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Neutron Compton scattering experiments on crystalline lithium hydride and deuteride are presented
and compared with existing experimental data and first-principles predictions. With currently available
instrumentation, these measurements demonstrate sufficient mass selectivity for studies of nuclear-momentum
distributions of protons, deuterons, and lithium using forward and backscattering geometries. In both materials,
spectral discrimination of lithium-recoil features is highest in backscattering geometry, although mass isolation is
also possible in the forward-scattering direction. These results evince the possibility of performing simultaneous
mass-selective neutron spectroscopic studies for nuclei with m > 4 amu. We also provide an in-depth analysis
and assessment of departures from the harmonic and impulse approximations as described by the celebrated Sears
expansion of the dynamic structure factor, as well as how these can manifest themselves in the experimental
data. We close by outlining the potential of our experimental strategy for mass-selective spectroscopic studies of
materials containing protons and other light nuclides.
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I. INTRODUCTION

In recent studies,1,2 Krzystyniak and Fernandez-Alonso
presented the theoretical formalism for the prediction of
nuclear-momentum distributions (NMDs) in crystalline ma-
terials by recourse to first-principles electronic-structure cal-
culations within the framework of density-functional theory
(DFT). In this approach, second moments (σ ) and Laplacians
(〈∇2V 〉 ≡ �) of the NMD were obtained from phonon-
dispersion relations and atom-projected vibrational densities
of states (VDOSs). To illustrate the method, this work
also provided quantitative predictions for the underlying
NMDs in face-centered-cubic (fcc) lithium hydride (LiH)
and deuteride (LiD). Comparison with existing (albeit sparse)
neutron-scattering data3–5 served to demonstrate an excellent
agreement between theory and experiment within the harmonic
Born-Oppenheimer approximation (HBOA), as well as an up-
per bound of ∼2–3% for the effects on nonadiabatic dynamics
on σ and � for hydrogen (H) in this benchmark system.
Motivated by the above, a similar experimental-computational
strategy has been applied in a simultaneous neutron-diffraction
(ND) and neutron Compton scattering (NCS) study on the
uptake of molecular hydrogen (H2) by the alkali-graphite
intercalation compound KC24.6

On the experimental front, direct access to single-particle
NMDs has been made possible via ongoing developments
in NCS.7–10 In brief, NCS can be regarded as a mass-
selective spectroscopic technique where each atomic mass in
the material contributes to the overall time-of-flight (TOF)
spectrum in the form of a Doppler-broadened recoil peak.8

The use of epithermal neutrons with energies up to
hundreds of eV (orders of magnitude above phonon energies
in condensed matter) is thought to guarantee sufficiently high
momentum transfers such that the width of recoil peaks in the
energy domain can be related to the kinetic-energy distribution

in momentum space of the target nucleus prior to the scattering
event, i.e., the so-called impulse approximation (IA).8

In this context, Karlsson11 has recently argued that, within
the finite time scales associated with the NCS process, there ex-
ists a time distribution of individual neutron encounters leading
to a considerable elastic slowing-down of the recoiling particle
for long scattering times. Karlsson also argues that such an ef-
fect appears to be most pronounced in diatomic systems where
high-frequency vibrational motions are preferential along the
molecular axes. This result has important consequences for the
general applicability of the IA in NCS, including its expected
dependence on the magnitude of neutron-momentum transfer.
Commonly referred to as “final-state effects” (FSEs), these
departures from the IA are caused by interactions between
the recoiling nucleus and its environment.7,12 To date, FSEs
in both molecular and condensed-matter systems have been
treated within a perturbative approach known as the Sears
expansion.13,14

In addition to the recent work of Karlsson mentioned above,
we also note that the Sears expansion has also been criticized
by Rinat,15 and a more rigorous formalism has been proposed
by Gersch, Rodriguez, and Smith.16 Karlsson points out that
the presence of a high-energy tail in the NCS profile appears
to agree quite well with available experimental data, naturally
leading to the conclusion that the free-recoil approximation
is far from being fulfilled in this particular system. For both
H2 and D2, it was also noted that FSE corrections do not
necessarily decrease with momentum transfer, as expected if
one is to adhere to the more conventional approach by Sears.

In this work, we explore the extent to which NCS data
may be distorted due to departures from the IA via measure-
ments on crystalline LiH and its deuterated counterpart LiD,
two isoelectronic and isostructural insulators characterized
by distinctly different vibrational manifolds and associated
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NCS recoil energies. LiH exhibits one of the largest known
isotope effects upon hydrogen/deuterium (H/D) substitution
in terms of lattice parameters, elastic constants, and Debye
temperatures.17 In this spirit, solid LiH and LiD therefore offer
a convenient platform for an experimental assessment of the
general validity of the IA for H, D, and lithium (Li), as well
as possible deviations from commonly accepted theoretical
predictions, as recently postulated by Karlsson.

On a more practical side, use of a forward-scattering
geometry to obtain NCS data also enables us to explore the
simultaneous investigation of H, D, and Li over a wide range of
momentum transfers. In this spirit, the present work constitutes
a timely extension of the recent study of Seel and co-workers18

on Li and fluorine (F) in 7LiF using a backscattering geometry.
These ongoing developments seek to ascertain the merits and
strengths of mass-selective neutron spectroscopy (MANSE)
techniques over a wider range of atomic masses. To that
end, the paper is organized as follows. First, the theory of
NCS under the IA and details of the NCS measurements
are introduced. Next, we present a detailed analysis of the
LiH/LiD NCS data for H, D, and Li using a series of
physical models to describe the underlying NMDs. In light
of recently developed formalisms for the calculation of FSEs,
putative deviations from the HBOA and IA are then assessed
in detail. These results are also compared with existing ab
initio calculations, as well as with previous NCS and inelastic
neutron scattering (INS) data. Finally, we discuss the general
implications of our results for ongoing and future NCS work,
including its use as a mass-selective spectroscopic technique
for the study of more complex materials.

