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Skyrmion confinement in ultrathin film nanostructures in the presence
of Dzyaloshinskii-Moriya interaction
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We study the modification of micromagnetic configurations in nanostructures, due to the Dzyaloshinskii-
Moriya interaction (DMI), that appear at the interface of an ultrathin film. We show that this interaction
leads to micromagnetic boundary conditions that bend the magnetization at the edges. We explore several
cases of ultrathin film nanostructures that allow analytical calculations (one-dimensional systems, domain
walls, cycloids, and skyrmions), compare with fully numerical calculations, and show that a good physical
understanding of this type of micromagnetics can be reached. We particularly focus on skyrmions confined in
circular nanodots and show that edges allow for the isolation of single skyrmions for a large range of the DMI
parameter.
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I. INTRODUCTION

Recent observations of chiral structures in magnetic thin
films1–5 have raised a great interest for the Dzyaloshinskii-
Moriya interaction (DMI),6–9 as it favors magnetization ro-
tations with a fixed chirality.8,10,11 This coupling originates
from the combination of low structural symmetry and large
spin-orbit coupling. It has been first proposed in bulk materials
lacking space inversion symmetry9 but it also exists at the
interface between a magnetic film and a high spin-orbit
coupling adjacent layer.12,13 The most striking phenomenon
induced by DMI is the formation of skyrmion networks,2,3,14,15

but its influence on domain walls5,16–19 is also at the ori-
gin of interesting properties such as increased domain-wall
velocity versus magnetic field. Recently, interest has also been
devoted to isolated skyrmions, which can be nucleated as
a metastable state in thin films,20,21 opening a path to new
concepts of magnetic memories based on skyrmion motion in
nanotracks.21,22

While extensive work has already been performed on
the influence of DMI on micromagnetism for infinite
samples,7,8,11,14–17,23–25 no description is available for nanos-
tructures, which is the aim of this work. We show that in
nanostructures, DMI leads to a specific form of micromagnetic
boundary conditions that should be implemented in micro-
magnetic numerical solvers. We describe several cases with
analytical solutions that provide tests for numerical codes,
and help to get a physical feeling of the effects of this
interaction. We particularly focus on the problem of skyrmions
trapped in nanodots. Using simple physical arguments based
on the micromagnetic length scales, we discuss the different
states that are obtained. This should help future studies to
design new memories based on skyrmion motion.22 As most
of the recent advances in this field toward application in
spintronics devices have been obtained for ultrathin films,17–22

we restrict our study to this case, using the interfacial DMI
coupling described by Fert13 and using a two-dimensional
(2D) formulation, where any variation along the film normal is
neglected.

II. MICROMAGNETIC FRAMEWORK

The Dzyaloshinskii-Moriya interaction has been introduced
in an atomic description as6,8,9

EDM =
∑
〈i,j〉

�dij · (�Si × �Sj ), (1)

where �dij is the DM interaction vector for the atomic bond
ij (in Joule), �Si the atomic moment unit vector, and the
summation is performed on the neighbor pairs 〈i,j 〉. The
direction of �dij depends on the type of system considered. We
consider here magnetic ultrathin films, where DMI originates
from the interaction with the high spin-orbit heavy metal
of the adjacent layer.12,13,26 In this case, for isotropic films
�dij is d �uij × ẑ,2,13,16,17,21,22,27 where �uij is the unit vector
between sites i and j and ẑ is the direction normal to the film
oriented from the high spin-orbit layer to the magnetic ultrathin
film. In the micromagnetic framework, the hypothesis that the
atomic spin direction evolves slowly at the atomic scale allows
building a continuous form for the DMI. As we consider films
that are thinner than any micromagnetic length scale, variations
along the surface normal are neglected so that, even if DMI
originates from the interfaces, we consider a uniform average
value along the film thickness. Given �m(�r) the magnetization
direction at position �r , the DMI energy reads as10,14

