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Inspired by the models of Rebei and Parker [Phys. Rev. B 67, 104434 (2003)] and [Rebei, Hitchon and Parker
Phys. Rev. B 72, 064408 (2005)], we study a physical model which describes the behavior of magnetic moments
in a ferromagnet. The magnetic moments are associated to 3d electrons which interact with conduction-band
electrons and with phonons. We study each interaction separately and then collect the results, assuming that the
electron-phonon interaction can be neglected. For the case of the spin-phonon interaction, we study the derivation
of the equations of motion for the classical spin vector and find that the correct behavior, as given by the Brown
equation for the spin vector and the Bloch equation, using the results obtained by Garanin [Phys. Rev. B 55,
3050 (1997)] for the average over fluctuations of the spin vector, can be obtained in the high-temperature limit.
At finite temperatures, we show that the Markovian approximation for the fluctuations is not correct for time
scales below some thermal correlation time ty,. For the case of electrons we work a perturbative expansion of the
Feynman-Vernon influence functional. We find the expression for the random field correlation function which
exhibits the properties of the electron bath; namely, we observe Friedel oscillations at small temperatures. The
composite model (as well as the individual models) is shown to satisfy a fluctuation-dissipation theorem for all
temperature regimes if the behavior of the coupling constants of the phonon-spin interaction remain unchanged

with the temperature. The equations of motion are derived.
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I. INTRODUCTION

The discovery of the Giant Magnetoresistance effect in
1988, for which Griinberg and Fert were awarded the Nobel
Prize in Physics in 2007, motivated very intense scientific
research of the magnetization dynamics at the nanometer scale
and led to the birth of a new field of research now called
spintronics.' Spintronic devices usually have nanometer-
scale sizes, can operate at high frequencies (~1 GHz), and
have a wide range of applications which go from the creation
of small-dimension (<1 pwm) microwave frequency generators
to the improvement of magnetic storage devices.

To successfully design high-frequency devices one needs
to develop substantially the theoretical comprehension of
magnetization dynamics at the appropriate scales.*® The
complete understanding of magnetization dynamics at the
nanoscale can be probably achieved only by theorizing from
first principles implying a full quantum-mechanical treatment.
In particular, if one wants to describe a spin system far
from equilibrium, one needs to use the methods of quantum
open systems far from equilibrium, namely the Keldysh” or
Lindblad® formalisms.

It has been shown’ that the linear coupling interaction
of a spin with a bosonic bath allows for the existence of
white noise in the equation of motion which, under some
particular conditions regarding the density of states of the
bath, adopts the form of the Landau-Lifshitz-Gilbert-Brown
equation.'®"'? Also, it has been shown that if the spin vector
satisfies a Landau-Lifshitz equation'® supplemented with
white noise, then the magnetic moment as the average over
the fluctuations of the spin satisfies, in the limit of low
temperatures, the Landau-Lifshitz equation'® and, in the limit
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of high temperatures, the Landau-Lifshitz-Bloch'? equation.'*
Collecting these results with the known result on formal
equivalence between Landau-Lifshitz and Landau-Lifshitz-
Gilbert equations allows to conclude that the interaction
with phonons (or any other bosonic bath satisfying certain
conditions) can be responsible for the motion of magnetic
moments as described by the Landau-Lifshitz-Bloch equation,
which, in fact, gives a good description of the physical situation
at high temperatures.’> A quantum field theoretical treatment
of the s-d interaction of conduction electrons and spins'® has
shown that in the semiclassical limit, the magnetization obeys
a generalized Landau-Lifshitz equation.

The need to increase the speed of storage of information
in magnetic media and the limitations associated with the
generation of magnetic field pulses by an electric current
require the research for ways of controlling magnetization
by other means than external magnetic fields. In 1996,
subpicosecond demagnetization in ferromagnetic nickel was
achieved using a 60-fs laser in the experiments of Beaurepaire
et al.'’ Manipulating magnetization with ultrashort (of the
order of a femtosecond) laser pulses is now a major research
challenge because at such time scales it might be possible to
reverse the magnetization faster than within half a precessional
period.'® Because of this, it is of fundamental importance
to understand the time evolution of magnetic moments at
high temperatures and time scales approaching femtoseconds.
Recent reviews on the state of the art of ultrafast spin dynamics
and prospects are given, for example, by Kyrilyuk et al.'® and
Zhang et al."®

The ultrashort laser pulses are expected to strongly cou-
ple lattice oscillations, that is, phonons, and/or conduction
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electrons to the spins. This suggests that we may consider
an effective microscopic theory for the system in which the
fundamental interactions are spin-phonon, spin-electron, and
electron-phonon type. In this work we introduce and develop
a theory to model such physical system in which, for the sake
of simplicity, we neglect the electron-phonon interaction.

This paper is divided into three major sections. In the
first section we consider a generalized version of the model
of Rebei and Parker’ that modeled the interaction of a
spin-j and a bosonic bath, now written to describe the
interaction between a spin-j and a bath of phonons which
are assumed to be spin 1. The second section considers
a model of a ferromagnet, inspired by the work of Rebei
et al.,'® assuming the interaction of a magnetic system of 3d
electrons, represented by a collection of spin-j vectors, with
4s conduction electrons as a bath. In both sections we use the
path-integral representation for coherent-state matrix elements
of the reduced density matrix associated with the system. In
the case of phonons, since we assume a linear interaction, they
can be exactly integrated out. After obtaining the effective
action appearing in the phase of the path integral we use
a stationary phase approximation and obtain an equation
of motion for the classical spin vector. We then display a
random field in the equations of motion through a Hubbard-
Stratonovich transformation in the path-integral expression.
The high-temperature limit is discussed and the Landau-
Lifshitz-Gilbert-Brown and Landau-Lifshitz-Bloch equations
are recovered in this limit. The finite-temperature case is
considered.

In the case of conduction electrons interacting with spins,
the same procedure of integrating out the bath is not possible
due to the nonlinearity of the interaction. Nevertheless, we use
a Hubbard-Stratonovich transformation and obtain an expan-
sion for the effective action of the system which we truncate at
the second order of interaction. We relate this approximation
to the Lindblad equation® for the reduced density matrix
obtained through the Born-Markov approximation.”” After that
we arrive at an explicit expression of the electron contribution
to the bath noise correlation function and present some plots of
this function which manifest the physical phenomena involved.

The third section compiles the results of the first and
second sections in a single model assuming a quantum system
composed of a spin-j vector field interacting with a bath
of spin-% electrons and spin-1 phonons. Finally, we list our
conclusions.

II. SPIN-PHONON THEORY

We consider first the system of a single spin-j particle
interacting with a bath of spin-1 phonons which can have
longitudinal and transverse polarizations.

The total Hamiltonian is written in the form

H=Hs+Hr+H, (1)

presenting, respectively, the Hamiltonians for spin, bath, and
interaction between them.