II. THE IMPULSE AND HARMONIC APPROXIMATIONS
IN NEUTRON COMPTON SCATTERING

In NCS, the energy and momentum transfers imparted by
the neutron to the target nucleus are so high that the scattering
process can be treated within the IA.7,8,12,13,19–23 In this limit
(i.e., infinite momentum transfer −→

q ), the dynamic structure
factor SIA(−→q ,ω) is directly related to the NMD n(−→p ):

SIA(−→q ,ω) =
∫

n(−→p )δ(ω − ωr − −→
q · −→

p /M)d−→
p . (1)

For a given nucleus of mass M , the δ function in Eq. (1) is
centered at the recoil energy ωr = h̄2q2/2M . Mathematically,
the dynamic structure factor SIA(−→q ,ω) can be expressed in
terms of a function J (y,q̂) that depends both on a scaling
parameter y and the unit vector q̂ = −→

q /q along the direction
of momentum transfer −→

q :

SIA(−→q ,ω) = (M/h̄2q)
∫

n(−→p )δ(y − q̂ · −→
p )d−→

p

= (M/h̄2q)J (y,q̂). (2)

The scaling parameter y is the so-called West-scaling
variable, whose value is equal to the projection of the nuclear
momentum −→

p onto q̂:13,24

y = −→
p · q̂ = M

h̄2q
(ω − ωr ) = M

h̄2q

(
ω − h̄2q2

2M

)
. (3)

The function J (y,q̂) in Eq. (2) is the so-called directional
Compton profile. This observable is proportional to the

probability that a nucleus has a momentum component along
the direction of q̂. In an isotropic system, the specific direction
of q̂ is of no relevance, and the NMD reduces to the Compton
profile J (y), which represents the probability that an atom
has a momentum component y along an arbitrary direction in
space. The IA is tantamount to assuming that the observed
Compton profile J (y) is the Radon transform of the NMD via
West scaling.8

Hereafter, q will be given in units of Å−1, energy transfer
ω in meV, and atomic mass in amu. With this choice of units,
Planck’s constant is given by h̄ = 2.044 58 (meV amu)1/2 Å.

For finite values of q, FSEs are routinely calculated using
the method of Sears.13 To this end, standard data treatments
express the NCS profile J (y) as a series of the form23

J (y) = JIA(y) + JFSE

= JIA(y) − A3

q

d3

dy3
JIA(y) + · · · , (4)

where JIA(y) is the IA result.
In the above expression, the magnitude of FSEs, A3, is

related to the mean Laplacian of the interatomic potential with
respect to the position of the scattering atom, �, via A3 = M�

36h̄2 ,
where � is expressed in meV Å−2 (cf. Refs. 11, 23, and 25).

In an NCS experiment performed on an isotropic sample
within the IA limit, a given NCS profile JIA(y) can be related
to a spherically averaged three-dimensional NMD nIA(p) by
the following expression:8

nIA(p) = −1

2πy

∂JIA(y)

∂y

∣∣∣∣
y=p

, (5)

where the radial NMD, nIA(p), can be represented as8

nIA(p) = exp
(−p2

2σ 2

)
(σ

√
2π )3

∑
n

cn(−1)nL1/2
n

(
p2

2σ 2

)
, (6)

where L
1/2
n denotes a generalized Laguerre polynomial.

Equation (6) can be used for the reconstruction of nIA(p) from
the measured J (y) after subtraction of the FSE contribution
JIA(y) = J (y) − JFSE. To this end, JIA(y) is fitted to a Gram-
Charlier expansion of the form8

J (y) = exp
(−y2

2σ 2

)
(σ

√
2π )

∑
n

cn

22nn!
H2n

(
y

σ
√

2

)
, (7)

where H2n denotes a Hermite polynomial.
In Eq. (7), the term with n = 0 is set to unity due to

the normalization of the NMD. Moreover, with c1 set to
zero, the kinetic energy Ek of a nucleus with mass M

is related to σ via Ek = 3h̄2σ 2/2M . This relationship is
independent of the precise values of the remaining coefficients
cn. Therefore, in practice, the fitting of JIA(y) to the Gram-
Charlier expansion amounts to varying both the width of the
momentum distribution σ and the coefficients cn with n � 2.
We also note that the coefficients cn in Eq. (7) are identical to
the expansion coefficients in Eq. (6) for the radial momentum
distribution, which is tantamount to an inversion procedure
between JIA(y) and nIA(p).26

As discussed in more depth in previous works,2 NMDs in
a periodic solid are most conveniently described on the basis
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of the projected VDOS within the framework of the Gaussian
approximation (GA).27 The basic assumption within the GA
is that the momentum distribution of the nth nucleus along q̂

assumes a purely Gaussian functional form. This assumption
also provides the basis for an alternative description of NMDs
to the Gram-Charlier expansion shown in Eq. (7) in terms
of multivariate Gaussians to account for nuclear vibrations
along different spatial directions.28–30 In either case, the second
moment of the NMD for a given nucleus n and along q̂, σ 2

n (̂q),
can be written as

σMn(̂q)2 = Mn

Nqh̄
2

∑
q∈1BZ

Nλ∑
λ=1

[−→e n(λ,
−→
q ) · q̂]2

× ω(λ,
−→
q )