EDM = t

∫∫
D

[(
mx

∂mz

∂x
− mz

∂mx

∂x

)

+
(

my

∂mz

∂y
− mz

∂my

∂y

)]
d2�r, (2)

where D is the continuous effective DMI constant, in J/m2.
The link between D and d depends on the type of lattice,
but scales as 1/at (a being the lattice constant and t the
film thickness). The 1/t scaling is due to the assumption of
interface-induced DMI. We obtain D = d/at = d/Na2 for
a simple cubic lattice oriented along the (001) direction and
D = d

√
3/at = 3d/Na2

√
2 for a face-centered-cubic lattice
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oriented along the (111) direction (N is the number of atomic
planes in the film). For example, given the value from the
literature2 for 1 monolayer of Fe on Ir(111) d = −1.8 meV
and a = 2.715 Å, we find D = −8.3 mJ/m2 for N = 1. Note
also that, although Eq. (2) has been derived from a simple
first-neighbor description, it remains valid for a more complex
formulation, as long as the system is isotropic. In such a case,
only the link between D and d is modified.

DMI needs to be included together with the other mi-
cromagnetic energies so that the exchange energy density
A[( ∂ �m

∂x
)2 + ( ∂ �m

∂y
)2] and anisotropy energy density −K( �m · ẑ)2

are added to Eq. (2) (A being the micromagnetic exchange
constant and K the anisotropy constant). In this paper, we
consider the case with a perpendicular easy axis (K > 0). In
order to provide exact solutions which can be compared to
numerical calculations, we do not consider dipolar coupling
here so that K can be seen as an effective anisotropy constant,
which takes into account the shape anisotropy (K = KMC −
1
2μ0M

2
S , with KMC the magnetocrystalline anisotropy and

MS the spontaneous magnetization). This approximation is
justified by the fact that we are interested in ultrathin films,
where dipolar coupling becomes local (shape anisotropy) in
the zero-thickness limit.28 See, however, Fig. 1 for a case where
full dipolar coupling is included. As a first approximation, we
also do not include any specific edge energies (enhanced edge
anisotropy, modified exchange, or DMI constant, . . .) as usual
in continuous magnetism.

For numerical applications, we consider in the following
the parameters of Pt/Co/AlOx samples29 [A = 16 pJ/m, K =
510 kJ/m3 (� = 5.6 nm, Dc = 3.6 mJ/m2; see Sec. III B)],
thought to be good candidates to show the importance of

FIG. 1. (Color online) Magnetization rotation at the edges of an
ultrathin film with interface DMI. (a) Magnetization profile in a stripe
infinite in the ŷ direction and with a 100-nm width in the x̂ direction,
with initial magnetization along the ẑ axis and for D = 3 mJ/m2

(ξ = 10.67 nm). (b) Variation of mx at the structure boundary versus
�/ξ . The calculation has been stopped at D = Dc = 3.6 mJ/m2 as
beyond this value, cycloids start to develop in the sample and C

in Eq. (5) is not zero. The continuous line is the solution (numerical
integration) of Eq. (4) for different strengths of the DMI. In (a) and (b),
symbols correspond to numerical calculations: for the open symbols,
the local dipolar coupling approximation is used whereas, for the full
symbols, the full dipolar energy is included. Note that in (a), both
results are hardly distinguishable.

DMI.17,21 The value of D is varied in order to observe its
influence on the micromagnetic configurations.

III. ONE-DIMENSIONAL CASE

We first consider the case where the magnetization direction
only changes along the x̂ direction. Such a case has already
been considered for an infinite film and the results presented
in Secs. III B and III C are already known,7,8,10,16 but we recall
them as they underline the micromagnetic meaning of the
parameter D and its associated length ξ . Moreover, the results
of this one-dimensional (1D) model are essential in order to
understand results obtained on skyrmions.