We can introduce quantum operators associated to the spin-
j particle S, which are Hermitian operators satisfying the
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angular momentum commutation relations
[Sa,Spl = i€apy Sy, @)

where g,44,, is the Levi-Civita tensor, and the repeated indices
are assumed to be summed from now on, unless otherwise
stated. These operators constitute a representation of the Lie
algebra of SU(2) in the (2j + 1)-dimensional vector space
associated to the irreducible representation labeled by j. We
also introduce the creation and annihilation operators for the
phonons, &L(k), a,(k), which are labeled by the polarization
index 4 = —1, 0, or 1 and by the momentum index k. They
satisfy the Weyl algebra

[4,,(k),a} (K] = 8,,(27)*83 (k — k). A3)

The spin operators and the phonon operators commute.
The system Hamiltonian is that of a spin-j particle in the
presence of an external magnetic field, denoted by H,

He=—-8,H, =S -H. 4)

We write the phonon Hamiltonian in the form

Tr = 0,0}, (), (K), ®)

.k

where w,, (k) is the phonon energy. In the following we assume
that transverse modes have the same energy, w_1(k) = w;(k).

The Hermitian Hamiltonian for the linear spin-phonon
coupling in the macrospin approximation?®! is

Hi=—> (H;,Kal(k)Sy + Huu k)30, (K).  (6)
k

Here the SU(2) invariance is explicit provided that the operator

A" = Z(H;‘M(k)&l(k) + Hop(K)a, (k) (N
k

transforms as a vector under an SU(2) transformation associ-
ated with the spin-j particle and consequently H; will behave
as a scalar. We can then write the interaction Hamiltonian as

R = -8, A" = -§. /A", (8)

Writing the system reduced density matrix with a coherent-
state path-integral representation, one arrives, under the
Keldysh formalism, at an effective action [see Eq. (A30)] in
the closed time path which is a functional of S, the classical
field, and D, associated to the quantum fluctuations. The details
of this calculation are presented in Appendix A. Performing
a Hubbard-Stratonovich transformation on the part of the
effective action which couples two D(¢) fields, as in Ref. 9,
we obtain the equations of motion with a random field &(z).
The real part of the correlation function of this random field is

Re{(8a(t1)8p(12))} = Re{(£a(0)8p(11 — 1))}

— Re{ Z H;H(k)e*iwu(k)(h*fz)

k. p

x (1 + 2n(wﬂ(k)))H5H(k)}. C))
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The last expression can be rewritten as

Re{ 2 fo dd( — 0, (k) H, () Hp ()
k,u

) k
x e len®—0) (o <%> } (10)

Let us assume that H,, (k) = H,(w,(Kk)). In this case, we
can further write, interchanging the sum and integral and
using the property f(wi)d(wy — w) = f(w)§(wy — w) of the
¢ distribution,

RG{ /OO dw Z 8((1) - wl‘-(k))H;(a))Hﬁ(a))e_ia’(fl—tz)
0

k,n

X coth </37w> } (11)

or, equivalently,

Re{/ do p(w)H: (0)Hg(w)e 1~
0

« coth (%“’) } (12)

where we defined the density of states
p@) =) 8~ w,(K)). (13)
K,

In the high-temperature limit, the expression (12) reads
0 H(w)H, ;
2kgT Re{ / p(w)Me_’“’(”_”)dw}. (14)
0 w

Assuming a linear dispersion relation for longitudinal and
transverse phonons, we obtain

wo(k) = ¢k, wi1(K) = ¢k, (15)

and if we take the continuum limit for the bath, we arrive at
the density of states

p@) =Y 8o — w, (k)

k,u

d*k
v ; / Goyid@ — @40

vV (1 2\, o\
=——(5+3)P=nm(—=). 6
272 (c;’ + cf)w Po (a)0> (16)

where V is the volume of the reservoir and py = p(wy) is the
density of states evaluated at some frequency w, taken as a
reference. This means that if we want to recover the Gaussian
random field in the limit of high temperatures we must ensure
that

1
Re{H (w)Hg(w)} o —. (17)
w
In particular, one must have
Re{H*(w)H,
e{H,(w)Hp(w)} p(w)w = 4G, (18)
w
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so that

Re{(5a(1)Ep(t"))} = Sup20tGkpTS(t — 1'). 19)

The constant ¢ is a parameter which gives the intensity of
the Gilbert damping term in the equation of motion. The last
condition constrains the form of H,(w). If we define

1/2
Za = ( il 02) ' Hy(), (20)

aGwy
then the above condition reads
2428 + ZpZa = 280p, (21
which means that
Za =€ (22)
and that the phases must satisfy
Gu =gt DT (23)

for all « different from B and with n being an integer. The
form of H,(w) is, thus, constrained to be

—1/2
Hy(w) = ( ”p‘)z) w2l (24)
aGwg,

if the familiar fluctuation-dissipation theorem is satisfied.

Assuming the above dependence for H,(w) for arbitrary
temperatures, we find that the noise correlation function can
be written as

Re{(5(1E(0))) = argu / SO coth (ﬁ_‘”> cos o
0 T 2
= aG(Saﬂ(p(t)v (25)

where we define the generalized function ¢:

o) = /OO d_a) w coth (,B_a)) cos wt, (26)
0 T 2

which characterizes the noise correlation function. The study
of such a generalized function or distribution can be found, for
instance, in Ref. 22.

To study the random field correlation function we notice
that the above integral can be expressed as

o) = /00 d_a) [coth (ﬁ_w) w— a)] cos wt
0 T 2

43 /wd‘”| e~ 27)
AT wle .

Here the first integral is convergent and can be computed as
*d
/ e |:c0th (ﬁ—w) w — a)j| cos wt
0 T 2
11 g
=) _(Z cosech? T tly. (28)
27 | 2 B B
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The second integral can be computed if we regularize it with
an exponential cutoff,

*dw —iwt *dw —iwt j—lw 1 )"2 - tz
— |wl|e — — |wl|e e =——
oo 2T oo 2 T (A2 4 12)2
1

1 22024372
( +g)’)\_)0+.

T

t2 t2()\2 + t2)2
(29)

Thus, formally, we can write

H=_2 w2 (Z): 30
o= (G):]

which is a well-known result.”> The correlation exhibits a
thermal correlation time arising from the behavior of ¢ in the
limit of |¢| — oo,

o(t) = —2m(kgT)? exp(—2mkgT|t])
|]

= —2m(kgT)*exp <——> , 31
Tth
where 14, = QukgT)'. In the case of arbitrarily small
temperatures, the correlation time becomes very large [in fact,
as seen from Eq. (30) the correlation function becomes inverse
quadratic in |¢|].

It is important to note that the long time behavior of the
correlations is negative. One must study the full expression for
¢ for finite cutoff A to understand what is happening in this
limit. We have

[e.¢]
/ dt Re{(£.(1)8p(0))} = 20k T Sup (32)
—00
and what really happens is that, in fact, the cutoff-dependent
positive term is usually larger than the asymptotic negative
term, except at zero temperature when the two effects cancel
each other.