2
coth

(
ω(λ,

−→
q )

2kBT

)
, (8)

where ω(λ,
−→
q ) are phonon energies and −→

e n(λ,
−→
q ) are

polarization vectors for a given nucleus n. The summation
in Eq. (8) runs over all −→

q vectors within the first Brillouin
zone, where Nq is the number of these wave vectors, as well
as over all phonon branches λ of the unit cell. In the particular
case of LiH, Nλ = 12. This number of phonon branches arises
from the use of a nonprimitive fcc unit cell in our previous
DFT calculations,2 yet this choice bears no consequence on
computational predictions for NCS observables. It is also
important to note that this treatment tacitly assumes the validity
of the HBOA discussed earlier.

From Eq. (8), the spherically averaged value of the second
moment of the NMD for a nucleus n, σMn (̂q)2, can be obtained
from the total VDOS projected onto nucleus n, Gn(ω),

σ 2
n = Mn

h̄2

∫
Gn(ω)

ω

2
coth

(
ω

2kBT

)
dω. (9)

The partial or projected VDOS, Gn(ω), corresponds to the
contribution from a given atom to the total VDOS. Gn(ω) is
defined by the following sum over all q points in the first
Brillouin zone and over all phonon bands:1,3

Gn(ω) = 1

3Nq

∑
q∈1BZ

Nλ=12∑
λ=1

−→
e n(λ,

−→
q )2δ(ω − ω(λ,

−→
q )), (10)

where −→
e n(λ,

−→
q ), ω(λ,

−→
q ), and Nq have been defined earlier

when introducing Eq. (8). Gn(ω) for a harmonic solid can
also be used to estimate the magnitude of FSEs introduced in
Eq. (4). The spherical average of the Laplacian � for nucleus
n can be written as14

� = 3M

h̄2

∫
ω2Gn(ω)dω. (11)

For an isotropic three-dimensional harmonic oscillator (3D-
HO) this quantity is given by23

� = 12h̄2σ 4

M
. (12)

The connection between the magnitude of FSEs [coefficient
A3 in Eq. (4)] and the spherical average of the Laplacian �

was originally introduced by Sears:13

A3 = M�

36h̄2 , (13)

which, after some algebra, leads to an explicit relationship
between A3 and σ for the case of a 3D-HO:11

A3 = σ 4

3
. (14)

The Gram-Charlier expansion given by Eq. (7) may then be
modified to account for FSEs by writing

A3

q

d3

dy3
JIA

(
y

σ
√

2

)
= k

q
H3

(
y

σ
√

2

)
, (15)

where A3 is expressed through the expansion term k multiply-
ing the third-order Hermite polynomial H3( y

σ
√

2
). Introducing

the auxiliary variable x = y

σ
√

2
in the Gram-Charlier expansion

such that d3

dy3 JIA( y

σ
√

2
) = ( 1

σ
√

2
)3 d3

dx3 H3(x), one can finally

write2

k = A3

(
1

σ
√

2

)3

= σ

√
2

12
(16)

for a 3D-HO and, more generally,

k = A3

(
1

σ
√

2

)3

= M�

36h̄2

(
1

σ
√

2

)3

(17)

for a harmonically bound nucleus with an underlying VDOS
other than the simple 3D-HO case introduced above. It is
worth noting that σ in Eq. (16) is obtained from the use
of a single (effective) oscillator frequency used in 3D-HO
models, whereas σ in Eq. (17) requires knowledge of a
nucleus-projected VDOS using phonon-dispersion relations.

To obtain the radial momentum distribution nIA(p) by
means of the Gram-Charlier expansion, the FSE contribution
JFSE must first be calculated and then subtracted from the
measured NCS profile J (y). Mathematically, A3 and σ are cor-
related as they are both functions of the same atom-projected
VDOS. However, a simple analytical relation between A3 and
σ that can be used as a constraint in the fitting of experimental
NCS profiles is only known for the 3D-HO case. Thus, in
practice, only Eq. (16) is of practical utility in the analysis
of experimental data. The task of subtracting JFSE from the
measured NCS profile J (y) can be accomplished either by
assuming that both A3 (and hence k) and σ can be calculated
from the 3D-HO model and using Eq. (16) as a constraint in
the fitting of experimental NCS profiles. Alternatively, it is
also possible to assume a more general form of the VDOS and
relax both k and σ during the fitting procedure. In the present
work, both methods have been applied for further comparison
with HBOA predictions. For clarity, the relation k = σ

√
2

12 will
be used hereinafter to describe the constraint applied to the
description of experimental data within the framework of the
3D-HO model.

III. MATERIALS AND METHODS

A. NCS experiments

All measurements were carried out on VESUVIO, an
indirect-geometry NCS spectrometer located at the ISIS Fa-
cility, Rutherford Appleton Laboratory, United Kingdom.23,31

Both LiH and LiD were purchased from Sigma Aldrich as fri-
able powders. To contain these samples, a set of two 6 × 6 cm2
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FIG. 1. (Color online) Schematic diagram of VESUVIO. For
further details, see the text.

aluminum (Al) sachets were prepared from thin Al foil of
thickness 50 μm. The LiH sample had a mass of 2.576 g. To
compensate for a lower neutron-scattering cross section of the
deuterated sample, a total of 13.590 g of LiD was used. Both
LiH and LiD specimens were enclosed in the aforementioned
Al sachets and further placed into two flat-can Al containers
resulting in a total LiH (LiD) thickness of 4.3 (7.7) mm.
The resulting scattering power of the LiH (LiD) sample was
estimated to be 15% (10%). Both flat-geometry samples were
carefully aligned perpendicular to the incident beam and NCS
data collected at 300 K. Total integrated proton currents were
9200 and 5835 μA h for LiH and LiD, respectively.