Given the fact that, in the case of ultrathin films, �dij is
orthogonal to �uij , the DMI favors rotation in the (x̂,ẑ) plane
with a fixed chirality, so that a single angle θ is needed to
describe the variation of �m(x). Referring θ to the ẑ axis, the
total micromagnetic energy density reads as

E[θ (x)] =
∫ xB

xA

[
A

(
∂θ

∂x

)2

− D
∂θ

∂x
− K cos2 θ

]
dx, (3)

where xA and xB are the boundaries of the sample in the x

direction. We note that, contrarily to the exchange term, the
DMI term is chiral so that lowest-energy states are expected
for ∂θ/∂x of the sign of D.27 Using standard variation
calculus,30,31 it can be shown that the function θ (x) which min-
imizes the energy is the solution of the following equations:

d2θ

dx2
= sin θ cos θ

�2
for xA < x < xB, (4a)

dθ

dx
= 1

ξ
for x = xA or x = xB, (4b)

where � = √
A/K and ξ = 2A/D are the two characteristic

lengths of the problem. The first one is the well-known Bloch
wall width parameter,31 while the second one is specific to the
DMI.7,8,14,32 By integration of Eq. (4a) we obtain

(
dθ

dx

)2

= C + sin2 θ

�2
, (5)

where C is an integration constant.

A. Magnetic edge structure and micromagnetic
boundary conditions

Equation (4b) needs to be carefully considered. It cor-
responds to a condition at the boundary of the sample.
Note that no specific micromagnetic energy was considered
at the edges so that this is a “natural” (or free) boundary
condition, that arises from the volume energies. It differs from
usual micromagnetism (i.e., without DMI) where it would be
dθ/dx = 0 in the absence of surface term, or where the edge
condition would be due to specific surface energies.33–36 A
striking consequence is that, in a finite-dimension structure
with DMI, the uniform state is never a solution of the
micromagnetic problem as soon as D �= 0.

For more complex investigations, these boundary condi-
tions have to be implemented in a micromagnetic simulation
code, which we have done for two different codes (one
homemade, Ref. 37, and the public code OOMMF, Refs. 38
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and 39). Similarly to previous works on micromagnetism,30,40

a generalized calculation can be performed for an arbitrary
orientation �n of the edge normal, which leads to the boundary
condition

d �m
dn

= 1

ξ
(ẑ × �n) × �m. (6)

This form ensures that the edge magnetization rotates in
a plane containing the edge surface normal. Note that the
condition does not depend on the definition of normal vector
�n orientation. Similarly, the volume equation (4a) can be
replaced in a general description by an effective field acting on
the local magnetization.30,40 The contribution of DMI to this
term is

�HDM = 2D

μ0MS

[( �∇ · �m)ẑ − �∇mz]. (7)

In order to test the implementation, direct comparisons have
been performed between the numerical results and Eq. (4).

A particular case arises when the system under considera-
tion has a magnetocrystalline anisotropy sufficiently large to
avoid cycloid configurations in the structure (Sec. III C). Then,
C = 0 in Eq. (5) and, combining Eqs. (4b) and (5), we find

mx = sin θ = ±�

ξ
(8)

at the edge of the structure. The effect of the DMI specific
boundary condition is demonstrated in Fig. 1, with a perfect
agreement between numerical and analytical calculations. We
observe that, in the center of the structure, the magnetization is
uniform and perpendicular to the film surface. At the edge, the
magnetization tilts in the (x̂,ẑ) plane. The influence of the edge
is felt over a length scale �, which is the only characteristic
length in the volume equation [see Eq. (4a)].

In reality, dipolar coupling may slightly modify this result.
Indeed, as the magnetization turns outward or inward at the
edges, magnetic charges are created which limit the magnetiza-
tion edge tilt. Using numerical simulation, we have calculated
the profile with a full dipolar coupling calculation (for that
purpose, we use MS = 1.1 × 106 A/m and KMC = 1.27 ×
106 J/m3, which corresponds to Keff = KMC − 1

2μ0M
2
S =

510 kJ/m3 as in the previous calculation). The results are
plotted in Fig 1. A small reduction of the edge tilt is indeed
observed but the overall shape of the magnetization profile is
not dramatically modified as anticipated.

