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In the first paper of this series [DiStasio, Jr., Marcotte, Car, Stillinger, and Torquato, Phys. Rev. B 88,
134104 (2013)], we applied inverse statistical-mechanical techniques to study the extent to which targeted spin
configurations on the square lattice can be ground states of finite-ranged radial spin-spin interactions. In this
sequel, we enumerate all of the spin configurations within a unit cell on the one-dimensional integer lattice and
the two-dimensional square lattice up to some modest size under periodic boundary conditions. We then classify
these spin configurations into those that can or cannot be unique classical ground states of the aforementioned
radial pair spin interactions and found the relative occurrences of these ground-state solution classes for different
system sizes. As a result, we also determined the minimal radial extent of the spin-spin interaction potentials
required to stabilize those configurations whose ground states are either unique or degenerate (i.e., those sharing
the same radial spin-spin correlation function). This enumeration study has established that unique ground states
are not limited to simple target configurations. However, we also found that many simple target spin configurations
cannot be unique ground states.
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I. INTRODUCTION

Interactions between the atomic or molecular particles
contained in condensed phases produce an enormous diversity
of geometric structures and resulting material properties.
This diversity is of incalculable value to technology, while
presenting fascinating scientific challenges to the research
community for interpretation. This paper reports analytical and
computational results extending an initial investigation that fo-
cused on geometric pattern production in classical spin system
ground states.1 Because the present work and its predecessor
basically involve starting with a given target pattern, then
searching for an optimal radial interaction function to attain
that pattern as a classical ground state, the central strategy
utilized has been classified as belonging to “inverse statistical
mechanics.”2–7

As in the preceding paper,1 attention here focuses on
static polarization patterns that can be exhibited by arrays
of interacting Ising spins σi = ±1 (1 � i � N ) on a d-
dimensional lattice, in the absence of external fields. The N

spins constitute a finite unit cell that is periodically replicated
over the infinite lattice; that is, this cluster of N spins is subject
to periodic boundary conditions. In the cases to be examined
here, the lattices are Bravais lattices, and therefore all spin
locations are geometrically identical.

Ising models have a venerable history, introduced originally
to explain the phenomenon of ferromagnetism.8,9 Although the
early versions of the Ising model considered only interactions
between nearest neighbors on the lattice of interest,8,10–12

subsequent investigations have extended the analysis to in-
corporate longer-ranged interactions.13–19 Assuming that the
interactions among the Ising spins are pairwise-additive and
radial (i.e., isotropic), the total interaction energy E for the

unit cell can be represented as follows:

E(σ1, . . . ,σN ) = −
∑
i<j

J (Rij )σiσj , (1)

where the sum covers all of the interactions of the N spins in
the unit cell20 and Rij stands for the scalar distance between
the i,j spin pair. Because the spins and their periodic images
reside on a lattice, all possible distances Rij form a discrete set.
The summation in Eq. (1) includes all distances in that set up
to a cutoff value RC beyond which J (Rij ) becomes identically
zero.

A basic descriptor for any single spin pattern on a lattice
is the following spin-spin correlation function defined for the
discrete set of interspin distances occurring on the lattice:

S2(R) ≡ 1

N

∑
i<j

σiσj δR,Rij
, (2)

in which δR,Rij
is a generalized Kronecker delta.21 This

definition permits the energy per spin ε, for any spin pattern,
to be simply written as

ε ≡ E

N
= −

RC∑
R>0

J (R)S2(R). (3)

The fact that the spin-spin interaction potentials to be
considered herein only depend on scalar distances implies
that the energy per spin ε can experience pattern degenera-
cies. Some of these are trivial, arising from various pattern
symmetries (boundary conditions permitting), such as transla-
tions, rotations, spatial and spin inversions, and combinations
thereof. In addition there can arise pairs (or larger numbers) of
distinct spin patterns not related by symmetry that happen to
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possess identical S2(R) correlation functions for all R, specific
examples of which have been previously identified.1 If that is
the case, then ε will be identical for these distinct patterns
regardless of the spin-spin interaction potential J (R). We
will call the set of all Ising spin configurations on a given
underlying lattice that possess the same S2(R) function an
“iso-S2 set.” The elements of an iso-S2 set that are related by
combinations of symmetry operations will simply be regarded
as trivial degeneracies. By contrast, the largest subset of spin
patterns (configurations) in an iso-S2 set that are not related
to one another by the aforementioned symmetry operations
will be identified as “nontrivial degeneracies.” Throughout
the remainder of this paper, any allusion to degenerate spin
configurations will in fact refer to nontrivial degeneracies,
the number of which is denoted by � for any given iso-S2

set.
With respect to Ising model energy degeneracies, an

historical note may be of passing interest. Specifically, the
two-dimensional Ising models with nearest-neighbor antifer-
romagic interactions [J (1) < 0] on both the triangular Bravais
lattice22 and on the non-Bravais kagomé lattice23 have ground
states with high-order degeneracies. In fact, these degeneracies
confer positive residual entropies on the ground states in the
infinite-system size limit. However, these antiferromagnetic
situations do not conform to the type of pattern analysis
implemented in this paper, where finite Ising spin patterns
are periodically replicated, and where spin-spin interaction
potentials J (R) are sought to produce nondegenerate ground
states when possible.

In Ref. 1, we classified target spin configurations according
to three solution class designations. In terms of the iso-S2

formalism just introduced, these solutions classes can be
equivalently restated as follows: (1) Class I: An iso-S2 set with
no (nontrivial) degeneracies for which a spin-spin interaction
potential J (R) can be constructed for which the iso-S2 set is
a corresponding unique ground state; (2) Class II: An iso-S2

set exhibiting two or more (nontrivial) degeneracies for which
a spin-spin interaction potential J (R) can be constructed such
that the energy per spin ε for each member of the iso-S2 set
is lower than that of all configurations outside the set; and
(3) Class III: Any iso-S2 set that belongs to neither class I
nor class II. The latter is equivalent to stating that any iso-S2

set for which any assigned interaction J (R) produces a higher
energy per spin, or an equal energy per spin, compared to spin
configurations from at least one other set, belongs to class III.