On an indirect-geometry NCS spectrometer such as VESU-
VIO, the sample is exposed to a polychromatic neutron beam
characterized by an incident-energy spectrum I (E0). Incident
neutrons having initial energy E0 travel a distance L0 from
the pulsed source to the sample. After scattering at an angle
θ , neutrons of final energy E1 travel a distance L1 to the
detector as schematically shown in Fig. 1. To achieve energy
selection, a thin foil is placed in front of the detectors.
This foil absorbs neutrons over a narrow range of energies,
thereby fixing the final energy of the detected neutrons.
For our NCS measurements on solid LiH and LiD, a gold
(Au) foil was used to absorb neutrons at E1 = 4.9 eV. With
this experimental arrangement, data collection necessarily
involves foil cycling in both forward and backscattering
geometries in order to obtain TOF data with and without energy
selection, followed by a subtraction of these two data sets to
obtain NCS spectra. In this context, it is worth emphasizing
that the “foil-out” data set in every VESUVIO experiment
is tantamount to a simultaneous ND measurement of the
sample under investigation, as recently demonstrated in in situ
adsorption experiments.6 We anticipate that future NCS work
on increasingly complex materials will benefit greatly from the
use of this (largely unexploited) capability of the instrument
to perform concurrent structural and spectroscopic studies.

On VESUVIO, two different final-energy-selection
schemes are currently used, hereafter referred to as resonance-
detector (RD) and resonance-filter (RF) configurations.9,32 The
RD configuration employs the foil to define the energy of the
scattered neutrons via resonant neutron absorption, and a γ -ray

detector to probe the prompt cascade following the subsequent
(n,γ ) reaction. At present, VESUVIO uses RD (RF) in forward
(backscattering) geometries, respectively.

For RD, the present forward-scattering bank uses yttrium-
aluminum-perovskite-doped (YAP) γ -ray detectors,9,33–35 de-
signed to function both as neutron and energy selectors by
placing a Au foil on the YAP-detector surface.9,36 A secondary
foil placed in two distinct positions is used to improve both
energy resolution and signal-to-background ratios. In “foil-
out” measurements, scattered neutrons only see the primary
foil, whereas “foil-in” measurements require them to pass
through the secondary foil prior to reaching the primary foil.
The final NCS TOF spectrum in forward scattering is then
obtained from subtraction of the “foil-in” from the “foil-out”
raw data. This difference method removes most of the γ -ray
background and also improves spectral resolution.

For the RF configuration, the VESUVIO backscattering
bank is equipped with Li-doped glass detectors only sensitive
to neutrons.9 Using Au as energy-filter material, NCS TOF
spectra in the backscattering direction are obtained by taking
the difference between “foil-in” and “foil-out” data. This
standard technique is referred to as single difference (SD).
To improve final-energy resolution, double-difference (DD)
techniques37,38 have also been implemented with success. In
this case, three measurements are necessary, namely with no
filter, a filter of thickness d1 and neutron absorption A1(E1),
and a filter of the same material of thickness d2 and absorption
A2(E1). The DD technique relies upon the fact that when the
neutron-absorption cross section σA(E1) is small, the following
approximation becomes valid:

A1(E1) = 1 − exp[−Nd1σA(E1)] ∼ Nd1σA(E1) (18)

with an analogous expression for A2(E1). The resulting DD
signal SDD can then be written as

SDD(E1) = A1(E1) − d1

d2
A2(E1). (19)

Because σA(E1) is negligibly small in the tail regions of
the foil resonance, SDD(E1) = 0 for significant offsets away
from the resonance maximum. Thus, the long tails of the
function A1(E1) appearing in SD are strongly suppressed
irrespective of their functional form, and energy resolution
is therefore improved considerably. The energy resolution
function is well approximated by a Voigt line shape,23

where the Lorentzian contribution reflects the long tails.
These are largely removed by the DD technique. Moreover,
low-energy contributions to the resolution function arising
from the 1/

√
E1 dependence38–41 of the neutron-capture cross

section of the analyzer foil are also suppressed in these DD
measurements.

A schematic diagram of VESUVIO is shown in Fig. 1. The
incident- and transmitted-beam monitors (S1 and S2) consist
of beads of 6Li-doped scintillator glass. In forward scattering,
a total of 64 YAP detectors (S135–S198) are arranged into
near-to-vertical columns of eight detectors, four above and
below the horizontal plane passing through the sample center.
Each detector element is 8 cm in height, 2.5 cm in width,
and 0.6 cm in thickness.42 The final neutron energy is fixed at
4897 meV, with an energy resolution function which is well
described by the convolution of a Lorentzian of half-width
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at half-maximum (HWHM) 24 meV and a Gaussian with
standard deviation (STD) 73 meV.43 In backscattering, there
are a total of 132 6Li-doped glass scintillation detectors
(S3–S134). DD techniques are used to define a final energy of
4897.3 meV. In this geometry, the resolution function is nearly
Gaussian with extended (small) wings, and can be accurately
described as the convolution of a Gaussian (STD = 74 meV)
and a Lorentzian (HWHM = 24 meV).42