B. Dzyaloshinskii domain walls (D < Dc)

We now consider an infinite system in the x̂ direction, and
have a closer look at Eq. (5). If D is small enough not to perturb
too much the system (domain-wall energy remains positive),
the integration constant C must be zero so that no cycloid
develops. It is striking to note that DMI does not appear any
longer in this equation. Equation (5) now has two types of
solution. The first one is uniform with θ = 0 or π . The second
one corresponds to a domain wall31 with

θ (x) = 2 arctan

[
exp

(
± x − x0

�

)]
+ nπ, (9)

where x0 is the position of the domain wall and n an integer.
The ± sign determines the chirality of the domain wall and n

enables the two types of wall (from 0 to ±π or from ±π to
±2π ). The shape of this domain wall is exactly the same as
the Bloch wall obtained without DMI. Note, however, that in
such calculation with schematic dipolar interaction term, the
calculation without DMI would not impose any condition on
the orientation of the rotation31 (Néel and Bloch walls have
the same energy), whereas DMI imposes here a rotation in the
(x̂,ẑ) plane (Néel walls). Note also that, if explicit dipolar
interaction were included, small deviations to the Bloch wall
profile would occur, due to the magnetic charges created in the
wall.17

The energy of the domain wall can be calculated by
injecting Eq. (9) into (3). The integration of the DMI term
is straightforward as θ undergoes a ±π rotation, giving ∓πD.
The two other terms are the same as for the wall without
DMI,31 so that the domain-wall energy with DMI is8,14,16

σ = 4
√

AK ∓ πD. (10)

It is interesting to note that DMI does not change the shape
of the 1D domain wall but introduces chirality, of a sign fixed
by that of D. For the most favorable chirality, it lowers the
energy. This property is at the origin of quite interesting
dynamic properties of Dzyaloshinskii domain walls.17 The
limit of this situation is when σ goes to zero. This defines
the critical DMI energy constant Dc = 4

√
AK/π .7,8 Above

it, the domain-wall energy is negative so that domain walls
proliferate in the sample. In this case, the integration constant
in Eq. (5) can not be zero anymore.

C. Cycloid state (D > Dc)

We now consider a large DMI (D � Dc). As domain
walls correspond to an energy gain, a cycloid develops in
the sample,1,41 with �m rotating in the (x̂,ẑ) plane. We first
consider the simple case where K = 0 (Dc = 0). In this case,
the constant in Eq. (5) is determined by minimizing the energy,
integrated over one period L0, to be determined. This leads to8

θ (x) = x

ξ
, (11a)

L0 = 2πξ. (11b)

This equation corresponds to a pure cycloid with periodicity
L0. Note that Eq. (11a) is compatible with the edge conditions
so that the result is also valid in nanostructures. This solution
gives a physical meaning to the length scale ξ as it describes
the period of cycloids, which develop due to DMI, in a zero
anisotropy sample.7,8,10,14,32,42 The larger the intensity of DMI,
the shorter the period.

If K �= 0, a threshold Dc is expected and, as states with
θ = 0 or π are energetically favored, the pure cycloid should
be deformed.8,43 From Eq. (5) we obtain

dθ√
C + sin2 θ

= dx

�
, (12)

which, integrated over one period L, leads to

L

4�
=

∫ π/2

0

dθ√
C + sin2 θ

. (13)
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FIG. 2. (Color online) (a) Variation of the cycloid period L as
a function of the anisotropy-free period L0 [result of Eqs. (13)
and (14)]. (b) Shape of the cycloid (perpendicular magnetization
component mz) in the presence of anisotropy (the dashed line is the
reference cycloid with no anisotropy) for (b1) D/Dc = 2.5 (D =
9 mJ/m2, L0 = 22.34 nm) and (b2) D/Dc = 1.1 (D = 4 mJ/m2,
L0 = 50.26 nm).

