + μ)Ã(ε′,k)

ω + εk−q − ε′ + iη
−

∫ ∞

μ

dε′ Zk�(−εk + μ)Ã(ε′,k − q)

ω + ε′ − εk − iη
, (18)

P ZB̃(k,q) =
∫ μ

−∞
dε

Zk�(εk − μ)B̃(ε,k − q)

ω + ε − εk + iη
−

∫ μ

−∞
dε

Zk−q�(εk−q − μ)B̃(ε,k)

ω + εk−q − ε − iη
,

P ÃB̃(k,q) =
∫ μ

−∞
dε

∫ ∞

μ

dε′
[
Ã(ε′,k)B̃(ε,k − q)

ω + ε − ε′ + iη
− B̃(ε,k)Ã(ε′,k − q)

ω + ε′ − ε − iη

]
.

Figure 4 shows the imaginary part of magnon Green’s function
D(ω,q) at different doping levels. The low frequency behavior,
ω � 0.5J , is somewhat erratic; this is especially evident at

p = 0.094,0.142. So, the calculation indicates that low energy
dynamics in this approach are not self-consistent as we have
already discussed and as we expect. The snapshot approach
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FIG. 4. Imaginary part of Magnon Green’s function obtained by
numerical method, Eqs. (13) and (18), at different doping levels for
the t − t ′ − t ′′ − J model with t ′ = −0.5 and t ′′ = 0.4.

does not give low energy dynamics. However, the high energy
dynamics in this approach are reliable. Here we concentrate
on the position of the topmost peak, ωπ,0. According to

Fig. 4,

ωπ,0 ≈ 2J (1 − 3.6p). (19)

As we expect from general arguments presented above there
is no a

√
p term in ωπ,0. Nevertheless, there is a significant

softening of the zone boundary magnon with doping.
We have also performed calculations for the pure t − J

model (t ′ = t ′′ = 0). The magnon spectral function for this
case is shown in Fig. 5. In this case there is a notice-
able very low energy structure practically for all momenta.
The structure is a reflection of negative compressibility
of the pure t − J model;41 the present calculation also
indicates the compressibility problem in the low energy
dynamics. Again, the high energy dynamics are reliable. The
position of the topmost peak is

ωπ,0 ≈ 2J (1 − 2.1p). (20)

In this case softening of the zone boundary magnon with
doping is less pronounced. Hence, the degree of magnon
softening depends significantly on values of t ′ and t ′′. This
is quite natural since these parameters change shape of the
Fermi surface.

The result (19) has to be compared with RIXS data.
We remind that the result is theoretically justified only for
p < 0.15. However, this is sufficient to claim that (19) is
inconsistent with data,15 provided that RIXS indeed measures
the spin response.

In particular for optimal doping (p = 0.15) the theory
predicts softening of the zone boundary magnon by a factor
of 2. There is not any softening observed in experiment. This
indicates that real cuprates are correlated more strongly than
the t − t ′ − t ′′ − J model. We do not see a possibility to
challenge physics of the parent CTI. Therefore, in our opinion
the discrepancy indicates a failure of the Zhang-Rice singlet
picture away from the heavily underdoped regime.

We would also like to comment on the validity of the
single band Hubbard model for the description of cuprates.
We reiterate again that parent cuprates are not Mott insulators;
they are charge transfer insulators.1,2 Therefore, one cannot
directly justify the Hubbard model and the usual justification
is based on the reversed argument that if the t − t ′ − t ′′ − J

model is valid then it must be equivalent to some effective
Hubbard model. However, if the t − t ′ − t ′′ − J model and
the Zhang-Rice singlet picture fail, then, in our opinion, there
is no way to justify the single band Hubbard model.

III. SPIN STRUCTURE FACTOR SUM RULE AND
IMPLICATIONS FOR OVERDOPED CUPRATES

A. The sum rule

The spin structure factor is defined as

S(q,ω) =
∑

n

〈0|S†
q |n〉〈n|Sq |0〉δ(ω − ωn), (21)

where Sq is the Fourier transform of the electron spin density,

Sq = 1

N

∑
j

Sj e
iq·rj , (22)
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FIG. 5. Imaginary part of Magnon Green’s function at different
doping levels for the t − J model with t ′ = t ′′ = 0.

where Sj = 1
2

∑
μν c

†
jμσμνcjν . Here we assume that the

system is described by a model on a square lattice, either the
t − t ′ − t ′′ − J model (1), the Hubbard model, or any other
single band model. The spin structure factor gives intensity of
spin response and it has been measured in RIXS13–20 as well

as in neutron scattering. The spin structure factor obeys the
following sum rule:∫ ∞

0
dω

∫
BZ

d2q

(2π )2
S(q,ω) = Srule,

(23)

Srule = 3

4

{
(1 − p) − 2

N

∑
j

〈0|c†j↓c
†
j↑cj↓cj↑|0〉

}
.