B. Data reduction and analysis

The total number of neutrons detected for a given mass
M and TOF channel t on an indirect-geometry spectrometer
is proportional to the NCS profile, J [yM (t)], convoluted in
yM space with a (mass-dependent) instrumental resolution
function R[yM (t)]. The resolution function R[yM (t)] can
be expressed as a convolution of different contributions
associated with uncertainties in L0, L1, θ , t , and E1. The
resolution calculation is performed by considering a mass-
and TOF-dependent West-scaling variable yM (t) for each mass
M as a function of other experimental variables, that is,
yM = yM (L0,L1,θ,t,E1). Uncertainties in these experimental
variables are assumed to be independent of each other and
sufficiently narrow for the differentials ∂yM

∂L0
, ∂yM

∂L1
, ∂yM

∂θ
, ∂yM

∂t
,

and ∂yM

∂E1
to remain constant over their respective ranges.32

Additionally, these uncertainties, denoted as �L0, �L1, �θ ,
�t , and �E1g , are assumed to obey normal Gaussian statistics.
The resulting final resolution function R[yM (t)] then becomes
a series of convolution products of the form

R[yM (t)] = RL0[yM (t)] ⊗ RL1 [yM (t)] ⊗ Rθ [yM (t)]

⊗ Rt [yM (t)] ⊗ RE1g
[yM (t)] ⊗ RE1l

[yM (t)]

= Rg[yM (t)] ⊗ RE1l
[yM (t)], (20)

which can be described as a Voigt profile with the STD of the
Gaussian component, �g, given by

�g2 =
∣∣∣∣∂yM

∂L0

∣∣∣∣2

�L2
0 +

∣∣∣∣∂yM

∂L1

∣∣∣∣2

�L2
1 +

∣∣∣∣∂yM

∂θ

∣∣∣∣2

�θ2

+
∣∣∣∣∂yM

∂t

∣∣∣∣2

�t2 +
∣∣∣∣∂yM

∂E1

∣∣∣∣2

�E2
1g (21)

and the HWHM of the Lorentzian component is given by
�l = | ∂yM

∂E1
|�E1l .

Table I lists STDs and HWHMs of the Gaussian and
Lorentzian components of the resolution function R[yM (t)],
respectively, for M = H, D, Li, and Al. These data correspond
to TOF data for a total of four detectors chosen so as to
span the entire forward scattering and backscattering angular
range of VESUVIO. The Gaussian-distributed component of
the energy resolution function RE1g

[yM (t)] is the dominant
term in Rg[yM (t)] for all masses other than the proton. For
forward scattering, this contribution increases with M and
decreases with θ , e.g., at θ = 33.1◦, it is responsible for 69%,
91%, and 94% of �g for M = D, Li, and Al, respectively,
whereas at θ = 57.6◦ it amounts to 52%, 87%, and 94%.
In backscattering, the contribution from RE1g

[yM (t)] still
increases with M , yet it is almost constant as a function
of scattering angle, amounting to 89%, 98%, and 99% of
the total width of Rg[yM (t)]. The situation is completely

TABLE I. Gaussian STDs and Lorentzian HWHMs of the
resolution function R[yM (t)] for M = H, D, Li, and Al at
four different scattering angles. The scattering angles θ =
33.1◦, 57.6◦, 160.8◦, and 130.5◦ correspond to detectors S166,
S143, S133, and S3, respectively. All resolution parameters
have been calculated using error propagation and are ex-
pressed in Å−1: �yM

L0 = | ∂yM

∂L0
|�L0, �yM

L1 = | ∂yM

∂L1
|�L1, �yM

θ =
| ∂yM

∂θ
|�θ , �yM

t = | ∂yM

∂t
|�t , and �yM

E1g = | ∂yM

∂E1g
|�E1g . See the main

text for further details.

θ �yM
L0 �yM

L1 �yM
θ �yM

t �yM
E1g �g �l

M = H
33.1 0.34 0.44 3.21 0.05 1.42 3.55 0.40
57.6 0.14 0.28 3.21 0.05 0.62 3.29 0.17

M = D
33.1 0.76 0.91 3.17 0.05 3.19 4.65 0.89
57.6 0.45 0.63 3.08 0.1 1.91 3.71 0.53
130.5 0.10 0.54 0.67 0.3 1.82 2.04 0.40
160.8 0.11 0.65 0.33 0.2 1.85 2.00 0.38

M = Li
33.1 2.66 2.99 3.11 0.1 11.1 12.20 3.1
57.6 1.6 1.87 2.9 0.2 6.69 7.70 1.87
130.5 0.31 0.84 0.54 0.3 5.07 5.19 1.04
160.8 0.29 0.83 0.26 0.2 4.72 4.81 0.97

M = Al
33.1 10.3 11.4 3.09 0.1 43 45.77 12
57.6 6.12 6.82 2.84 0.2 25.5 27.25 7.13
130.5 1.11 2.52 0.50 0.3 17.9 18.12 3.69
160.8 1.03 2.37 0.23 0.2 16.4 16.60 3.38

different for the resolution function of protons, where the
dominant contribution comes from the angular component
of the Gaussian-distributed resolution function �θ . This
contribution increases with scattering angle and accounts for
90% and 98% of �g at scattering angles of 33.1◦ and 57.6◦,
respectively. The ratio of the Lorentzian HWHM of R[yM (t)]
to the HWHM of the Gaussian-distributed component in
R[yM (t)] (calculated from the STD �g) increases with M

and decreases with θ for forward scattering, and is equal to
0.11, 0.16, 0.21, and 0.22 at θ = 33.1◦ and 0.04, 0.12, 0.21,
and 0.22 at θ = 57.6◦ for M = H, D, Li, and Al, respectively.
In backscattering, this ratio is practically independent of M

and θ and it is equal to 0.17 for all masses under investigation.
Thus, on the whole, the VESUVIO resolution function can be
described adequately by a Voigt line shape with a dominating
Gaussian component predominantly arising from either the
angular resolution function (for protons) or from the resolution
in final energy (for other masses).