Integrating the energy over one period and minimizing with
respect to L leads to

D

Dc

= π2L

L0
=

∫ π/2

0

√
C + sin2 θdθ. (14)

This last equation determines C. Note that it has a solution
only if D/Dc � 1, which validates the previous intuition for
the threshold, based on the domain-wall energy. For D = Dc,
C = 0 and the period L diverges. If D 	 Dc, C is large so
that sin θ can be neglected in Eqs. (13) and (14). This leads to
L ≈ L0. In this case, the solution is close to the anisotropy-free
solution in Eq. (11). Results for any value of D are plotted in
Fig. 2.

IV. SKYRMIONS CONFINED IN NANODOTS

For D > Dc, the destabilization of the ferromagnetic state
in 2D can lead to the formation of skyrmion networks.2–4

While calculating such networks is beyond the possibilities
of the present formalism, we consider the simple case of an
isolated skyrmion in a circular nanodot of radius R, similarly
to the model of the vortex studied by Feldtkeller and Thomas.44

The skyrmion being centered in the dot, the circular geometry
allows considering radial variations only. Furthermore, the
thin film expression for DMI imposes again a magnetization
rotation in the (r̂ ,ẑ) plane (r̂ is the radial unit vector), which
produces a hedgehog skyrmion. The rotation is described
by a unique angle θ (r) referenced from the ẑ axis. The dot
energy is

E[θ (r)] = 2πt

∫ R

0

{
A

[(
dθ

dr

)2

+ sin2 θ

r2

]

−D

[
dθ

dr
+ cos θ sin θ

r

]
+ K sin2 θ

}
r dr, (15)

where t is the dot thickness. A variational calculation leads to
the equations for θ (r):

d2θ

dr2
= −1

r

dθ

dr
+ sin 2θ

2

(
1

r2
+ 1

�2

)
+ 2 sin2 θ

ξr
, (16a)

dθ

dr
= 1

ξ
for r = R. (16b)

We note that the edge condition (16b) is equivalent to that
found for the 1D case. Equation (16a) describes the variation of
θ in the dot. Its solutions have been extensively studied in the
case of infinite thin films.10,11,14,15,23–25 It has no trivial solution
respecting the edge condition. In particular, the uniform state is
no more a solution of the problem as soon as D �= 0, in analogy
with the 1D case. It has to be integrated numerically with
initial value θ (r = 0) = 0. The initial value for dθ/dr(r = 0)
is adjusted so as to fulfill the boundary condition (shooting
method).

For D = 0, only one solution is found, the uniform state.
Indeed, when no magnetic field is applied and in the absence
of dipolar coupling, no energy can stabilize a reversed domain
(magnetic bubble) in the dot. When D increases, this uniform
solution is slightly modified to fulfill the boundary condition.
We further note that chirality also appears: for this solution,
dθ/dr is of the sign of D.

Other solutions also exist. An example is given in Fig. 3
for D = 4.5 mJ/m2. Four solutions have been found: the
uniform one, a skyrmion (π rotation), and two other solutions
with larger magnetization rotation (2π and 3π rotation). In
order to test the 2D micromagnetic solvers, simulations have
been performed and compared with these results, as shown in
Fig. 3(a). Each state is reproduced with a perfect agreement
(for the configuration as well as for the energy) when the
energy minimization is started from an initial configuration
close enough to the targeted one.