The principal objective of this paper is to separate all
possible iso-S2 sets of spin configurations of a given unit cell
size into those that can be unique classical ground states with
an energy of the form Eq. (1), from those that cannot. The
total number of possible spin patterns for a system containing
N spins is 2N (many of which are trivial degeneracies),
thereby limiting the exhaustive searches considered in this
work to modest system sizes. For the d = 1 integer lattice, we
considered systems as large as N = 21, while for the d = 2
square lattice, we have considered both square and rectangular
unit cells, the largest of which contains N = 25 spins in a
5 × 5 unit cell. In spite of the modest sizes of the unit cells
examined herein, it is worth noting that population trends for
the three distinct solution classes can still be identified as N

increases.

In this investigation, we have obtained lower bounds on
� for the iso-S2 sets, which are sharp for all of the 1D
integer and for most of the 2D square lattice sets, and have
uncovered the relationship between � and system size for
spin configurations on the 1D integer lattice. Using these
enumeration results, we have employed inverse statistical-
mechanical techniques to assign solution class designations
(class I, II, or III) corresponding to each of the iso-S2

sets and have found their relative occurrences for different
system sizes. In doing so, we also determined the minimal
radial extent of the spin-spin interaction potentials required
to stabilize iso-S2 sets belonging to classes I and II. In this
paper, we show that inverse statistical-mechanical techniques
can successfully create radial spin-spin interactions for which
spin configurations with minimal symmetry are the unique
classical ground states. The existence of these unique ground
states opens the field of inverse methods toward much more
unusual targets than have previously been studied in both spin1

and many-particle systems,2–7 which could aid in the design of
materials with desired properties. By contrast, we demonstrate
that many candidate targets cannot be the unique classical
ground states of any set of radial spin-spin interactions, either
due to S2-type degeneracies (class II), or from guaranteed
non-S2-type degeneracies (class III).

The subsequent sections in this paper are arranged as
follows. Section II presents a detailed description of the
methods used to search for energy-minimizing isotropic inter-
actions, and to identify spin patterns and their corresponding
interaction potentials according to the class I, II, and III criteria
stated above. Section III describes in detail the extensive results
generated by our method for the modest-size systems exam-
ined on the integer and square lattices with periodic boundary
conditions. The final section, Sec. IV, contains the discussion
and conclusions, specifically including our estimates of the
most productive directions in which future research regarding
these pattern-controlling phenomena might proceed.

II. METHODS

This section is dedicated to the description of the various
technical aspects of this research. In Sec. II A, we define both
of the underlying lattices considered in this work: the one-
dimensional (1D) integer and two-dimensional (2D) square
lattices. In Sec. II B, we describe the protocol we have utilized
to consider every spin configuration discretized on a given
underlying lattice with a given periodicity. Finally, Sec. II C
describes the inverse statistical-mechanical techniques that
we employed to classify the different iso-S2 sets and create
spin-spin interaction potentials that correspond to ground
states comprising the class I and II sets. These techniques
have previously been employed in Ref. 1.

A. The integer (Z) and square (Z2) lattices

A generalized Ising model with an energy defined according
to Eq. (1) can be discretized on any given underlying lattice
as long as the distance between any two spins is well-defined.
Traditionally speaking, the Ising model has most often been
studied on either the square or triangular lattices,24,25 but
investigations on more exotic networks, such as the Bethe
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lattice and hyperbolic planes have also appeared in the
literature.26–28 In this paper, we restrict our investigation to
the 1D integer lattice (Z) and the 2D square lattice (Z2), with
nearest-neighbor distances set to unity in both cases. On the
integer lattice, the distance Rij between spins σi and σj is
simply

Rij = |i − j |, (4)

where i and j can take on any integer value. On the square
lattice, the distance between spins is

Rij =
√

(xi − xj )2 + (yi − yj )2, (5)

in which the spin coordinates, {xi,yi} and {xj ,yj }, are also
integers. Since both the integer and square lattices are
periodic, this allows us to use periodic boundary conditions
to approximate the infinite system limit.

Throughout this work, the size of the unit cell for a spin
system discretized on the integer lattice will be denoted by
n. For this case, the total number of spins, N , is therefore
N = n and the only allowed lattice vector is (n). In the same
vein, the unit cell size for the square lattice will be denoted by
m × n, with N = mn and corresponding lattice vectors taken
as (m,0) and (0,n). Although unit cells characterized by lattice
vectors that are not aligned with the (1,0) and (0,1) directions
can also exist on the square lattice, this set of unit cells was
not included in the present study. We note in passing that any
spin configuration with such a unit cell can be equivalently
represented by a larger unit cell with lattice vectors aligned
with the aforementioned canonical directions.

B. Enumeration protocol

Unlike continuous point-particle systems, for which there
exists an uncountably infinite number of configurations, the
spin systems considered herein have discrete degrees of
freedom (where each spin can only be +1 or −1), which allows
for a finite number of spin configurations. We take advantage of
this property and explicitly enumerate all spin configurations
discretized on the 1D integer and 2D square lattices with
specific unit cells. The total number of spin configurations
that can be represented on a periodic underlying lattice with N

spins contained within the unit cell is 2N , since each spin can
take on one of two distinct values. In order to obtain an accurate
count of the number of iso-S2 sets belonging to each solution
class, it is necessary to enumerate all of the configurations
belonging to each of these sets. To do so, we first compute the
spin-spin correlation function, S2(R), given in Eq. (2), for all of
the 2N−1 spin configurations (using spin-inversion symmetry
to fix one of the spins reduces the total number of spin
configurations by a factor of 2), and store the list of possible
S2(R) functions. Throughout this work, S2(R) is computed up
to the first 100 coordination shells for both of the underlying
lattices; however, we have found that the first differing value
of S2(R) (for non-S2-degenerate spin configurations) always
occurs at a radial distance smaller than, or of the order of, the
periodicity of the spin configurations in question.