For a total of N different masses present in the sample, the
total count rate Cθ (t) at a fixed scattering angle θ is given by
[cf. Eq. (2.24) in Ref. 23]

Cθ (t) = A′
[
E0I (E0)

q

]
t

N∑
n=1

InMnJn[yn(t)] ⊗ Rn[yn(t)],

(22)

where A′ is a constant, and the mass-independent factor
[E0I (E0)

q
]t is a function of the incident neutron spectrum,
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I [E0(t)], the initial neutron energy, E0(t), and the momentum
transfer q(t), all functions of t (for further details, see Ref. 23).
In Eq. (22), JM [yM (t)] for a given mass M is given by Eq. (4).
Integrated peak intensities IM are proportional to the scattering
power IM = ANMσM , where σM = 4πb2

M is the total (bound)
neutron-scattering cross section.23,44

Using Eq. (22) as our starting point, the following data-
reduction and analysis protocol was applied to the experimen-
tal data:

(i) Raw TOF spectra were obtained in both forward
scattering and backscattering. Forward-scattering spectra were
measured with 64 individual YAP detectors located at scat-
tering angles ranging from 32◦ to 68◦ using an RD-SD
configuration. Backscattering spectra were recorded by 102
individual Li-glass detectors located at scattering angles
ranging from 130◦ to 163◦ using RF-DD.

(ii) In order not to introduce any bias into our data-
reduction procedures, noisy detectors were excluded prior
to any subsequent data analysis. This task was achieved
via comparison of our data with lead (Pb) calibration runs
measured before these experiments.

(iii) Multiple-scattering (MS) contributions were subtracted
from the raw TOF spectra. In practice, the most troublesome
MS component arises from double scattering off heavy atoms
in the sample. Such a scattering process gives rise to a spurious
peak in the TOF profile to the left of the single-scattering
contribution from heavy atoms. MS involving protons, on the
other hand, leads to a smooth background under the H peak.
MS was calculated and subtracted from the raw (forward
scattering and backscattering) spectra in a self-consistent
manner using the MSSUB procedure.45

(iv) Following MS subtraction, forward-scattering TOF
spectra were corrected to remove γ backgrounds. These back-
grounds were calculated from raw forward-scattering spectra
in a self-consistent manner using the BCORR procedure.46

It is worth noting that, at present, backscattering spectra do
not require any γ background corrections as this scattering
geometry uses an RF-DD configuration.

(v) MS and γ -corrected TOF spectra in forward scattering
exhibited three recoil features: a broad and relatively strong
peak at shorter TOFs due to H/D, and two narrow peaks at
longer TOFs corresponding to Li and Al. Due to the kinematic
condition ω(t) = h̄2q(θ,t)2

2M
defining the center of the NCS profile

for a given mass M , the strong H and D peaks appear
at significantly different TOF values for different scattering
angles θ . The H-peak position moves from ∼320 μs at a
scattering angle of 32◦ to ∼160 μs at 68◦. The D-peak position
moves from ∼350 μs at a scattering angle of 32◦ to ∼280 μs
at 68◦. The positions of the Li and Al peaks remain practically
constant over the whole range of forward-scattering angles.
The Li peak is centered at ∼350 μs, whereas the Al peak sits at
∼370 μs. Partial TOF-peak separation between the H/D peaks
and the Li and Al recoil peaks was achieved over the whole
forward-scattering range, thus greatly facilitating subsequent
H/D and Li line-shape analysis for LiH/LiD, respectively. In
forward scattering, recoil peaks appeared on a flat featureless
background with no offset.

(vi) The kinematic condition ω(t) = h̄2q(θ,t)2

2M
does not allow

for single neutron-proton scattering events in backscattering.

As a consequence, TOF spectra in backscattering exhibited
two (three) recoil peaks for LiH (LiD). In this case, a broad
and relatively strong peak at shorter TOFs arises from D,
and two narrow peaks at longer TOFs come from Li and
Al. Unlike in forward scattering, the strong D peak remained
centered around 140 ± 10 μs at scattering angles in the range
130◦–170◦. Similar to forward scattering, the positions of the
Li and Al peaks in LiH/LiD TOF spectra remained essentially
constant over the whole range of backscattering angles. The
Li peak was centered at ∼280 μs, whereas the Al peak at
∼350 μs. Thus, suitable discrimination between the D, Li,
and Al recoil peaks was possible over the entire backscattering
detector bank. However, and unlike forward scattering, recoil
peaks appear on a nonuniform background, particularly around
the center of the D-recoil peak. Such a complicated baseline
could not be modeled with a low-degree polynomial, even in a
piecewise manner. To circumvent these difficulties, treatment
of the backscattering data required a different strategy. The
Li and Al peaks were isolated by cropping the LiH/LiD
TOF spectra over the range 200–400 μs and a line-shape
analysis was performed for both Li and Al assuming that both
peaks appear on a background described by a third-degree
polynomial. Analysis of D-recoil peaks in backscattering was
not attempted due to the dominance of the above-mentioned
backgrounds between 50 and 200 μs. Work is underway to
suppress these undesirable features from the NCS data.