The skyrmion solution is similar to a bubble centered in
the dot so that the center and the boundary have opposite
magnetization. However, the stabilization of this state is given
by DMI only, whereas bubbles are stabilized by external field
and/or dipolar coupling.23,24 Moreover, we note that this state
is different from usual bubbles as the magnetization rotation
is chiral, with a dθ/dr sign imposed by D. The magnetization
rotation is not progressive along the radius but occurs in
a narrow range of radius as for a domain wall, and the
minimization of anisotropy energy imposes that this transition
occurs on a length scale of �. The skyrmion core radius Rs

(the line with mz = 0) is mainly controlled by the DMI and
increases with D [see Fig. 4(a)]: as D lowers the domain-wall
energy, the skyrmion expands to larger diameters when D is
large.

To discuss the results, we first consider a single skyrmion,
represented as a bubble of radius Rs , in an infinite film. Two
ranges have to be considered, according to the value of D

compared to Dc. For D < Dc, the domain-wall energy σ (D),
as described in Eq. (10), is positive so that the skyrmion radius
should be zero. However, the domain wall is circular so that
a curvature energy cost needs to be included. This term arises
from the terms A sin2 θ dr/r and D cos θ sin θ dr in Eq. (15),
which do not appear in the 1D case [Eq. (3)]. As for a domain
wall, sin θ �= 0 only for r ≈ RS , if RS 	 � the variation of r
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FIG. 3. (Color online) Results of numerical integration of Eq. (16)
for a 100-nm-diameter nanodot with D = 4.5 mJ/m2 (D/Dc = 1.2).
The open symbols are the results of full numerical calculations [with
local dipolar energy approximation (Ref. 28)], given for comparison.
In (b), the variation of θ shows the chirality imposed by DMI in
the micromagnetic configuration. For this set of parameters, three
solutions are found: quasiuniform (black), skyrmion (red), and 2π

(green) and 3π (blue) rotation states.

can be neglected in the integral. Using the 1D solution for θ (r)
[Eq. (9)], the skyrmion energy is then

Es ≈ 2πRstσ (D) + 4πtA�

Rs

. (17)

The first term is the domain-wall energy cost, the second one
the curvature energy cost. The minimization of this equation
gives the skyrmion equilibrium size

Rs ≈ �√
2(1 − D/Dc)

. (18)

This solution is plotted as a dashed line in Fig. 4(d). When
D tends toward Dc the skyrmion radius diverges. For small
D, the radius is small compared to �, so that Eq. (18) can
not be used; numerical calculations show that Rs goes to zero,
as demonstrated previously.25 These types of skyrmions are
soliton solutions and have been called isolated skyrmions.25

Note that for the smallest D, the skyrmion radius is so small
that the magnetization profile is close to an arrow shape25

rather than to that of a magnetic bubble. However, the transition
from one shape to the other is continuous in D so that
no strict semantic difference can be made between the two
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FIG. 4. (Color online) (a) Variation of the skyrmion profile for
different values of D (from 2 to 7 mJ/m2), for a R = 50 nm nanodot.
(b), (c) Variation of the skyrmion profile versus the dot radius R

for D = 3 and 4.5 mJ/m2 (D/Dc = 0.83 and 1.25), respectively.
In (b), the skyrmion radius is independent of the dot radius, except
for very small radius which compresses the skyrmion. In (c), the
skyrmion radius is limited by the dot radius and thus increases with
R. Note that for all these profiles, although θ (x) is not represented, it
corresponds to a monotonic increasing function as in Fig 3(b), thus to
chiral solutions. (d) Variation of the skyrmion core radius Rs versus
D for different dot radius. The radius is defined at the mz = 0 line.
The line is the solution for an infinite thin film and the dashed line is
the approximate solution described in the text [Eq. (18)].

shapes, which both are skyrmions. In the second range, for
D > Dc, the domain-wall energy being negative, the previous
description does not hold; in infinite films, skyrmions2–4 or
cycloids1 should proliferate, as described previously.