This behavior is most easily understood if we notice that the
integral in the definition of ¢, Eq. (26), can be also written as

d
o(t) = kBTE coth(wkpTt), (33)

and take into account, as pointed out by Ford and
O’Connel,2*2 that the correct formula for the derivative of
the hyperbolic cotangent is, in fact,

d coth x
dx

The results are identical in both approaches, but the second is
more economical.

The existence of a thermal correlation time, which in
standard units is 7y, = h/kgT = (1.27 x 107'25)/ T, implies
that the approximation of a Markovian description for the
random field is only valid for time scales which are longer
than 7y, or in the limit of high temperatures. Thus, in the
problem of magnetization control using ultrashort laser pulses
it might be not a good approximation to consider the process
as Markovian. Equation (32) is remarkable because it is a
manifestation of a fluctuation-dissipation theorem.

We also note that, with our assumptions regarding the con-
stants H,(w) [that is, that H,, (k) = H,(w,(K)) and Eq. (24)
valid in all temperature regimes], we can always recover the

= —csch®x + 28(x). (34)
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Landau-Lifshitz-Gilbert form of the equations of motion in
the limit of D — 0. To see it we just need to note that, using
Eq. (A30), with D — 0,

8 Setr

e = / dr'K(s — 1)S(t)), (35)

D=0 fo

where the matrix K arises from the response components of
the closed time path Green’s function [see Eq. (A27)] and has
matrix elements

Kop(t) = 2i Z Re{H;,,(K)Hp,. (K)}

k.

x e~ ng(—p). (36)

If we use all these assumptions, the last expression becomes
d
Gop(1r) = 20405aﬁ9(—t)55(t), (37

which yields the result

3 Seff
5D(s) |y o

i.e., the Gilbert damping term, so that the equation of motion
for the spin becomes always the Landau-Lifshitz-Gilbert
equation in the limit in which the random field is neglected.
In the case of high temperatures we also recover the Landau-
Lifshitz-Gilbert-Brown equation with the random field and
in view of the results of Garanin'* we are able to recover
the Landau-Lifshitz-Bloch equation for the average over spin
fluctuations. For this purpose we can neglect the term in the
equation of motion which couples two spin fields and arandom
field.'* This is valid in the limit of small fluctuations.

= a6S(s), (38)

III. SPIN-ELECTRON THEORY

In this model the system can be viewed as a set of spins
on a lattice, each spin written in the form of a general
spin-j representation of the SU(2) group, modeling 4d-type
electrons in a magnetic medium. We consider the reservoir
to be composed of conduction electrons. The interaction
Hamiltonian is an s-d-type interaction of the conduction
electrons with the spin vector field.

The model Hamiltonian we consider here has the form of
Eq. (1), where

. | ~ A
Hs = _,ZH" -8 - E;J,-,-s,- -8, =0, (9
or, in the momentum representation,
. . 1 . .
Hs = — Xk: H(—k) - (k) — 5 Xk: JKS(—K) - S(k). (40)

The other terms are given by

e = 3 e 06, ) — 2 3 8(—k) - $(K)
k

K,a

_ Zé(—k) - h(k), (41)
k

where €(k) is the energy of the conduction electrons, h(k)
denotes the magnetic field felt by the electrons, and §(k)

184419-4



DYNAMICS OF MAGNETIC MOMENTS COUPLED TO ...

denotes the composite operator

§(k)=% >

K.a.8

LK — K)(0)aplp(K), (42)

which is the momentum representation of the spin density
operator of conduction electrons. In the above equation,
o = (01,02,03)7 is the vector whose components are the
Pauli matrices. The Latin indices, {i,j,k, ...}, refer to space
indices and the Greek indices, {«,f, ...}, refer to spin
indices. Furthermore, the operators ¢, (Kk), 6(1 (k) are electron
annihilation and creation operators, which satisfy the algebra

(k). h(ka)} = 8up 263 (K1 — Ky), 43)

{a(k).2p(ka)} = {2](k1).2}(ka)} = 0. (44)

We now consider the path-integral representation of the
reduced density matrix associated with this system, as we did
in Sec. II. As so, we are going to use the basis of coherent
states for the system and the reservoir (in this case we have
to use Grassmann variables for fermions), so that the states of
the Hilbert space are written in the form

1S) ®lly), (45)

where

= ]‘[ IS(k)) =
k

1y) = [T1ra00) = [T exp@lya))(0).  (47)
a,k

o,k

[ [Ds®)I0), (46)
k

The states |S) are to be defined in such a way that they satisfy
(S|S(K)|S) = S(K)(S|15|S). Let us now consider the state

1S) = [ Ja+12SHI) 7 exp@(SHS-)lvo),  (48)

i

where |¢g) is the tensor product of highest weight
states of the spin-j representation and {(S;) =
tan(6; /2)e'? denotes the stereographic projection of

S; = j (sin6; cos ¢;, sin6; sin ¢;, cos §;)7 through the north
pole. Clearly, this state satisfies

(8'1S:18") = Si(S'l15]8) = S, (49)

and we can now replace in the last equation S; and S; by their
Fourier representations, yielding

(S e Sa0Is) = Y- e S(k) (50)
k k

or

> e (s|(8(k) — S(k))IS') = 0. &
k

Since this relation is valid for all x;, we identify |S) with |S)
because

(S'18(K)IS") = S(k)(S'|15]S"). (52)

Assuming that at time fy the spins and electron systems are
decoupled and the reduced density matrix of the bath, at that
time, takes the form of a Boltzmann factor with Hamiltonian
H g and inverse temperature B, as given by Eq. (A2), we easily
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find, in analogy with Sec. II, replacing « — y and taking
special care because the y’s are Grassmann variables, that the
expression for the propagator is the same as Eq. (A13) but now
in I[S{,S,] one must sum over all spin-;j degrees of freedom
and the Feynman-Vernon functional is given by

FI181,8:] = /dll«(l/o)du()/l)dll«()/z) k(—)’oT,t;Vl,fo|Sl)
X Z'k(y!, — iB;12,010) x K* (v 3 v2,101S2),
(53)

where du(y) = ]_[a’k d*y, (k) exp(—y,(k)yy(k)) and the ker-

nel k(y},tf; ¥;,t;|1S) is defined in the same way as in Eq. (A19)
(again, taking special care because Grassmann variables
anticommute). The minus sign in the first kernel in Eq. (53) is
due to the antiperiodic conditions on the trace formula using
fermionic coherent states.