(vii) Corrected TOF spectra containing multiple recoil
peaks were fitted directly in TOF using Eq. (22) to describe
the angle-dependent count rate Cθ (t) using a series of NCS
profiles JM (y) to describe the NCS response of each nuclide
of mass M . These JM (y) were expressed as a sum of the
IA limit and FSE contributions, JMIA and JMFSE , respectively.
For the forward-scattering TOF data, JMIA for H (D) in LiH
(D) are given by a Gram-Charlier expansion. For Li and Al,
JMIA are taken as Gaussian NCS profiles. For backscattering
TOF data, JMIA for Li was expressed as a Gram-Charlier
expansion, whereas JMIA for Al was assumed Gaussian. As
in previous NCS studies,8 the Gram-Charlier expansion was
truncated to second order via the inclusion of the coefficient c4

[see Eq. (7) and the discussion below]. FSE corrections JMFSE

were accounted for via the inclusion of terms proportional
to H3/q.47 In the spirit of Eq. (22), all NCS profiles were
convoluted with their respective mass-dependent resolution
functions RM .8

With the above protocol in mind, the following expression
was used to describe the count rate at a given detector:

C(θ = const,t) = A′ E0I [E0]

q

⎛
⎝JL(xL) ⊗ RL(xL)

+
∑

M =ML

JM (xM ) ⊗ RM (xM )

⎞
⎠ + B(t),

(23)

where

JL(xL) = exp
(−x2

L

)√
2πσ 2

L

(
1 + c4

32
H4(xL) − k

q
H3(xL)

)
(24)
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and L = (H,D) for forward scattering or L = Li for backscat-
tering. Furthermore,

JM (xM ) = exp
(−x2

M

)√
2πσ 2

M

(
1 − k

q
H3(xM )

)
(25)

with M = Li in forward scattering and M = Al in both
forward and backscattering. In these expressions, xi = (yi −
y0i)/(σi

√
2), where y0i is the shift of the position of the

maximum from the center of the recoil line and σi is the
STD of the momentum distribution for the ith mass. B(t) is
a TOF-dependent baseline modeled as a zeroth (third) degree
polynomial for forward (backscattering) data. As illustrated
below, all forward-scattering TOF data for LiH and LiD show
a certain degree of partial overlap between Li and Al signals. To
model the latter, a Gaussian NMD characterized by an STD
σAl = 13.39 Å−1 was assumed. This width was calculated
from the Debye temperature of the material, �Al = 390 K
(Ref. 48), and was kept fixed during all fitting sessions. For all
nuclei, the shifts y0M of the NCS profiles were also fixed to zero
throughout. Thus, there are at most three distinct parameters
characterizing each NMD, namely its second moment σ , the
expansion term k responsible for the magnitude of the FSEs,
and the Gram-Charlier term c4. This last parameter is related to
the excess kurtosis δ of the single-particle NMD by c4 = δ/3,
where δ = (μ4 − 3〈σ 2〉2)/〈σ 2〉2, with μ4 being the fourth
moment of the momentum distribution.49

Average values of σ , c4, and k were obtained by fitting
individual TOF spectra over selected detector ranges. Before
the calculation of averages across detector banks, outliers
other than those arising from noisy and/or faulty detectors
were rejected on the basis on the chi-square (χ2) test of
goodness-of-fit.50 For the present analysis of raw TOF data,
there are a total 1024 TOF data points between 50 and
561.5 μs, sampled every 0.5 μs. Rebinning of these data into
groups of five TOF bins yields around 200 data points for
subsequent data analysis. Given the small number of fitting
parameters relative to the total number of TOF data points,
the effective number of degrees of freedom ν thus remains at
∼200. The critical reduced χ2 value with a statistical level of
significance α = 0.05 and ν ∼ 200 is around 1.2. Thus, the
null hypothesis that data fits with reduced χ2 values greater
than 1.2 describe the TOF data well can be rejected with a
statistical confidence of 95% (two STDs). Similar criteria to
identify outliers from NCS data have been used and justified in
previous studies45 and form the basis of the PARMEAN routine
used in the present data analysis.51

To check for possible departures from HBOA predictions,
six different fitting sessions were performed for forward and
backscattering data. The fitting models are summarized in
Tables II and III. In all cases considered, the momentum
distribution of the lightest nucleus L, that is, L = H (D)
for LiH (LiD) forward-scattering data and L = Li for LiH
(LiD) backscattering data, respectively, was modeled by a
Gram-Charlier expansion. The momentum distributions of all
remaining nuclei M , where M = (Li,Al) in forward scattering
and M = Al in backscattering, were modeled as Gaussians for
both LiH and LiD.

The expansion terms kM accounting for FSEs in heavier
nuclei were constrained during fitting via the 3D-HO relation

TABLE II. Fitting models and associated parameters used to
describe NMDs in forward scattering. F is used to denote a free
fit parameter, whereas all other entries are either fixed or tied to
already defined quantities.