This enumeration method was also adapted to compute
the number of nontrivial degeneracies � in each iso-S2 set.
In this case, instead of only storing the S2(R) function
for a given iso-S2 set, we also store a running list of the
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FIG. 1. (Color online) The number of iso-S2 sets which contains
a certain number � of degenerate spin configurations for spin
configurations discretized on the 1D integer lattice with a N spin
basis (omitted symbols indicate that no sets have such values of
� for the given N ). For a given N , all sets which contain at least
one configuration that can be represented using N periodic spins are
included in the enumeration of �. A consequence of this is that the
class I ferromagnetic set (with all spins aligned) is included in � = 1
for all N .

nontrivial degeneracies contained in this set. Whenever a
new spin configuration that is characterized by a previously
stored spin-spin correlation function is encountered during the
enumeration process, we are left with the task of determining
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FIG. 2. (Color online) The relative amount of iso-S2 sets that
are in classes I, II, or III, for spin configurations discretized on the
1D integer lattice with an N spin basis. Although it is essentially
imperceptible in this figure, we found two class II sets for N = 18
(out of a total of 3456 sets). These two sets are depicted in Fig. 3.
Even though the first class II sets were found at N = 18, this does
not mean that there are no S2 degeneracies for smaller systems. As
seen in Fig. 1, there are doubly-degenerate sets (� = 2) starting at
N = 12. However, for 12 � N � 17, all of these sets belong to class
III. We have also found 18 class II iso-S2 sets for N = 21 (out of a
total of 23 121).
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(a) (b)

FIG. 3. (Color online) The two class II iso-S2 sets found among 18-spin configurations discretized on the 1D integer lattice, each with a
degeneracy � = 2.

whether or not this configuration is a trivial or nontrivial
degeneracy with respect to the members of the corresponding
iso-S2 set. Such a determination can be achieved by comparing
the spin configuration to each member of the given iso-S2

set and performing a spin-by-spin check for symmetrical
equivalence up to translations, rotations, reflections, and spin
inversion. By updating the list with all of the nontrivial
degeneracies found, the number of configurations in the list
at the end of the enumeration process yields � for each iso-S2

set. However, one apparent weakness of this method is that
it fails to identify any of the S2-degeneracies corresponding
to spin configurations that cannot be represented on the unit
cell considered during the enumeration; hence, the values of
� computed utilizing this protocol are strictly lower bounds
(see Figs. 6 and 7 for illustrative examples).

C. Generation and verification of spin-spin
interaction potentials

Throughout this work, we follow the method first employed
in Ref. 1 to generate spin-spin interaction potentials, J (R),
which yield ground states that are contained within single iso-
S2 sets (i.e., class I and II solutions), or to disprove the existence
of any such potential (i.e., class III solutions). Given a spin
configuration T from a targeted iso-S2 set and a competitor
spin configuration C from another iso-S2 set, the difference in
energy per spin between these configurations can be written as

�εC ≡ εC − εT = −
∑
R

J (R)
[
SC

2 (R) − ST
2 (R)

]
, (6)

which is clearly a linear function of the interaction potential
J (R) for each of the interspin separations allowed by the
underlying lattice. In order for T to be the unique ground
state corresponding to J (R), �εC must be positive for all
possible competitors C. Since such a calculation is intractable,
we instead select the potential which maximizes �εC between
the target and the competitor(s) that are closest in energy via

z ≡ max
J (R)

(
min

C
�εC

)
, (7)

in which z is the objective function. Here, the maximization is
performed over all allowed potentials, and the minimization is
performed over the set of known competitors.

Equations (6) and (7) can both be expressed as inequalities
that are linear in z and J (R). Therefore standard linear
programming techniques, such as the simplex algorithm, can
be used to efficiently find the global optimum value of the
objective function. However, the problem as defined above is
not bounded, since multiplying all of the J (R) and z by a
positive constant has no effect on the inequalities. Therefore,
if we already have a valid solution with a positive z value,
we could generate solutions with arbitrarily large z values.

To solve this issue, we bound all of the J (R) to be in the
range: [−1,+1]. Such bounded J (R) functions can reproduce
any possible interaction potential, up to the aforementioned
positive constant.

The potential J (R) is also set to zero for all R larger than
some radial cutoff distance RC , initially set at RC = 1. If the
objective function z is identically zero, then this is indicative
of the fact that it is impossible for T to be the unique ground
state for any potential J (R) under the given restrictions, since
at least one �εC will be nonpositive for any potential. In
this situation, we relax this restriction on RC by incrementing
RC to the next smallest distance allowed by the underlying
lattice and recalculate z. This ensures that our optimization
algorithm will find the shortest possible potential for the given
target spin configuration. If z remains zero even when allowing
for potentials much longer than the periodic cell size, this
signifies that T cannot be a unique ground state, and therefore
belongs to class III. If z is positive, we have obtained a putative
potential J (R) for which we must confirm that T is indeed
the corresponding ground state. To do so, we repeatedly use

TABLE I. The spin-spin interaction potentials J (R) correspond-
ing to the two class II iso-S2 sets shown in Fig. 3. All configurations
from both sets have a N = 18 spin basis and a potential cutoff of RC =
15. The corresponding spin-spin correlation functions S2(R) and the
energies per spin ε are also shown for comparison. Both sets are
related through a gauge transformation since the spin configurations
from Fig. 3(a) can be transformed to the spin configurations from
Fig. 3(b) by inverting every other spin [σi → (−1)iσi]. This same
transformation leads to a S2 and potential function which have
opposite sign for every odd R [S2(R) → (−1)RS2(R) and J (R) →
(−1)RJ (R)].