Unlike in the case of the phonons, we cannot compute the
Gaussian integrals exactly. We would like then to do some
expansion depending on the parameter A. In order to achieve
that we perform a Hubbard-Stratonovich transformation and
then expand to second order a determinant resulting from the
functional integrals. To do so, one can define an auxiliary
bilinear form

(G apt —1' k —K;8)
—18(t —t"owp - h(k — k') + roup - Stk — K.
(54)

With this definition, it is clear that we can do the Hubbard-
Stratonovich transformation of the form

exp <—z/ / dsds’ Z V(5. k)G g

Kk’ o

x (s —s k=K S)ylg(s/,k/)>

H“cha(k)

/det( iG)ST © (//d”ls

X Y L5 K)(Gapls — 5" K — K':8)p(s' K)
kK',aB

—i—i/ / dsZ{j(s,k)ya(s,k)—i-)/;(s,k){a(s,k)).
fo Jto ko

(55)

By doing this, we achieve a linear coupling between the y’s
and the ¢’s, which allows us to compute the Gaussian integrals
in the y’s. Replacing this transformation in the expression for
the influence functional and computing the Gaussian integrals
associated with the y’s, we arrive at

/ [Tox P*¢1a®) [T,k D*t2.0(K)
det(—iG)[S1] det(iG)[S,]

xexp( / / dsds' Z(;la(s k) ¢5 o (s.k))

KK«

, , fl,ﬁ(s/,k’)
x (A(s — 5",k — K')gp) <§2_ﬁ(s/,k/)> >, (56)
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where
(G11)ap(t.K) + (G)ep(t . k; Sy) (G12)ap(t.k) )
A(t,K)p) = , 57
(A K0ae) < (Go1)ap (1K) (Gr2)up (1K) — (G (1.K:S) ©7
in which
((gu)aﬁ(hk) (glz)aﬂ(l,k)>
(G21)ap(t.K)  (Gr2)ap(t k)
— i(zn)383(k)8aﬂe—i€(k)t <(1 - f(e(k)))e(t) - f(G(k))e(_t) _f(é(k)) ) . (58)
1 — f(e(k)) (I = fe®))O(—1) — f(e(K)O(?)

with f(x) = (e* + 1)~! being the Fermi-Dirac distribution.
The functional integral is readily evaluated to be

det{ |:—i <g11 +G(Sy) G >]
G Gn — G(Sy)

(67 0 =det(1 + &), (59
x[l( 0 —Gl(Sz))]}_ et(l+ &), (59

where

~1
(guG (Sp) 60)

—G1nG71(Sy) >
G G1(S)) '

—G1G71(8Sy)

The determinant of Eq. (59) should be understood, of course,
in the functional sense. We can write

det(1 + &) = exp{Tr[log(1 + &)1}

(_1)k+l ‘
= exp ZTTrG , 61)

k

where the trace is also understood in the functional sense. In
the way it is written, this produces an expansion in powers of
the matrix elements of G and consequently an expansion in
the parameter A.

The first term of the expansion is easily found to be zero and
if we keep only terms of second order in the matrix elements
of & we obtain, in the Keldysh representation of the fields as
defined by Eq. (A25),

log [det (1 4+ &)]
1
= —ETr62 + 0(&%)

= -1y / / dndi(Sg)t — 1,)0(t — 11)
Kk T Iy
x h(—=Kk) - D(t2,k)

t t
- Z/ / dndn(Sg)(th — 1, K)0 (1 — 1)
k Y Jio

x S(t1, — k) - D(t2,k)
A2 topt
4 ;/t; /[0 dtidt,(Pg)(t; — t,K)D(t1, — K) -

x D(12,k) + O(&?), (62)

where

G(rd) = 3 w0
k/

x(1 = fe(®)) f(e(k —k)), (63)
and
(P)(t.K) = 3(¢(1.K) + p(—1, — k),
(SP)K) = 5(¢p(t.k) — p(—1, — K)),

are the symmetrizer and the antisymmetrizer operators asso-
ciated with the time and momentum variables, respectively.
This makes it clear that the part leading to dissipation will
be the term coupling two D fields since it will introduce an
imaginary term in the action. This is easy to see because the
Fourier transform of an even (odd) function is real (imaginary)
if the function is real.

The effective action coming from the electron contribution
thus obtained can be compactly written as

1 ' ' 1
_52.(:/:0 dtl/zo dt <\/§Sa(t1,—k)EDa(t1,—k)>

V2S5(t2,K)
5Ds02k) )

(64)

X Gléaﬁ(ll — 1,K)oy < (65)

where

x . (Pg)(t,k) —(Sg)(t.k)o()
iGap(t.k) = ((Sg)(t,k)@(—t) 0 )

, (GK(t,k) GR(t,k)>

=1 GAK) 0 (66)

We now prove, for consistency, that the following fluctuation
dissipation theorem holds:

GK(w.k) = (GR(w,k) — G*(w,Kk)) coth <ﬁ7‘”> . (67)

Computing the time Fourier transform of (Pg)(¢,k), we end
up with

(Pg)(w.,k) = % Z 2n8(w — e(k — k') + €(k))
"

x [(1 = f(e()) f(e(k — K)))
— (1= fe(k —K)) f(e(KN)]. (68)
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We now recall the identity

Fe1 = fe —w)) = n(@)(f(e —w) = f(€)), (69)

where n(w) is the Bose-Einstein distribution, and we observe
that we can write

(1= fle—w)f(e) + (1 = f(e) f(e —w)
= (1 - fle —w)f(e) + fle —w)
— fe)f(e —w)+ f(e) — f(e)
= 2(1 — f(e —w) f(e) + f(e —w) — f(e)
2n(w)(f(e — w) — f(€)) + (f(e — w) — f(€))
2n(w) + D(f(e — w) — f(€))

_ coth (%‘") (fe - ) f(e). 70)
Now using f(w)d(w — wo) = f(wo)dé(w — w), we find
(Pg)(.k) = coth <ﬂ7‘”) % ; 218(w — e(k — k') + e(K)))
x [f(e(k) — fle(k — k)] (71)
Since
G®(t,k) — G*(t.k) = i(Sg)(t,k), (72)

we compute the time Fourier transform of (Sg)(z,k), obtaining
(Sg)(w,k) = % kZ 278(w — e(k — k') — €(k'))
x[fle(k —K))(1 — f(e(k)))
—(1 = f(e(k = K))) f(e(k))]
= % Z 278(w — e(k — K') — €(K'))
"
x [fle(k — k) — f(e(k))]
= —% Y 218w — e(k — k') — (k)
"
x[f(e(k)) — f(e(k —K)], (73)
which implies
Bw
(Pg)(w,k) = — coth <7) (Sg)(w,Kk), 74)

so that Eq. (67) holds as we originally claimed.

One can, analogously to what we did in Sec. II, introduce
a random field using a Hubbard-Stratonovich transformation.
This time the correlation function in position space reads

1
(Ea(1,X)E5(0)) = aaﬁi[(f—‘ o G¥1(t,%)
)\‘2
= aaﬁg[(f*‘ o P)gl(t,x)

)\‘2
=aaﬂ7Re{[F‘g]a,x)}, (75)

where F~! denotes the inverse Fourier transform associated
with the variable k.