In nanostructures, the situation is rather different as edges
play a major role. For the smallest D, we found that the
skyrmion diameter is independent on the dot diameter and
coincides with the infinite film solution [see Fig. 4(b)]. These
skyrmions are so small that their shape is not impacted by the
edge. For D ∼ Dc, we do not observe the divergence of the
skyrmion diameter and the transition across Dc looks rather
continuous. These skyrmions are in fact confined in the dot
which limits the diameter increase. Moreover, for D > Dc

and if the dot diameter is not too large compared to the
cycloid period L (see Sec. III C), a single skyrmion can be
isolated in the dot. This sheds light on the important role
of the edges, which limit the expansion of the skyrmions.
We have identified two main aspects of this confinement.
First, for D > Dc, the negative domain-wall energy means
that nothing is expected to limit the growth of an isolated
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FIG. 5. (Color online) Variation of the energy of the different
states versus D, in a 100-nm-diameter dot. Note that each line does
not cover the full explored D range, as we only plot the solution
where a (meta)stable solution has been found.

skyrmion. However, in a nanostructure, unlimited increase of
the skyrmion radius would let the domain wall move out of
the structure, which would turn the dot into the uniform state,
with a higher energy (Fig. 5). This contradiction proves that
necessarily, the edge must limit the growth of the skyrmion
and provides a confinement. The skyrmion radius is then
fixed by the dot radius [see Fig. 4(c)]. Beyond this, another
mechanism also needs to be taken into account, as for D < Dc,
the domain-wall energy being positive, the previous reasoning
does not hold. Indeed, as soon as the predicted radius [Eq. (18)]
is larger than the dot radius, the dot would turn into the uniform
state, with a lower energy than with a skyrmion (Fig. 5). The
fact that these metastable skyrmions exist even for D close to
Dc is the signature of another confinement energy. It is due to
the edge tilting previously described: having the same chirality
as the skyrmion, it provides a topological barrier and limits the
skyrmion diameter increase. Note the importance of this barrier
has been observed in a previous study21 where metastable
skyrmions were moved in a track using spin-transfer torque
and where it was observed that the edge repels the skyrmions.

In this study, we have considered only a local dipolar
coupling due to the ultrathin film character needed to observe
interface-induced DMI effects. However, in another study
using purely numerical calculations,21 similar results have
been obtained with a true dipolar energy calculation, which
proves that most of the physics can be captured without the
need for sophisticated arguments on this rather complicated
energy term.

Other solutions, with more magnetization rotation along
the radius, also appear. Note that such solutions have been
recently observed in skyrmion networks in infinite films.4 This
is similar to the problem of the cycloid, so that the length
scale is again L0. Depending on the value of D they can
be more or less stable than the skyrmion. In the example of
Fig. 3, the third solution with 2π rotation has an energy slightly
higher than the skyrmion state. Indeed, the dot radius being

R ≈ 2L0, it seems reasonable to obtain more magnetization
rotation. Finally, the last solution with 3π rotation is quite
unfavorable. When D is changed, the energy of each state
changes. In Fig. 5, we plot the energy of each state versus D.
The four states described previously are not necessarily found
for each D. It is interesting to note that the quasiuniform state
no longer exists as a metastable state above D ≈ 6 mJ/m2, and
that the skyrmion exists as metastable state between ≈1.1 and
≈7 mJ/m2. However, in the absence of thermal excitation,
it becomes more stable than the quasiuniform state as soon
as D � Dc. As expected, considering the absolute minimum,
larger D favors larger spin rotation so that nπ solutions (with
n > 3) are expected for D larger than the explored range.

V. CONCLUSION

In conclusion, we have considered the effect of the
Dzyaloshinskii-Moriya interaction on the micromagnetic con-
figuration in nanostructures, made of ultrathin magnetic films.
One of the most striking effects is the modification of boundary
conditions at the edge of nanostructures, which tilts the edge
moments.