Figure 3(a) Figure 3(b)

R J (R) S2(R) J (R) S2(R)

1 1 1/3 −1 −1/3
2 −1 −1/3 −1 −1/3
3 0.857 −5/9 −0.857 5/9
4 −0.806 −1/3 −0.806 −1/3
5 1 1/3 −1 −1/3
6 −0.714 5/9 −0.714 5/9
7 1 1/3 −1 −1/3
8 −1 −1/3 −1 −1/3
9 0.429 −7/9 −0.429 7/9
10 −0.516 −1/3 −0.516 −1/3
11 0.608 1/3 −0.608 −1/3
12 −0.286 5/9 −0.286 5/9
13 0.887 1/3 −0.887 −1/3
14 −0.427 −1/3 −0.427 −1/3
15 0.143 −5/9 −0.143 5/9

ε −1.303 −1.303
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FIG. 4. (Color online) The minimal range RC of the spin-
spin interaction potentials required to stabilize spin configurations
discretized on the 1D interger lattice in term of NF , the number
of spins in the respective fundamental cells. The circles indicate the
average RC for all configurations with the same fundamental cell size.

a simulated annealing (SA) procedure using the Metropolis
algorithm to relax disordered spin configurations with variable
periodic unit cells (1 � n � 100 for the integer lattice, and
1 � m � n � 30 for the square lattice). If a spin configuration
is found that has an energy per spin that is lower than or equal to
εT , but with a different S2(R) spin-spin correlation function,
then this disproves the putative potential J (R). This spin
configuration is then added to the list of known competitors,
and the optimization is restarted. If we do not find any such
competitors before the SA procedure yields the desired target
ground state 100 times, then we have amassed sufficiently
strong evidence that we have obtained a valid potential.

III. RESULTS

A. The 1D integer (Z) lattice

The 1D integer lattice is a very simple yet consequence-rich
model to study how the number of degeneracies and the ratio
of iso-S2 sets in the different solution classes vary with the
system size. This simplicity is a direct result of the lattice
having a single parameter (n) which describes the period of
the spin configurations. Figure 1 shows how the number of
iso-S2 sets of a given degeneracy, �, increases with the basis
number N = n, regardless of the solution class to which the
set belongs. A first observation is that the number of iso-S2 sets
grows exponentially with N , which is relatively unsurprising
considering the fact that the total number of spin configurations
also grows exponentially as 2N . The growth in the number
of iso-S2 sets is actually somewhat slower (approximatively
proportional to 1.85N ), a consequence of the fact that the

FIG. 5. (Color online) The unique spin configuration on the 1D
integer lattice with NF = 14 spins in its fundamental cell which can
be stabilized using a potential with cutoff RC = 5. Table II presents
one such spin-spin interaction potential.

TABLE II. The spin-spin interaction potential J (R) correspond-
ing to a ground state (in Fig. 5) which has NF = 14 spins even
though the potential has a relatively short cutoff at RC = 5. The
corresponding spin-spin correlation function S2(R) and energy per
spin ε of the potential ground state are also shown.

R 1 2 3 4 5 ε

J (R) −2/9 1 2/3 −1/3 −4/9 −46/63
S2(R) 1/7 3/7 1/7 −1/7 −3/7

number of trivial degeneracies also increases with N . A second
observation is that the number of iso-S2 sets with different
degeneracies � apparently have the same rate of exponential
growth. This indicates that, even in the infinite size limit, the
vast majority of the sets remain nondegenerate (� = 1).

This property is a peculiarity of the underlying integer
lattice, for which the radially-averaged S2(R) function contains
exactly the same information as the directional spin-spin
correlation function Ŝ2(R), since Ŝ2(R) = S2(R = |R|) for any
vector and spin configuration discretized on the 1D integer
lattice. In general, we can also define a directional spin-spin
correlation function Ŝ2(R), which is more appropriate for
anisotropic pairwise interactions:

Ŝ2(R) = 1

N

∑
ij

σiσj δR,Rij
, (8)

where Rij is the d-dimensional vector from spin i to spin j .
The radial S2(R) can then be readily obtained from Ŝ2(R) by
summing over all equal-length vectors:

S2(R) = 1

2

∑
|R|=R

Ŝ2(R), (9)

where the 1/2 factor corrects for the double counting in the
definition of Ŝ2(R), since Ŝ2(−R) = Ŝ2(R).

A third observation (see Fig. 1) concerns those basis
numbers at which the number of doubly-degenerate sets
(� = 2) is either decreasing or barely increasing: 13, 17,
19, 23, 25, 29, 31. These basis numbers are all of the prime
numbers between 12 and 32 (25 being the only exception,

FIG. 6. (Color online) An example of two spin configurations that
belongs to the same class II iso-S2 set, and therefore have identical
S2(R) functions, while having a different number of spins NF in their
fundamental cells. The spins in their fundamental cells are denoted
using a solid outline, while other spins are denoted using a dashed
outline and smaller squares. The number of spins in their fundamental
cells are 18 and 36, respectively.
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FIG. 7. (Color online) An example of two spin configurations
that belongs to the same class II iso-S2 set, and therefore have
identical S2(R) functions, with differently-aligned fundamental cells.
The fundamental cell of the left configuration has (5,0) and (0,5)
as its basis vectors, while those of the right configuration are (4,3)
and (3, − 4). The spins in their fundamental cells are denoted using
a solid outline, while other spins are denoted using a dashed outline
and smaller squares. Both have NF = 25.

although it is a squared prime number). We have not studied
the cause of this pattern, but it is plausible that the increased
occurrence rate of symmetry for nonprime number bases is
responsible for the observed trend.

Using the approach described in Sec. II C, we classified
all iso-S2 sets for the underlying 1D integer lattice with
N � 21, either by generating a potential J (R) for which the
ground state is the specified set, or by proving that no such
potential exists. Figure 2 shows the fraction of sets in each
solution class for each basis number. The fact that this fraction
for class I decreases overall with increased system size is
also unsurprising considering the growing complexity that
configurations with more spins can achieve. However, it is
interesting to note that spin configurations with odd N usually
have a higher fraction of class I sets than spin configurations
with neighboring even N . Configurations with odd N being
easier to stabilize is likely due to a broken symmetry, although
its precise mechanism still needs to be understood.