There is another fluctuation dissipation theorem which
holds for this particular effective theory which we prove in
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the following. In the case of Brownian motion, the time
integral of the noise correlation function is proportional to
the temperature with the constant of proportionality being the
damping constant. We prove that also here, in the case of a
spin system interacting with a bath of conduction electrons,
a relation of the same type holds. In order to prove this, we
integrate the correlation function of Eq. (75),

/ ds / Px (Ea(s,0E5(0))

2 00
= 5aﬂ%Re{f ds/d3x[f—1g](s,x)}. (76)

Now we rewrite the integral appearing in the above expression
by replacing the expression for g(z,k) of Eq. (63),

/‘00 ds/d‘%x[]:’lg](s,x)

t
— / ds/d3xZei[k-x—i(e(k’)—e(k/—k))s]
4]

Kk’

x (1 = f(e®))f(e(k —K)). (77

Identifying the Dirac §’s appearing in the above expression,
we find

Z(Zn)383(k)8(e(k’) — (K — k)

Kk’

x (1 = fe®)) f(e(k —k)), (78)

or, if we define the excitation energy wy = €(k' — k) — e(k'),
we get

> r) 8108w 1)

kK’

x (1= fle®)) f(eK) + wy ). (719)

The above formula has to be treated with some care. Recalling
the identity of Eq. (69), we obtain

Y )8 k)s(w )

Kk’

x n(wy K )(feK)) — fle(k) + k). (80)

Thanks to the § function associated with the excitation energy,
we only need the integrand evaluated at wy’ x = 0. Clearly, the
expression is ill determined because the Bose-Einstein distri-
bution diverges and the difference of Fermi-Dirac distributions
goes to zero. To proceed we have to expand the integrand for
small wy k. Observing that f'(€) = — f(e)(1 — f(¢€)) we can
Taylor expand the part containing Fermi-Dirac distributions
so that we obtain

(o (f(€K)) — flek) + wy k)

1
= [wk k f(e®NA — f(e(k))]
By k
+ O(wy x)
1
= Ef(é(k/))(l — fe®))) + O(wx k). (81)
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This means that our sum becomes simply

1
3 PCLIR RSS!

kK’

x fle®))(1 — f(e(KN)). (82)

If we sum over K’ the only contribution of the sum will be the
one in which wy x = 0, or €(k’ — k) = (k). Assuming that
€(k) is a power-law function of |k|, this implies that the only
term surviving is the one with k' = 0. This reasoning gives

1

5/ (€O = f((0) PRCEIRN(S!
k

1 1
= Ef(e(O))(l — fe(O) = v (83)
Thus, the final result is
f ds / dx (£,(5,%)E5(0))
- / ds / P xRe{(£4(5.084(0)))
= 2a;kpT 8up, (84)

where we have defined aj = A%/16. The above formula
shows that a fluctuation-dissipation theorem holds. Although
a fluctuation-dissipation theorem is satisfied in the exact
treatment,2%27 this is an important verification since in our
treatment we were forced to make the lowest-order nonpertur-
bative approximation which is equivalent to a linear response
theory. In the next two sections, we explore the relevance of
the result obtained in Eq. (75) for the electron contribution
to the noise correlation function by showing its relation
with the Lindblad equation obtained under the Born-Markov
approximation, by computing its exact analytical form and
studying it numerically.

A. Relation to the Lindblad equation

In the Born-Markov approximation one can derive the so-
called Lindblad equation for the reduced density matrix of the
system in the interaction picture, fs(t),%

0p N ~
§ =i Z Q. kK ) (5% (.K) 8% (K. ps
w kK ,af
+ Y Toplw.kk)[8(@.k)ps(3 (k)
kK ,a,B
L 8% (0 1) 88 (00 K. 5
- 5 {8 @) 8. K). ps} ], (85)
in which
S%w,K) = Z Pp 8%(K) Py, (86)

E-E'=w

where Pr = |E)(E| are projectors onto energy eigenstates
(Hs|E) = E|E)) of the system Hamiltonian. The tensors i 244
and T'yp are, respectively, the anti-Hermitian and twice the
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Hermitian part of the tensor
Jop(w, kK ::/ ds Cop(s.K,K)e™™”, (87)
0

Cop(s,kK) := A*Tr{pr(Su(k,1)) 55K 1 — 5)}, (88)

in which §,(z,k) are the compound operators associated to
the spin of the conduction-band electrons in the interaction
representation. A simple application of Wick’s theorem at
finite temperature to Eq. (88) shows that Caﬂ(t,k,k/) is
diagonal in momentum and spin variables, and the diagonal
components are precisely the Fourier transform of the electron
correlator, i.e.,

)\'2
Cop(t .k K) = gsa,sanfa%k —K)gtk), (89

in which g(z,k) is the same quantity defined in Eq. (63)
which naturally appeared while expanding the effective action
coming from the conduction electrons to second order in
the self-energy. In the Markovian approximation, the two-
point correlation function of the bath fields which appears
in the interaction Hamiltonian has all the relevant physical
information to describe the dynamics of the system density
matrix. Namely, the tensor 2,4 is responsible for the so-called
Lamb shift which appears in the energies of the unperturbed
system®” and the tensor I'ys is related to the rates in which
dissipative processes occur. From Eq. (89) we find that
the correlation function of the noise originating from the
interaction of the conduction electrons with the spin, Eq. (75),
has a very deep physical meaning: it carries all the physical
information on the shifts of the system energies and the rates
of the nonconservative processes due to the interaction with
the bath in the Markovian approximation. By measuring it we
can, thus, extract the relevant physical properties of the system
and the interaction in the Markovian limit.

B. Analyzing the electron contribution for (&,(,x)£5(0))

In this section, we derive the exact analytical form of the
electron contribution to the noise correlator obtained given
in Eq. (75) and study it numerically. To make contact with
the notation used in the literature for the Keldysh-Schwinger
closed-time-path Green’s function formalism,?*28 we show
that the electron contribution to the correlator (§,(f,x)55(0))
is proportional to the Keldysh component of the polarization
insertion in lowest order. To see that this is the case, we start
with the formula for the Keldysh component of the polarization
tensor, which is given by?®

¥ (2.k) o Y 1G5 (1. k — KNG (1K)
”
+ 6%tk —K)G(—1.K) + GA(t.k — KGR (—1 K],
where
GR(t.k) = —i0(t)e "<®",
GA (1K) = +i6(—n)e M,

GK(t,k) = —i(1 — 2 f(e(k)))e i ®
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These last expressions yield

¥ (k) oc ) e OV ek — K1 = f(e(K)))
-

+ (1 = fle(k —K)) fe(K))]

Now, since
g(t, —k)
_ Ze—i[e(—k—k’)—e(k’)]t(l — fle(—k — k/)))f(e(k/))
K

_ Ze—i[e(k/—k)—e(—k’)]t(l _ f(E(k/ _ k)))f(e(—k/))
o

= Y ik (] — fe(k — K)) f(e(k)
=

= (1K),
then
g(—t, —k) = Y MO — fle(k — K)) f(e(K)),
”
x Y@l — f(e(@)) f(e(q + k),
q
g(—t, - k)

= D e MO fle(k — KDL~ f(e(k).
"

In the last two derivations we used the fact that the conduction
electrons spectrum is even so that €(k) = e(—k). So now we
can finally check that

5 (1,x) o Ze”‘"‘(Pg)(t,k)
k
1 A ‘
=3 > [e*¥g(t.k) + e ¥ g(—1.K)]
k

1 ,
=5 > ™ g(t.k) + c.c. = Re(F ' 0 g)(t.x).
k

as claimed.