The momentum integration here is carried over the full
Brillouin zone (BZ) of the lattice. To derive the sum rule
one just uses the closure relation,

∑
n |n〉〈n| = 1, and the

anticommutation relation for electron creation/annihilation
operators cjσ . Note that the first term in brackets in (23) is just
the average electron density per site, 1

N

∑
jμ〈0|c†jμcjμ|0〉 =

Ne/N = 1 − p.
Now we discuss the sum rule in each particular model. For

noninteracting electrons
∑

j 〈0|c†j↓c
†
j↑cj↓cj↑|0〉 = N2

e /(4N ).
Therefore,

Srule = 3
8 (1 − p2). (24)

Hence, the sum rule gives 3/8 for half-filling (p = 0), and
it gives zero for p = 1 (no electrons) and for p = −1
(completely full band, two electrons per site).

The t − t ′ − t ′′ − J model (1) contains a no double electron
occupancy constraint which implies that p > 0. In this
case the second term in brackets in (23) is identical zero,∑

j 〈0|c†j↓c
†
j↑cj↓cj↑|0〉 = 0, and the sum rule reads

Srule = 3
4 (1 − p). (25)

For the single band Hubbard model the second term in
brackets in (23) is nonzero, but if U � t it is small. At exactly
half-filling, p = 0, the sum rule reads

Srule = 3

4

[
1 − 8

(
t

U

)2]
= 3

4

[
1 − 1

2

(
J

t

)2]
. (26)

Here we use the standard relation J = 4t2/U . For t/J ≈ 3
the sum rule (26) deviates from that for the t − t ′ − t ′′ − J

model, Eq. (25) only by 5%. The spectral weight for magnetic
transitions to the upper Hubbard band, ω ≈ U , is tiny,
≈( t

U
)2 ≈ 1

16 ( J
t
)2. So, most of the weight (26) is in excitation

of usual magnons ω � 2J .
Finally we present the sum rule for the Hubbard model

in the dilute electron limit, Ne/N = 1 − p � 1. This is the
limit of normal Fermi liquid and a simple summation of ladder
diagrams in

∑
j 〈0|c†j↓c

†
j↑cj↓cj↑|0〉 gives the following answer

for the sum rule:

Srule = 3

4

{
(1 − p) − (1 − p)2 2π2

ln2
(

4.2
1−p

)(
J

t

)2
}

. (27)

The parameter J = 4t2/U does not give an energy scale in this
case. The spectral weight is practically uniformly distributed
over the entire bandwidth 0 < ω < 8t . There is also a tiny
weight for transition to the upper Hubbard band, ω ≈ U . In
both cases, Eq. (26) and Eq. (27), the (J/t)2 correction does
not exceed several percent and hence for our purposes it can
be neglected. The sum rule in the Hubbard model is very close
to that in the t − t ′ − t ′′ − J model.
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FIG. 6. Creation of a single magnon by the spin operator. The
solid line shows the spin and the dashed lines show magnons.

The RIXS measurements13–20 have been performed in
undoped, underdoped, and overdoped cuprates, and structure
factors have been compared between these cases. The compari-
son includes not only positions of energy peaks, but intensities,
too. This allows us to use undoped cuprates, where theory
is unambiguous, as a reference point. Therefore, in the next
subsection we calculate the structure factor of an undoped 2D
CTI or Mott insulator treated within the framework of the
Heisenberg model.

B. Spin structure factor of 2D Heisenberg model

For the calculation we use the standard spin-wave approach
briefly discussed in Sec. II. The spin structure factor has
been considered previously in Refs. 42, 43 within the same
approach, as well as by quantum the Monte Carlo method
in Ref. 44. For our purposes we need a closed form of the
structure factor over the entire BZ, which is not addressed in
the previous works, so in what follows we revisit this problem.

In the calculation we keep magnon quantum corrections
up to the single loop.45 We remind one that the staggered
magnetization calculated in the single loop approximation
reads46

m = 1

2
− r ≈ 0.304, r =

∑
k∈MBZ

2v2
k ≈ 0.196, (28)

where vk is the Bogoliubov parameter defined in Eqs. (2)
and (4). The intermediate state |n〉 in Eq. (21) can consist
of one, two, three, and more magnons. The single magnon
matrix element 〈n|Sq |0〉 → 1√

2
〈n|S(+)

q |0〉 + 1√
2
〈n|S(−)

q |0〉 is
described by diagrams shown in Fig. 6. A straightforward
calculation gives the following single magnon contribution to
the spin structure factor,

S(1)(q,ω) = 1
2 [1 − r]2(uq + vq)2δ(ω − ωq). (29)

The double magnon contribution contains an elastic part
determined by the staggered magnetization (28) and inelas-
tic part determined by the double magnon matrix element
〈n|S(z)

q |0〉 described by diagrams shown in Fig. 7. Again, a
straightforward calculation gives the following two magnon

FIG. 7. Creation of two magnons by the spin operator. The solid
line shows the spin and the dashed lines show magnons.

contribution to the spin structure factor:

S(2)(q,ω) = [1/2 − r]2δ(ω)δ(q − QAF) + [1 − r]2

×
∑

k∈MBZ

(ukvq−k − vkuq−k)2δ(ω − ωk − ωq−k).