TABLE III. The number of iso-S2 sets of spin configurations with
a m × n basis in each solution class for the underlying 2D square
lattice. For each m and n, the data are represented in the following
manner: number of class I sets / number of class II sets / number
of class III sets. It should be mentioned that all spin configurations
which can be represented with the given basis are counted, even if
they could also be represented using a smaller unit cell. For example,
all 5 of the 4 × 4 class I configurations are also 2 × 4 configurations
(see Fig. 12). We have also enumerated the sets with 4 × 6, 5 × 6, and
6 × 6 bases. There are respectively 48 914, 1 594 858, and 4 868 629
such sets.

n

m 1 2 3 4 5 6

1 1/0/0 2/0/0 2/0/0 3/0/1 3/0/1 6/0/2
2 3/0/1 6/0/2 5/0/15 18/0/26 23/0/104
3 3/2/6 15/1/65 37/2/221 31/19/1030
4 5/1/266 301/2/4666
5 74/29/8209

In all of our calculations on the underlying 1D integer
lattice, we have only discovered 20 class II iso-S2 sets, 2
for N = 18 and 18 for N = 21. The N = 18 class II iso-S2

sets are shown in Fig. 3. The spin-spin interaction potentials
corresponding to these degenerate configurations as ground
states are presented in Table I.

As mentioned in Sec. II C, the method utilized to generate
spin-spin interaction potentials for a given iso-S2 set only tries
to obtain potentials with a given cutoff RC after it has already
been proved that all shorter potentials are unable to stabilize the
set. Therefore any interaction potential J (R) that the method
returns is always going to have the shortest possible cutoff for
the targeted set. This property allows us to explore the range
limitations of generalized Ising spin-spin interactions. Figure 4
clearly shows the upper bound on the minimal value of the
cutoff: RC � NF if NF is odd, and RC � NF − 1 if NF is even,
where NF denotes the number of spins in the fundamental cell
of a given spin configuration, where the fundamental cell is
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FIG. 8. The number of iso-S2 sets which contains a certain number � of degeneracies for spin configurations discretized on the 2D square
lattice with (a) a 4 × 5 basis and (b) a 5 × 5 basis. Only the degenerate spin configurations which can be represented using the exact same basis
have been counted, thereby � is only guaranteed to be a lower bound in these cases.
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FIG. 9. (Color online) All class I spin configurations which can be
represented using a 3 × 3 basis on the 2D square lattice. The middle
spin configuration was previously reported in Ref. 1 as SP[1,2].

the smallest repeat unit in the spin configuration (which can
be smaller than the unit cell). The RC � NF upper bound
can readily be proven via the following observation: for any
spin configuration on the underlying 1D integer lattice with
a periodic unit cell containing N spins, S2(R = N ) = 1, the
maximum value that S2(R) can achieve on this lattice. Now,
let us consider an interaction potential J (R) such that its
value at R = N is much larger than all of its other values:
J (N ) � |J (R)| ∀R �= N . Such an interaction potential will
clearly favor spin configurations with S2(R = N ) = 1 over
all others, so its ground state will be represented using a N

spin basis. Since S2(R + N ) = S2(R) for such configurations,
any potential longer than N can be shortened to RC = N ,
without changing its ground state. Therefore the minimal
cutoff RC has a upper bound equal to NF , the number of
spins in the fundamental cell. The lower bound on RC is
more complex, since it deviates from RC � NF /2 as early
as NF = 13. Figure 5 shows one spin configuration which
breaks that rule, since it has NF = 14 spins in its fundamental
cell yet it is the ground state of an interaction potential with a
cutoff at RC = 5 (see Table II).

B. The 2D square lattice

Unlike the spin configurations on the underlying 1D
integer lattice studied in Sec. III A, spin configurations on
an underlying 2D square lattice can have a wide variety of
unit cell lattice vectors. While it is conceivable to enumerate
all spin configurations that can be represented with a unit
cell containing a specific number of spins, but with otherwise
arbitrary lattice vectors, we elect to restrict our investigation
in this work to spin configurations with unit cell lattice vectors
that are aligned with the underlying square lattice. Figure 6
shows an example of two degenerate spin configurations
with not only different fundamental cells, but also different
numbers of spins NF in their fundamental cells. Figure 7

shows another example of two degenerate spin configurations
with different fundamental cells, which differ only by their
orientation instead of by the number of spins. Both of these
types of degeneracies will not be identified when computing
� using brute force enumeration of the spin configurations
discretized on a given unit cell. However, when determining
whether an iso-S2 set belongs to class I or II, we used SA
methods to actively look for degenerate configurations with
varying unit cells, thereby avoiding such issues.

Spin configurations on the underlying 2D square lattice
have many more degeneracies than spin configurations on the
underlying 1D integer lattice, as can be seen by comparing
Fig. 8 with Fig. 1. This massive increase in the number
of degeneracies � compared to the 1D enumeration can
be attributed to the loss of information when going from
an angular-dependent spin-spin correlation function Ŝ2(R)
to an angular-averaged radial spin-spin correlation function
S2(R), i.e., for which Ŝ2(R) = S2(|R|) is seldom observed.
This isotropy prevents S2(R) from being able to distinguish
spin configurations that only differ through the angular
dependence of their spin-spin correlations. Since this
property is also shared by other 2D lattices as well as
higher-dimensional lattices, it makes the square lattice much
more representative of what to expect for such lattices.