One can use the free thermal Green’s function to write this
expression in a more tractable way. The thermal polarization
insertion operator is given by

Do(xt;x'1) := GOx1; X' t)G (X 1'; x1), (90)
where GO(x7;X't") = G%(x — X', T — '),

G x1) =Y e e W fek), T<0, (D)

k

GOx,r) = = Y eMXembr
k

x (I = f(e(K),

is the thermal free electron propagator’ in which f(x) =
(exp(Bx) + 1)~! is the Fermi-Dirac distribution. If we allow
T = it, the electron contribution to the correlator is found to be

>0 92)

)\'2
(60Ol =~ Re(D(x,T = in), 1> 0. (93)

In terms of Feynman diagrams in the imaginary time formalism
this is given by the graph of Fig. 1. The calculations are shown
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-G(t,r)G(-t,r)=-

FIG. 1. Bubble diagram. The free one-particle Green’s function
only depends on r = |x|, so space inversion does not affect it.

in detail in Appendix C. The results are

o0
_ [@unrbpx
Px, —in) = ——— 3 VT

wrfB e

X COS |: /W}’ +i(2n + l)rrti| ,

(94)
and

—G% — x| = x| = r,it)
i 3/2 irzu
= | — exp
2t 2t

> (2n+1),
_ [@atbux
+ L e B r

wrpB e

% cos[ /Wr —iQn+ l)m] (95)

where p is the effective mass of the electrons in the parabolic
approximation. The plots in Fig. 2 give us the qualitative
behavior of the electron correlator.

We can see that this noise correlation function, just by
looking at t = 0 (when the time separation of the two noise
fields is zero), is much more textured than the usual white noise
correlation function as it inherits the natural Fermi-statistics
structure. In particular, for small temperatures it manifests the
phenomenon of electron screening because the spin acts as an
impurity and, because of the sharpness of the Fermi level, only
electrons near the Fermi level can scatter with the spin.

This is seen by the oscillatory behavior, Friedel oscillations,
at these small temperatures. This shows that, in fact, one can
use ferromagnets with impurities to probe properties of the
Fermi surface of those ferromagnets just by measuring noise
correlation functions in the laboratory. Later on, at higher tem-
peratures, this phenomenon is highly suppressed. At any tem-
perature the correlation is damped with distance, with damping
constants dictated by ~/i/B ~ /uT. At r — 0 the corre-
lation grows as 1/r2, for finite temperatures. This damping
constant can be measured at each temperature and this allows
one to estimate an effective mass for the conduction electrons.

IV. COMPOSITE MODEL

We now collect the results from Secs. I and III in a theory
modeling the interaction of a spin vector field with phonons

184419-9



B. MERA, V. R. VIEIRA, AND V. K. DUGAEV

-g(o*,r)g(O',r)

T ) 06

'g(0+1r)g(0-vr)

iy
100

-G(0*,r)G(0,r)

FIG. 2. (Color online) Electron contribution to the noise corre-
lation function (minus the real part of the polarization insertion) at
time ¢ = 0 as a function of relative distance r and temperature of the
electron bath, 7. Here we have truncated the series of the Green’s
function in the 20th term. Natural units were used.

and electrons. It is straightforward to see that the spin-phonon
interaction of Eq. (6) generalizes to

= (H;, k)l (k)8 (k)
k
+ Hep (k) S (—K)d (k) (96)

in order to account for a spin vector field (each space position
now has an independent spin-j degree of freedom). The total
Hamiltonian is now given by the Hamiltonian of Sec. III
plus the phonon reservoir Hamiltonian and the interaction
Hamiltonian.

Assuming again the factorization of the initial density ma-
trix, the Feynman-Vernon functional of this model factorizes
into the product of two functionals, one associated to the
phonons and the other to the electrons:

FI181,8:] = F,[81,8:1F[S1,82]. o7

The functional associated with the electrons is approximated
by the exponential of the effective action of Eq. (62) and the
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one associated with the phonons is given by

. t t
fp[s,D]=exp{—i / d, / dty

x Z(fs (t;,—k) ID (11, — k))

. V25, (12,k)
X 0] Goty(tl - tz,k)Ul 1 > (98)
Tsz(t27k)
where

5 Gay (1K) = Z H, (ke "

5 (1 + 2n(w,(K)) 9(t)> H, ()

—0(—t) 0
(Apay (1.K) (A)ay (£, K)0(1)
—(AN)ay (1. K)O(—1) 0 )
99)

Regarding the introduction of a random field into the
equations of motion, now its correlations are given by the sum
of two terms. The one arising from the electrons was already
calculated in Sec. III. The contribution from the phonons is
given by

<Sa(tsx)§,3(o))l)honons = Z eltkx—eu ]

Lo

x H2,(K) Hp,, () coth (’3 wg(k)) .

(100)

Assuming that H,, (k) = Hy(w,(K)), this last expression can
be written as

(5a(t,X)54(0)) phonons = / dwp(w,x)e " @n®!
0

, po
X H (k) Hp (@,,(K) coth(—),

(101)
in which
p@.x) =Y 8w — w,(k)e™™. (102)
K,
If we make the following additional assumption that
p(@.%) = p(@)8*(x), (103)

then the discussion of the simplified model of Sec. II applies
to this part of the correlation function and we have for the full
correlation function

Re{ (£ (1,%)56(0))} = Supl@ce(1)8* (%)

A2 _
+ T Re(F gl 0D,
in which we have applied the considerations we made in Sec. I
regarding the coupling constants. The discussion of the validity
of the fluctuation-dissipation theorem is the same as in the end
of Secs. IT and III. It is clearly satisfied by both contributions.

(104)
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V. CONCLUSIONS

Even though the model considered is very complex, we
were able to obtain very interesting results. In the limit of
high temperatures, the magnetic moments associated to the
3d electrons feel a random field which has two contributions:
one from the interaction with the phonons which, with some
additional assumptions regarding coupling constants, can be
reduced to the one predicted by Brown;!' and the other one
which comes from the interaction with the conduction elec-
trons. In addition to an external magnetic field, the magnetic
moments also feel an effective magnetic field associated with
their interaction with electrons. This effective magnetic field,
given by Eq. (B13), is related to the magnetic field felt
by the electrons, h(k), and explicitly manifests the Fermi-
Dirac statistics of these particles because it is weighted by
the function (Sg)(t.k) = (1/2)[> (1 — f(e(k))) f(e(k' —
K))e ile®)—e =Kl _ (¢ _ _t k — —k)], where f is the
Fermi-Dirac distribution. In the limit in which the interac-
tion with conduction electrons is small compared with the
interaction with phonons, max, |y, |/A > 1, one can obtain
the Landau-Lifshitz-Bloch equation from the interaction with
phonons using the results of Rebei et al.” and Garanin,'* which
is a remarkable fact.