(30)

Here QAF = (π,π ) is the AF vector. Performing the ω and the
q integrations in (29) and (30) one finds the single and the
double magnon contributions to the sum rule (23).∫ ∞

0
dω

∫
BZ

d2q

(2π )2
S(1)(q,ω) = 1

2
(1 − r)2(1 + 2r)

≈ 0.45,∫ ∞

0
dω

∫
BZ

d2q

(2π )2
S(2)(q,ω) = (1/2 − r)2 + r(1 − r)2(1 + r)

≈ 0.09 + 0.15 = 0.24. (31)

In the last line of Eq. (31) we present separately contributions
of the static diffraction and the double magnon excitation.
The first line, 0.45, is slightly below the exact sum rule value
0.5. This gives an estimate for the triple magnon contribution,
∼0.05. The estimate is consistent with accurate quantum
Monte Carlo calculations.44 The single and the double magnon
contributions practically saturate the sum rule (23), 0.45 +
0.24 = 0.69 instead of expected 0.75. Therefore we neglect
triple magnon excitations as well as higher multiplicity
excitations.

To plot the structure factor we broaden δ functions in
Eqs. (29) and (30),

δ(ω − �) → F (ω) = R
2

π

ω��0

(ω2 − �2)2 + ω2�2
0

. (32)

The factor R ∼ 1 is determined numerically from the nor-
malization condition

∫ ∞
0 F (ω)dω = 1. Note that F (ω) has

an asymmetric shape with effective linewidth �ω = ω
�
�0.

An ω dependence of the linewidth is typical for broadening
due to inelastic processes, for example, for electric dipole
transitions in atoms/molecules/nuclei �ω = (ω/�)3�0. The
ω-dependent broadening leads to a non-Lorentzian lineshape.
Calculated structure factors for �0 = J and for q = ( 3

4π, 3
4π ),

q = ( 1
2π, 1

2π ), q = (π,0), and q = ( 1
2π,0) are plotted in Fig. 8.

C. Spin sum rule in underdoped cuprates

The sum rule (23) and (25) is naturally fulfilled within
the t − t ′ − t ′′ − J theory of underdoped cuprates.11 The
small static response described by the first line in Eq. (30)
is getting incommensurate with doping and very quickly
diminishes. It completely disappears at doping higher than
QCP at p ≈ 0.1. Certainly this contribution does not disappear
from the spin sum rule. The corresponding spectral weight is
transferred to the hourglass neck, so the parent Heisenberg
model static response becomes dynamic with the typical
energy Ecross ∝ p3/2 (Ecross(p = 0.15) = 40–50 meV). The
corresponding contribution to the spin sum rule is relatively
small, (1/2 − r)2 = 0.09. Within the chiral perturbation theory
the higher energy magnetic excitations, ω > Ecross are not
modified by doping besides the softening and broadening
discussed in Sec. II. Thus the integrated spectral intensity
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FIG. 8. (Color online) Spin structure factor S(q,ω) vs ω for 2D
Heisenberg model at q = ( 3

4 π, 3
4 π ), q = ( 1

2 π, 1
2 π ), q = (π,0), and

q = ( 1
2 π,0). Solid black lines show the total structure factors, red

dashed lines show the single magnon contributions and blue dot-
dashed-lines show the double magnon contribution. The broadening
width is �0 = J . Note that the first panel, q = ( 3

4 π, 3
4 π ), is scaled

down by factor 2.

remains practically the same as that in the parent compound.
This prediction of the theory is perfectly consistent with RIXS
data,15 the spin sum rule is naturally fulfilled because almost
nothing is changed compared to the parent CTI. A small
reduction of the total spectral weight proportional to doping
p, the right-hand side in Eq. (25), is beyond accuracy of the
chiral perturbation theory.

To avoid misunderstanding we reiterate that the t − t ′ −
t ′′ − J model makes the following predictions in the under-
doped regime: (i) softening of the zone boundary magnons
with doping discussed in Sec. II; (ii) no variation of spectral
weight with doping for high energy magnetic excitations,
ω � Eres. The first prediction is inconsistent with RIXS data
while the second one is perfectly consistent with the data.