The classification for all iso-S2 sets on the underlying 2D
square lattice with 1 � m � n � 5, as well as 1 � m � 3 and
n = 6 is shown in Table III. Just as the 1D iso-S2 sets are
more likely to be in class III when they have a large basis (see
Fig. 2), the proportion of 2D iso-S2 sets in class III increases
when either m or n is increased. The number of class II iso-S2

sets also shows the same behavior, since only two of the largest
bases for which we have enumerated (3 × 6 and 5 × 5) allows
for more than two class II iso-S2 sets. However, a peculiar
phenomenon that we have observed is that the number of
class I iso-S2 sets in some system sizes is actually lower than
the number of class I iso-S2 sets in strictly smaller systems,
even though the total number of iso-S2 sets is greater in the
former case. For example, there are two times as many class
I iso-S2 sets among 2 × 3 spin configurations than among
3 × 3 spin configurations, three times as many class I iso-
S2 sets among 3 × 4 spin configurations than among 4 × 4
spin configurations, and four times as many class I iso-S2

sets among 4 × 5 spin configurations than among 5 × 5 spin
configurations. In all of these cases, the system size with the
lower number of class I iso-S2 sets is square (i.e., m = n),
which indicates that the increased symmetry associated with
these system sizes actually disfavors the occurrence of class I

(a) (b)

FIG. 10. (Color online) The two class II iso-S2 sets containing spin configurations which can be represented using a 3 × 3 basis on the 2D
square lattice. The spin configuration on the left of (a) was previously reported in Ref. 1 as CB[1,2].
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FIG. 11. (Color online) All class III spin configurations which can be represented using a 3 × 3 basis on the 2D square lattice.

iso-S2 sets. A subset of the classified sets is also presented in
Figs. 9–15.

Unlike the 1D integer lattice case, in which the linear size of
the fundamental cell (equal to the number of spins NF inside of

it) is a natural quantity to represent the extent of the smallest
periodically replicated unit of a spin configuration, the 2D
square lattice has no such quantity. While

√
NF could be used,

it cannot distinguishes elongated fundamental cells and square

(a) (b) (c)

(d) (e)

FIG. 12. (Color online) All class I spin configurations which can be represented using a 4 × 4 basis on the 2D square lattice. All of these
spin configurations have been previously reported in Ref. 1 as (a) FM, (b) CB[1,1] (the classic antiferromagnetic ground state), (c) SP[1,1],
(d) SP[2,2], and (e) SC[2,2].
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FIG. 13. (Color online) The single class II iso-S2 set which
contains spin configurations which can be represented using a 4 × 4
basis on the 2D square lattice. This set was previously reported in
Ref. 1 as the CB00[2,2] and CB11[2,2] block checkerboard spin
configurations.

fundamental cells. Instead, we find the two shortest possible
lattice vectors (with the second restricted to be noncollinear
with the first), and use the length λ2 of the larger of the two
lattice vectors as a representative length of the fundamental
cell. An example of how λ2 is calculated is shown in Fig. 16.
Figure 17 compares the λ2 value of spin configurations with
the minimal potential cutoff RC required to stabilize these
configurations on an underlying 2D square lattice. A major
difference with the underlying 1D integer lattice is that there
is no upper bound at RC = λ2. This is because the reasoning
behind the upper bound of RC for the 1D integer lattice case
depended on S2(R) being equal to its maximal value when
R is equal to the configuration period, which is not true in
general for the 2D square lattice. There are even some spin
configurations for which S2(R) never reaches its maximum
(or minimum) value, such as most of those with a 5 × 5 basis.
An example of a spin configuration with an unusually large
RC for its λ2 value is shown in Fig. 18, and its corresponding
spin-spin interaction potential is presented in Table IV. Despite
these differences, both the 1D and 2D spin configurations show
an increased required potential range as their fundamental cells
grow larger, as expected.

Again, one benefit of enumerating all of the spin configu-
rations (up to some size limit) that are ground states of some
spin-spin interaction potential is that such an investigation
allows us to discover the limits of what these radial interaction
potentials can or cannot stabilize. One question is whether
or not one can stabilize spin configurations in which the vast
majority of the spins have a given orientation (but not all of
them as in the case of the ferromagnetic spin configuration).
This is equivalent to asking how close the magnetization per
spin of a given spin configuration can be to 1, without actually
being 1 (with the magnetization 〈σ 〉 of a configuration defined
as the averaged value of all the spin values σi). The only
spin configuration with a magnetization of 1 is the class
I ferromagnetic spin configuration, where all spins have
identical orientation. It should be mentioned that while some
class I striped phase and some class II block checkerboard
spin configurations previously studied in Ref. 1 can have a
magnetization arbitrarily close to 1, such spin configurations
would require very large unit cells. From Table V, we observe
that class II sets are highly concentrated at low magnetization.

This is a direct consequence of lower magnetization sets
having higher degeneracies than higher magnetization sets.
Figure 19 shows both |〈σ 〉| = 0.6 class I sets, which are
the two class I sets with highest magnetization that we have
found during the enumeration process. Table VI contains
the spin-spin interaction potentials that stabilize these high
magnetization sets.

IV. DISCUSSION AND CONCLUSIONS

The primary goal of the research presented herein was to
utilize recently developed inverse statistical-mechanical tech-
niques to (i) enumerate the ground-state spin configurations
of the radial pairwise spin-spin interaction potential given in
Eq. (1) and (ii) classify these spin configurations according to
the solution class designations introduced in Ref. 1. Governed
only by computational feasibility, this study focused on spin
configurations discretized on the underlying 1D integer and
2D square lattices. In particular, we have found that, with
the exception of the smallest system sizes, the majority of
target spin configurations can only be ground states with
non-S2-type degeneracies, i.e., they belong to class III iso-S2

sets. This is in stark contrast to previous papers using inverse
methods for point particles interacting according to pairwise
radial interactions, which have reported successful uses of
the methods to stabilize a wide variety of configurations
such as the square, honeycomb, and kagomé crystals in two
dimensions,2,7,29 and the simple cubic, diamond, wurtzite, and
calcium fluoride crystals in three dimensions,4,30–33 but have
not reported any configurations which cannot be stabilized
using the class of potentials under consideration. While
stabilizing such structures is no easy feat, our results open
questions about whether the reason why these configurations
could be stabilized is simply a consequence of them being
relatively simple structures (having only up to 4-particle bases)
with a high degree of symmetry or order. Therefore it would
be of considerable interest to explore whether or not more
complex point-particle configurations can be stabilized by a
pairwise radial potential, i.e., whether they would belong to
class I or III for such interactions. Additionally, it would be
fascinating to see if class II point-particle configurations exist.
While the existence of degenerate point-particle configurations
is already known (and any degenerate spin configurations can
be converted into degenerate point-particle configurations), it
is likely that such configurations can be stable ground states
of some pairwise radial potential; however, they have yet to be
discovered.