The limit of high temperatures should be further investi-
gated in the case of the contribution given by the conduction
electrons since it is not clear from the expression of the random
field correlation function that it will have Brown’s form,
i.e., white noise, under some assumption of the conduction
electrons’ energy spectrum and density of states in such a
limit. If this is the case, then the Gilbert damping constant
is given by the sum of two terms, one from the phonons and
the other from the electrons. The one given by the conduction
electrons appears to be independent of the electron density of
states and is equal to A?/16.

The case of finite temperatures is described by two gener-
alized functions which are essentially the Fourier transforms
of some given functions characterizing the type of interaction,
the statistics, and the density of states of the bath degrees of
freedom.

The part of the correlation function of the random field
which comes from the interaction with the phonons yields
an intimate relation between friction (the associated Gilbert
constant) and the random field fluctuations; see Eq. (32). The
validity of the Markovian approximation is measured in terms
of the thermal correlation time ty. For time scales shorter
than this, the Markovian approximation for the stochastic
field fails. In the case of the contribution for the random
field correlation function given by the electrons, we see that
Eq. (84) manifests the existence of a fluctuation-dissipation
theorem. This is consistent with the expansion done being
simply a linear-response theory. Thus the theory considered
here satisfies a general fluctuation-dissipation theorem which
relates the random field fluctuations to the friction constants
which measure the effect of the interaction of the spin with
electrons and phonons.

The electron contribution to the noise correlation functions
exhibits the properties of the Fermi level of the electrons.
These properties are better seen at low temperatures in which
Friedel oscillations appear naturally (see Fig. 2). By measuring
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noise correlation functions one is indeed probing the Fermi
surface of the ferromagnet in study. We have also shown
that at any temperature the correlation decays as ~./uT,
meaning that one can also probe the effective mass, u, for the
conduction electrons by measuring this correlation function
at different temperatures. This shows that, by studying the
noisy dynamics of impurities in a ferromagnet (represented
by a spin-j field), one can extract physical properties of the
ferromagnetic material.

Our model is more general than the so-called three-
temperature model considered and validated in experiments
of Beaurepaire et al.'” This is because we do not assume that
the spins, electrons, and phonons are thermalized. Instead, we
consider that at an initial time #, they are thermalized and the
density matrix decouples at that time, but the time evolution
couples the various systems and, thus, considering individual
temperatures at each instant has no precise meaning within
this model.

We believe that the proposed model can lead to a correct
qualitative description of the ultrafast dynamics of magnetic
moments in the case of laser-induced excitations at time scales
shorter than the picosecond.
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APPENDIX A: EFFECTIVE ACTION FOR THE
SPIN-PHONON THEORY

Following Rebei and Parker,” we consider now the reduced
density matrix of the system in the model of Sec. II,

ps(t) = Trg{U(t; 10) p(e)A (3 10)}, (A1)

where U(t;10) = T, exp(—i ftf] H(s)ds) and T, is the time
ordering operator.

We assume that at ¢ = f, the spin and bath are decoupled,
and the bath is in an equilibrium state with temperature 7.
Then we have

p(to) = ps(to) ® Pr(to),
Pr(to) = Zy" exp(—BHz),
where Zg = Tr{exp(— BHg)} is the partition function for the
bath, and we denoted 8 = 1/kgT.
For the reduced density matrix we choose a path-integral
representation using the basis of coherent states in the Hilbert
space of the physical system. For the phonons we use the

holomorphic representation in which the coherent states are
defined by

(A2)

ller) = [ ] exp(@f, kyet,, k))10). (A3)
k

184419-11



B. MERA, V. R. VIEIRA, AND V. K. DUGAEV

which satisfies the following property:
a,(Klle) = ap(K)fe). (A4)

These states provide a decomposition of the identity (of the
reservoir)

iz = /du(oe>||a><a||,

d*a,(k .
dl;l/(a) = 1_[ a—ﬂ()e—a“(k)au(k). (AS)
k, T

For the spin j we use the spin coherent states,**?

IS) = (1+12S)P) 7 exp(¢ (9)S-)1jj), (A6)
with
: 0

£(8) = ¢¥tan 7, (A7)
S =(S,) = j (sin6 cos ¢, sin O sin ¢, cos Q)T, (AB)

where S‘i = Sl + iSz and |jj) is the highest weight vector
of the representation of the SU(2) group labeled by j. These
states have the property

(SIS4IS) = S, (A9)

and provide a decomposition of the identity operator in the
form

15— / du(S)|S) (S|

2J 1582 = Db
4r
The properties (A4) and (A9) allow us to establish a correspon-
dence between classical and quantum quantities. We consider
path-integral representations which make use of coherent-
state matrix elements which can be computed trivially, using
Eq. (A4) and its Hermitian conjugate, and Eq. (A9), for linear
terms in the spin operators. A general prescription to obtain
(spin) coherent-state matrix elements of operators is given in
Ref. 30, where a holomorphic definition of the (spin) coherent
states is used.
Matrix elements of the reduced density matrix §(¢) with the
spin coherent states are

0s(S7,8;i,t) = (Sy|ps(®)IS;)
= (S| Trr{Ut; 10) pt)AT (15 10)}1Si).  (A11)

du(S) =

(A10)

They are related to the density matrix at time ¢ = O through
the propagator J(S¢,S;,t;S,,51,1%), given by

ps(S¢,S;,t) = fd#(sl)dﬂ(sz)-/(sf,si,l;Sz,Sl,fo)

X ps(S1,82,1). (A12)

The propagator has a path-integral representation of the form

J(S¢,8:,1,82,81,%0)
Ss

s,
— [ pus) / DS exp(i 11S,.8,DFIS) 851,
S S

(A13)
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where

I1S1,82] := Swz[S1] — Swz[S:]
+ Ss[S1] = Ss[S21,

in which Sw7 is the Wess-Zumino action,

(Al4)

t 1
Swz[S] = ]/ dl‘/ dun - (d,n x 9,;n), (A15)
fo 0

where
n(u,t) = (sin(uf) cos ¢, sin(uf) sin ¢, cos(uf)! (A16)

is a map which continuously deforms the constant curve given
by ng(t) = ng = (0,0,1)7 (the north pole) into the curve n(¢) =
S(t)/j through a great circle, a geodesic, in S2. We see that
the Wess-Zumino action, given by Eq. (A15), gives the area
enclosed by the path traced by the spin vector and the two
great circles from the north pole of the sphere to the endpoints
of that path. We also have

SsIS] = —/ dt(S(0)|Hs(1)IS()) :f dt S(r) - H,

(A17)

and F[S{,S;] is the Feynman-Vernon influence functional
which can be written as

FI81.8:] = /du(ao)du(al)du(az) k(org. 1101, 10/S1)

x Zg'k(al,—iB;02,010) x k*(a), 15 2,10]S2),
(A18)

where we defined the kernel

1
k(oz},tf;oti,ti|S) = /Dza exp [E(a}a(tf) + ot(ti)Tozi)]

X exp |:i / ' dtL:|, (A19)
in which
T
=1 (Cidita _ w‘%) i Hae ().a(0)
+ Hie! (1), a(1),8(1)] (A20)
and
_ @OIAx0)]a) .