D. Spin sum rule in overdoped cuprates

Even if the t − t ′ − t ′′ − J model was valid for overdopped
cuprates there is not any controlled theoretical technique to
analyze the model in this regime. As we have already explained
the chiral perturbation theory can at most be extended up
to optimal doping. Independently of underlying microscopic
model there are numerous experimental indications that
overdoped cuprates behave like ordinary Fermi liquids (see
Ref. 20 for summary of the indications). In this subsection we
analyze how the exact spin sum rule (23) is saturated in highly
overdoped Tl2Ba2CuO6+δ with doping p ≈ 0.27. We do not
have a microscopic theory for this case. However, whatever
is the model/theory the total integrated spin spectral weight
must be equal to 0.75(1 − 0.27) ≈ 0.55 [see Eqs. (23) and
(25)–(27)].

The message of Ref. 20 is that while the low en-
ergy, ω < 100 meV, spin response is almost diminished in
Tl2Ba2CuO6+δ , the high energy spin response, ω > 100 meV
is the same as that in the parent compound. The positions of
spectral maximums and the spectral weights are the same.47 We
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FIG. 9. (Color online) A schematic picture of q-integrated spin
spectral density. The solid black line follows from RIXS data,20

so this is the measured spectral density. The red short-dashed line
corresponds to a noninteracting NFL, the bandwidth is 8t ≈ 24J ≈
3.4 eV. The blue long-dashed line is a sketch for a strongly interacting
NFL. Note that the areas over all the curves is the same.

have a reliable theory for the parent compound and hence we
can calculate contribution to the sum rule from ω > 100 meV.
Momentum and ω > 100 meV integration of Eq. (29) gives
0.37, and similar integration of Eq. (30) gives 0.14. Hence,
the measured spectral weight 0.37 + 0.14 = 0.51 is close to
0.55 expected from the exact sum rule. Thus, we conclude
that the entire spin spectral weight in heavily overdoped
Tl2Ba2CuO6+δ is located in the same energy range ∼2J +
broadening as that in undoped CTI. In fully uncorrelated
NFL the spectral weight is almost uniformly distributed over
the entire bandwidth, �E ≈ 8t ≈ 24J ≈ 3.4 eV. A schematic
picture of the q-integrated spin spectral density is shown in
Fig. 9. The solid black line has been extracted from RIXS
data20 using the parent compound normalization as it has been
described above, so this is the measured spectral density. The
red short-dashed line corresponds to a fully uncorrelated NFL.
The blue long-dashed line is a cartoon for correlated NFL, the
effective bandwidth is reduced by 3 times compared to the non-
interacting NFL to imitate the effective mass measured in mag-
netic oscillations.48 Obviously the measured spectral density
is dramatically different from what one can expect from a NFL
model. This analysis supports the statement of the experimen-
tal paper20 that the observed magnetic response is inconsistent
with the NFL picture in highly overdoped Tl2Ba2CuO6+δ .

IV. CONCLUSION

In summary, stimulated by recent RIXS data we analyze
underdoped and overdoped regimes of cuprates. (i) Our anal-
ysis of the underdoped regime is based on the t − t ′ − t ′′ − J

model. The model is treated within the controlled chiral
perturbation theory with doping being the small expansion
parameter. Our calculation demonstrates a significant soften-
ing of the high energy (ω > 100 meV) magnetic response
with doping [see Eq. (19)]. This is inconsistent with RIXS
data which show that the high energy magnetic response
is practically doping independent. The chiral perturbation
theory results are valid within doping range 0 � p � 0.15.
The doping range is sufficient to make the above conclusion
on the softening. (ii) Our analysis of the heavily overdoped
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regime is based on the exact spin sum rule, since here the
chiral perturbation theory is not valid. We demonstrate that
the observed in RIXS magnetic response saturates the spin
sum rule. This implies that the entire momentum integrated
magnetic response is concentrated in the energy interval
∼2J similar to that in the undoped compound. Such energy
concentration of the magnetic response is not consistent
with a normal Fermi liquid model. Note that the pointed
inconsistencies are the major qualitative issues. These are not
minor numerical disagreements.

In our opinion the discussed inconsistencies most likely
indicate a failure of the Zhang-Rice singlet picture away from
the underdoped regime. According to RIXS measurements
antiferromagnetic correlations are stronger than that predicted
by the t − t ′ − t ′′ − J model. The analysis suggests that

electron spins on copper sites are practically not influenced
by doping except the relatively low frequency, ω � 100 meV,
fluctuations. It seems that any modifications within the single
band t − t ′ − t ′′ − J model or within the single band Hubbard
model cannot resolve the inconsistencies with RIXS. An
explicit account of the oxygen degrees of freedom, say within
the three-band Hubbard model, might resolve the problem.
Further investigations are certainly needed to address the
important issue.
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