One interpretation as to why some spin configurations are
in class III instead of being in either class I or II is that the
class III configurations are more “complex” or less “ordered”
according to some metric. While we have not attempted to
define any such metric, our results do not show any indication
that would point toward the existence of such a metric beyond
the number of spins in the fundamental cell. Configurations
with smaller unit cells are indeed more likely to be in class
I or II than configurations with larger unit cells, a result that
is consistent with our conjecture in Ref. 1 that the fraction
of class I configurations goes to zero in the infinite-system
limit. Furthermore, for a given system size, configurations
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FIG. 14. (Color online) All class I spin configurations which can be represented using a 5 × 5 basis on the 2D square lattice and are
left invariant under some combination of symmetry operations (translations, rotations, reflections, and spin-inversion) besides that which
is guaranteed by the underlying 5 × 5 periodic boundary conditions, displayed left-to-right, top-to-bottom, in order of decreasing absolute
magnetization |〈σ 〉|. There are 54 such configurations.

with near-zero magnetization are more likely to be in class I or
II than configurations with higher magnetization (see Table V).
Besides these two observed trends, it does not seem that there

is any other link between the complexity of a given spin
configuration and its solution class. Indeed, there are many
class I configurations that are devoid of symmetry (besides the
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FIG. 15. (Color online) All class I spin configurations which can be represented using a 5 × 5 basis on the 2D square lattice and are not
left invariant under any combination of symmetry operations besides that which is guaranteed by the underlying 5 × 5 periodic boundary
conditions, displayed left-to-right, top-to-bottom, in order of decreasing absolute magnetization |〈σ 〉|. There are 20 such configurations.

symmetry resulting from their periodic boundary conditions,
compare the spin configurations given in Figs. 14 and 15),
while there are also many class III configurations that are
more symmetrical. Since class I and II configurations can be
mapped to the vertices of a k-dimensional polytope of all
allowed values of S2(R) (c.f. Fig. 11 of Ref. 1), where k is
the number of coordination shells for the underlying lattice
within the cutoff radius RC , studying this polytope could
lead to an understanding of why certain configurations can
be stabilized while others cannot. Additionally, such a study
could result in the discovery of a “complexity” or “order”
metric which would be a better predictor of the solution class
for a given spin configuration. Even if we have no such metric,
it is remarkable that we have been able to discover sets of spin
configurations which can be unique ground states with some
degree of nontrivial degeneracies (i.e., they belong to class II),
that are much simpler and more ordered than other well-known
disordered degenerate spin configurations.34–36

FIG. 16. (Color online) An example demonstrating how λ2 is
calculated for a periodic spin configuration. The arrows denote the
two shortest noncollinear lattice vectors of the fundamental cell. Since
the lengths of these two vectors are 1 and 4, λ2 = 4 (the larger of the
two lengths).

Taking advantage of the underlying lattice structure, we
were able to determine the shortest range of possible potentials
that still correspond to specific target spin configurations as
corresponding ground states. For periodic solutions on the 1D
integer lattice, the shortest potential cutoff RC was shown to
have an upper bound that is linear in terms of the fundamental
cell size. On the other hand, our results are insufficient to
conclude whether a lower bound on RC depends linearly or
logarithmically on the fundamental cell size. While periodic
solutions on the 2D square lattice also show an increase in
lower and upper bounds on RC with increased λ2, our data is
still too sparse to make any conclusive predictions for larger
systems.
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FIG. 17. (Color online) The minimal range RC of the spin-spin
interaction potentials required to stabilize spin configurations on the
2D square lattice in term of the length of the longer lattice vector λ2

of their fundamental cells. The circles indicate the average RC for
all spin configurations with the same λ2. It should be mentioned that
not all configurations with λ2 � 6 have been considered in this work.
Therefore this figure should only be taken as a rough indicator of the
range of RC vs λ2.
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FIG. 18. (Color online) One of the two spin configurations with
λ2 = √

8 that can be stabilized using a spin-spin interaction potential
with a minimal cutoff RC = √

18. While this configuration is in
class I, the other configuration with λ2 = √

8 and RC = √
18 is in

class II due to being S2-degenerate with two other spin configurations
with larger fundamental cells. The spins in the fundamental cell are
denoted using a solid outline, while other spins are denoted using
a dashed outline and smaller squares. The fundamental cell lattice
vectors are (1,2) and (−2,2).

The generalized Ising model has several interesting ties
to two-phase reconstruction problems, which consist of at-
tempting to recover a two-phase configuration (black and
white pixels or voxels) with limited statistical information,
such as the standard two-point correlation function.37–40 It
was shown that even if one obtains a configuration with
an identical two-point correlation function (analogous to the
class II solutions considered in this work), that configuration
can be very different from the targeted configuration, as
measured by other correlation functions. Additionally, using
a correlation function that is analogous to S2(R), Gommes
et al.41 demonstrated that a target configuration can possess an
enormous number of degeneracies (e.g., ∼107 degeneracies for

TABLE IV. The spin-spin interaction potential J (R) correspond-
ing to the spin configuration shown in Fig. 18. The spin-spin
correlation function S2(R), its maximum value on Z2, Smax

2 (R),
and the energy per spin ε of the ground state are also shown for
comparison. Even though the fundamental cell lattice vectors are of
length

√
5 and

√
8, S2(R) is not maximal for either of these distances.