MGIITIIG)
w, = SOUOIHOl®)S@) (A22)
(a@|1g )

Note that in the formulas presented above we adopted vector
notations o = (e, (K)) and o = (a; (k).

The Feynman-Vernon functional can be computed exactly
because the integrals are Gaussian. After some algebra we
obtain

FIS1,8:] = exp {—i[ / / dndis(S1.a(tr) So.a(t))

R S
x 03Gap(ty — 12)0 ( S;Z EZ;) ]} (A23)
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where

LA . * —iw, (K)t
iGopt) = kX,; H}, (K)e ( n(@, (k) + 1

in which n(w) = (e#® — 1)~! is the Bose-Einstein distribution
function.

We can introduce the fields associated with the Keldysh
representation

( Sa(r)> _ [ 3Sat @+ S -(0))
Dot(t) Sa.+(t) - Sa,f(t)

where the field S(¢) is associated with the classical spin and
D(¢) with quantum and thermal fluctuations. The Feynman-
Vernon functional in terms of these fields is

FIS,D] =exp{—i / dn / dty (\/Esa(tl)%z)a(n)>

2
x 061G (1) — h)oy <\1/_Sﬂ(t2)> } (A26)
5 Ds(12)

) , (A25)

where

iGop(t) = ) Hy, (ke
k,n

<1 + 2n(wu (k) 6(1)

ot 0 >H/3M(k). (A27)

In the stationary phase approximation we take the variation
of the action phase in the path integral to be zero. The
corresponding equations of motion are

S 8 Sef 8 Sefr

D() = S(1) x 37+ Dio) x S, (A28)
- A | 8 Seit
S(t) = S(t) X (SD(Z‘) + ZD(f) X M, (A29)

where

Sett[S, D] = / dtD(t)-H —ilog F[S,D]. (A30)

Iy

APPENDIX B: EQUATIONS OF MOTION

The equations of motion in momentum space of the full
theory resulting from taking the variation of the effective action
(in which we consider the truncated expansion of Sec. III)
appearing in the path-integral representation of the spin density
matrix are

D(s,k) = ) [S(s.k — p) x W(s,p) + D(s.k — p)
Y
x (T(s,p) + He(s,p))], (BI)

(n(wu (k) + D) + n(w, (K)O(—1)
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n(w,(K))
Hﬂ/t(k)y
(n(wu (k) + DO(=1) + n(w,(k))o(1)
(A24)
|
S(s,k)
= [S(s,k —P) X (JK*S(5,p) + T(s,p) + Herr(s, )
P

+ %D(s,k —p) x (JK*D(s,p) + W(s,p))i|,

(B2)

in which
T(s, —k) = T (s, —k) + TP(s, —k), (B3)
TO(s, —k) = T} (s, —k) + Ti (s, —k). (B4)

TO(s, —k) = Tj) (s, —K) + Ti (s, —k),  (BS)

Tl(ji)(s, —k) = i/ ds'[A(s —5', —k) — A(s" — 5,K)]

fo

x 0(s — s)S(s', —K), (B6)

t
TS (5, —k) = i22 / ds'(Sg)(s — s', —K)
1o

x 0(s — s)HS(s’, —=K), B7)

t
T( (s, —k) = i/ ds'[Ap(s —s', —k) + Ag(s’ — 5.K)]

)

x D(s', —k), (B3)

)\'2 t
T (s, —k)=i7/ ds'(Pg)(s — 5" K)D(s’, —k),  (BY)
fo

W(s, —k) = Wpi(s, —Kk) + W(s, —k), (B10)

Win(s, —k) = —i / ds'[A(s — 5", —=K) — A(s’ — 5,K)]
x 0(s' — $)D(s’, —k), (B11)
Wea(s, —k) = —ia? / ds'(Sg)(s — s, —K)o(s' — s)

x D(s', —Kk), (B12)

H.(s, —k) = H(—Kk) + ik/ ds' (Sg)(s — s' . K)0(s —5")

x h(=K), (B13)
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where the indices “ph” and “sd” emphasize that these terms
come from the interaction with phonons or with electrons,
respectively. In the above expression the long-wavelength
approximation has been taken for the Heisenberg exchange
term in the action so that it becomes a diffusive term in the
equation of motion in which J is some constant measuring the
interaction strength.

APPENDIX C: COMPUTATION OF FREE THERMAL
ELECTRON PROPAGATORS

Consider ¢ > 0 and let us compute
gO(X’_,’: = —it) = Zeikxeie(k)l‘f(e(k)). (C1)
k

This can be done by writing the sum on k as an integral

Oy = [ dPk/@2m)?),

3
/ (;ﬂl; eik'xeig(k)tf(f(k))' (C2)

Now we consider that the conduction electrons have a
quadratic spectrum of the form e(k) = k%/2u, where pu is
an effective mass. Using spherical coordinates, we see that the
angular integrals are trivially computed and we end up with

i [ o
To compute
eilkr+etn]
/ S (C4)

we complexify the integral with the contour in the upper half-
plane being a semicircle, with radius R — oo, containing the
poles. The poles are given by solving the algebraic equation

Be(k,) =2n+ in, n € Z. (C5)
Near each pole,

2
exp <%) 5 —gk,,(k —k,) — 1. (Co)

The solution is
pilkr+eor]
[ i -
where in the summation the prime is there to indicate that
we are only summing for values of k, which have a positive

imaginary part. Plugging this back into the expression for the
Green’s function yields

2i | <, 1 ik L
_ (ky) el[ o e n)l]’ (C7)
5 2

n=—0oo

Gx, —it) = —

o0
H I ilknr+€(ion)t]
e' It C8
2xrp n;oo €8

where the sum is restricted to those k,, satisfying Eq. (C5), or

k2
bzi(Zn—i-l)n,neZ (C9)
2p
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having a positive imaginary part. Solving this equation gives

kn=:i:(l+i)1/(2n+%.

Suppose 2n + 1 > 0; then the solution with a positive imagi-
nary part is given by

(C10)

2 1
ky = (1+1i) @n+ Duzx )W; (C11)
B
now if 2n + 1 < 0, then
2 1
ky = (=1 + 1) /w. (C12)

For fixed |2n + 1| we have the two contributions

e[i(lJri) Bl e

+e[i(—l-&-i)\/;Wr—ixi|e(kn)\t]’ C13)

which gives, after simple algebra,

_ [lntlpm 2 1
2e R cos |: wr +il2n + llnt:| . (Cl4)
So the sum becomes
o0
GOx,—it) = — e’\/@r
wrf s
2n + 1
X COS |: (n—i—%r +i(2n+ 1)m:| .
(C15)

The other inverse Fourier transform gives

—G(|—x| = |x| = r,it)
i 32 ir’u
=\|\— exp
2t 2t

o (2n+1),
_ [Eme
S e

X COS |: /W;ﬁ —i(2n + l)nt:| , (C16)

where the first term comes from the (inverse) Fourier transform
of the exponential of the conduction-band energy, which is a
Gaussian integral.
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