The formalism has been applied to describe confined
skyrmions in nanodots. The results show that edges are
essential to understand such a situation as they provide a con-
finement and limit the skyrmion expansion. This confinement
is rather important for future development of skyrmion-based
memories22 and should deserve further studies in order to be
quantitatively understood.
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APPENDIX

1. Generalization to other forms for DMI

We have limited ourselves to the DMI form for ultrathin
films. Much experimental work has also been performed on
bulk materials lacking inversion symmetry, belonging to the
Dn symmetry group.3,4 In these, DMI is homogeneous in the
volume and �dij = d �uij .9 For a thin film where magnetization
direction variation along the film normal can be neglected, the
continuous DMI energy becomes10,14

EDM =
∫∫∫

D

[(
my

∂mz

∂x
− mz

∂my

∂x

)

−
(

mx

∂mz

∂y
− mz

∂mx

∂y

)]
d3�r. (A1)

For a 1D system, this interaction favors spin rotation in the
(ŷ,ẑ) plane (which means Bloch walls, spirals, and vortex-type
skyrmions for the different cases considered above), so that θ

has to be defined in this plane. In this case, all other equations
remain the same, in particular the boundary condition in
Eq. (4b). Only the general form of the boundary condition for
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this form of DMI is modified, although the derivation follows
the same procedure:

d �m/dn = ( �m × �n)/ξ. (A2)

Compared to the boundary condition in Eq. (6), this one
ensures that the edge magnetization rotates in a plane parallel
to the edge surface.

2. Extension to thicker samples

In this paper, we considered the case of DMI ultrathin films
with interface DMI. As the sample considered is thinner than �

and ξ , we assumed a uniform effective DMI constant across the
thickness. This assumption does not hold for thicker samples.
In these, the DMI is expressed as a surface term, with DS,i

the interface DMI constant (in J/m) where i accounts for the
bottom and top interfaces. The micromagnetic energy, limited
to DMI and exchange, reads as

E =
∑

i

DS,i

∫∫ [(
mx

∂mz

∂x
− mz

∂mx

∂x

)

+
(

my

∂mz

∂y
− mz

∂my

∂y

)]
d2�r + A

∫∫∫
( �∇ �m)2d3�r,

(A3)

where the surface integral is performed at the interfaces only
(assumed normal to ẑ). Using variational calculation30,40 we

extract interface conditions

∂mx

∂z
= εi

DS,i

A

∂mz

∂x
, (A4a)

∂my

∂z
= εi

DS,i

A

∂mz

∂y
, (A4b)

∂mz

∂z
= −εi

DS,i

A

(
∂mx

∂x
+ ∂my

∂y

)
(A4c)

with εbottom = 1 and εtop = −1, respectively, for the bottom
and top interfaces. Note that the boundary conditions have
opposite signs on both interfaces. However, for a symmetric
stacking (same high-spin-orbit nonmagnetic layer at the
bottom and top interfaces), DS,top = −DS,bottom. Indeed, in
the atomic formulation, DMI is proportional to (�u × ẑ), ẑ

being oriented from the high-spin-orbit layer to the magnetic
layer, thus opposite for both interfaces.13 As a consequence,
magnetization is bent the same way (i.e., with the same
chirality) at both interfaces.

While in such situation DMI should not be sufficient to
destabilize the ferromagnetic state, such boundary condition
should modify the structure of domain walls. Indeed, in the
volume, Bloch rotation is expected and, at the ferromagnetic
film surfaces, Néel rotation is expected, with opposite chirality
for bottom and top interfaces. This effect, which is purely
related to DMI, should add to similar effects due to dipolar
coupling.31
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Phys. Rev. B 82, 052403 (2010).
33A. Thiaville and A. Fert, J. Magn. Magn. Mater. 113, 161

(1992).
34U. Rossler, A. Bogdanov, and K. Muller, IEEE Trans. Magn. 38,

2586 (2002).
35S. Rohart, V. Repain, A. Thiaville, and S. Rousset, Phys. Rev. B 76,

104401 (2007).
36A. B. Butenko, A. A. Leonov, A. N. Bogdanov, and U. K. Rößler,
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