R J (R) S2(R) Smax
2 (R)

1 0.204 −2/3 2√
2 −0.105 0 2

2 −1 −2/3 2√
5 1 2/3 4√
8 0.645 2/3 2

3 1 4/3 2√
10 −0.813 −4/3 4√
13 0.523 −4/3 4

4 −1 −2/3 2√
17 −0.395 2/3 4√
18 −1 2/3 2

ε −3.084

TABLE V. The number of (a) 4 × 5 and (b) 5 × 5 iso-S2 sets in
each class in term of the absolute magnetization |〈σ 〉| of the set. It
should be noted that all configurations in a given iso-S2 set have the
same magnetization up to a sign.

(a) (b)

|〈σ 〉| I II III |〈σ 〉| I II III

0.0 98 2 879 0.04 28 25 1737
0.1 52 0 1321 0.12 16 4 1690
0.2 82 0 1036 0.20 17 0 1415
0.3 40 0 703 0.28 4 0 1226
0.4 24 0 415 0.36 4 0 903
0.5 2 0 193 0.44 4 0 623
0.6 2 0 87 0.52 0 0 357
0.7 0 0 23 0.60 0 0 169
0.8 0 0 8 0.68 0 0 64
0.9 0 0 1 0.76 0 0 19
1.0 1 0 0 0.84 0 0 5

0.92 0 0 1
1.00 1 0 0

a disordered 8 × 8 pattern), which likely grows exponentially
with system size. While this number includes both trivial and
nontrivial degeneracies, it still indicates that there is a huge
number of nontrivial degeneracies. While that study did not
distinguish between class I, II, and III solutions, it would not
be surprising if this increased number of degeneracies is also
the case for class I and II sets.

Given the limitations of achieving unique ground-state
spin configurations with radial interactions of finite range,
a natural extension of the present application of inverse
statistical mechanical techniques is to examine more general
spin interactions that would enable one to increase the relative
size of the set of class I solutions. One such possible gener-
alization includes directional pairwise spin-spin interactions
of finite range, which we expect will dramatically increase
the number of possible class I solutions due to the fact that
the directional spin-spin correlation function in Eq. (8) more
uniquely specifies a target configuration than a radial one.40

FIG. 19. (Color online) Spin configurations from the two class I
iso-S2 sets with the highest absolute magnetization, 〈σ 〉 = 0.6, found
by our exhaustive search (not considering the ferromagnetic state with
〈σ 〉 = 1). Both of these spin configurations can be realized using a
4 × 5 unit cell.
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TABLE VI. The spin-spin interaction potentials J (R) correspond-
ing to the spin configurations shown in Fig. 19. The spin-spin
correlation function S2(R), its maximum value on Z2, Smax

2 (R),
and the energy per spin ε of the ground states are also shown for
comparison.

R J (R) S2(R) J (R) S2(R) Smax
2 (R)

1 −0.108 3/5 −0.318 2/5 2√
2 −1 2/5 1 6/5 2

2 −0.201 4/5 −0.486 1 2√
5 −0.408 8/5 0.131 4/5 4√
8 −0.116 2/5 −0.556 2/5 2

3 −0.620 2/5 0.063 3/5 2√
10 0.540 8/5 0.369 8/5 4√
13 0.243 8/5 −0.126 4/5 4

4 0.705 7/5 0 6/5 2√
17 −0.075 6/5 0.122 8/5 4√
18 −0.060 6/5 −0.129 2/5 2√
20 −0.022 4/5 . . . . . . 4

5 0.310 2 . . . . . . 6√
26 0.204 4/5 . . . . . . 4√
29 0.173 12/5 . . . . . . 4

ε −1.687 −1.140

Another way to achieve this goal would be to allow not only
spin-spin interactions but intrinsic n-spin interactions (n � 3).
It would be interesting to investigate the improvement provided
by the simplest extension of this type, i.e., directional pairwise
and triplet spin interactions.

In addition, it would be equally interesting to investigate
spin configurations discretized on other underlying lattices,
such as the 2D triangular and 3D cubic lattices. In particular,
the 2D triangular lattice is known to have degenerate ground
states for the nearest-neighbor antiferromagnetic potential;22

therefore we expect that this choice of underlying lattice could
lead to qualitatively different results than those found in this
work with the 2D square lattice.

In future work, it will also be interesting to study the
excited states of the spin-spin interactions that led to the
various degenerate or nondegenerate ground states identified
in this paper. Investigating the phase transition properties
of such interactions would be worth comparing to the same
properties for other spin-spin interactions, such as those that
are position- and orientation-dependent.42 Allowance for such
nonradial interactions in inverse methodologies would make it
substantially easier to achieve a given target spin configuration
as a unique ground state and enable one to obtain more exotic
ground-state structures than with radial interactions alone, as
has recently been shown in the case of many-particle systems
subject to directional pair potentials.43
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31É. Marcotte, F. H. Stillinger, and S. Torquato, J. Chem. Phys. 138,

061101 (2013).
32A. Jain, J. R. Errington, and T. M. Truskett, Soft Matter 9, 3866

(2013).
33G. Zhang, F. H. Stillinger, and S. Torquato, Phys. Rev. E 88, 042309

(2013).
34J. Snyder, J. S. Slusky, R. J. Cava, and P. Schiffer, Nature (London)

413, 48 (2001).
35S. V. Isakov, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett. 95,

217201 (2005).

36C. L. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010).
37C. L. Y. Yeong and S. Torquato, Phys. Rev. E 57, 495

(1998).
38M. S. Talukdar, O. Torsaeter, and M. A. Ioannidis, J. Colloid

Interface Sci. 248, 419 (2002).
39M. E. Kainourgiakis, E. S. Kikkinides, A. Galani, G. C.

Charalambopoulou, and A. K. Stubos, Transport Porous Med. 58,
43 (2005).

40Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 82, 011106
(2010).

41C. J. Gommes, Y. Jiao, and S. Torquato, Phys. Rev. E 85, 051140
(2012).

42H. Au-Yang and B. M. McCoy, Phys. Rev. B 10, 886 (1974).
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