Model σH,D kH,D c4H,D σLi kLi c4Li σAl kAl c4Al

1 F 0 0 F σLi

√
2

12 0 13.39 σAl

√
2

12 0

2 F F 0 F σLi

√
2

12 0 13.39 σAl

√
2

12 0

3 F σH,D

√
2

12 F F σLi

√
2

12 0 13.39 σAl

√
2

12 0

4 F F F F σLi

√
2

12 0 13.39 σAl

√
2

12 0

5 F 0 F F σLi

√
2

12 0 13.39 σAl

√
2

12 0

6 F σH,D

√
2

12 0 F σLi

√
2

12 0 13.39 σAl

√
2

12 0

kM =
√

2
12 σM . As discussed in Sec. II, the choice of the

simple 3D-HO model to account for the magnitudes of FSEs
does not allow for a validation of more general phonon-
dispersion relations and VDOSs obtained from, e.g., ab initio
calculations. Such a choice of FSE model is justified by present
limitations in the experimental technique to probe the details
of the underlying NMD for heavier nuclei beyond their second
moment.

Notwithstanding the above, our NCS data for lighter nuclei
allow for a more quantitative assessment of more general
relations between kL and σL beyond the 3D-HO. To this
end, we have set both σL and kL as free-fit (unconstrained)
parameters and compared the results of these fits with the
corresponding ab initio predictions. In addition to the case of
an undetermined relation between σL and kL described above,
two additional possibilities were tested, namely values for kL

were either constrained in fitting by the relation kL =
√

2
12 σL

[cf. Eq. (16)], or fixed to zero. Due to a significantly lower
spectral resolution associated with the NCS response of the
heavier masses, the Gram-Charlier coefficients c4 for these
nuclei were set to zero, that is, the underlying NMDs were
assumed to be Gaussian. For the light nuclei, c4L

were either
free fit parameters or set to zero. In all cases, the width of the
NMD for Al was fixed to the Debye value σAl = 13.39 Å−1

and the NMD was assumed to be Gaussian.
Backgrounds were accounted for by adding a polyno-

mial baseline B(t) as described above [cf. Eq. (23)]. Due
to the presence of a smooth and flat background in the

TABLE III. Fitting models and associated parameters to describe
NMDs in backscattering. F is used to denote a free fit parameters,
whereas all other entries are either fixed or tied to already defined
free quantities.

Model σLi kLi c4Li σAl kAl c4Al

1 F 0 0 13.39 σAl

√
2

12 0

2 F F 0 13.39 σAl

√
2

12 0

3 F σLi

√
2

12 F 13.39 σAl

√
2

12 0

4 F F F 13.39 σAl

√
2

12 0

5 F 0 F 13.39 σAl

√
2

12 0

6 F σLi

√
2

12 0 13.39 σAl

√
2

12 0
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FIG. 2. (Color online) Representative LiH forward-scattering
TOF spectrum at an angle of 58◦ (detector S143). (a) Raw data with
γ -background correction shown in red; (b) data after γ -background
corrections, with calculated MS corrections shown in red.

forward-scattering TOF data, B(t) was fixed to zero. In
backscattering, the presence of a more complex background
led to the choice of a third-order polynomial to describe
B(t). This choice was made by progressively increasing the
polynomial degree of B(t) until no further improvement in χ2

values was observed.

IV. RESULTS

LiH forward-scattering spectra at an angle of 58◦ (detector
S143) are shown in Figs. 2 and 3. Figure 2 shows the TOF
data with γ background and MS corrections shown in red
[panels (a) and (b), respectively]. Figure 3 shows these data
after subtraction of the γ background and MS. The total fit
shown corresponds to model 4 (cf. Table II) using Eq. (23)
with NCS profiles described by Eqs. (24) and (25) for H and
(Li,Al), respectively. The entire spectrum containing the H,
Li, and Al recoil peaks is shown in panel (a). Panel (b) shows
an expanded view of the TOF spectrum around Li and Al.
The spectral response for LiH is clearly dominated by the
strong scattering from H in this material. Notwithstanding this
feature, it is still possible to discern contributions from heavier
species in these single-detector data.

Analogous LiD TOF spectra are shown in Figs. 4 and 5. In
both LiH and LiD, we observe a good degree of peak separation
in forward scattering. The H/D peaks centered at small TOFs
are essentially separated from the heavier-mass contributions
arising from the presence of Li and Al. Moreover, a good
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FIG. 3. (Color online) Representative LiH forward-scattering
TOF spectra recorded at an angle of 58◦ (S143). Panel (a) shows
the entire spectrum containing H, Li, and Al recoil peaks. Panel
(b) shows the region of the TOF spectrum containing Li and Al.
Individual contributions to the TOF spectrum from different masses
are shown by thick colored lines, namely red (H and total), green (Li),
and blue (Al). For further details, see the text.

degree of separation is also achieved between the recoil peak
of Li and the Al sample can. In and of itself, this result
demonstrates the ability of the NCS technique to perform
MANSE studies in forward scattering for nuclei with masses
greater than 4 amu.

Examples of LiH and LiD backscattering TOF spectra
at an angle of 161◦ (detector S133) are shown in Figs. 6
and 7, respectively. Panel (a) of Figs. 6 and 7 shows raw
data with MS contributions shown in red. Panel (b) in the
same figures shows the raw data after subtraction of MS
contributions and corresponding fits (model 4) using Eq. (23),
with Compton profiles described by Eqs. (24) and (25) for Li
and Al, respectively. Individual contributions from different
masses are shown by thick colored lines: green for Li, blue
for Al, and red for the total signal. In both cases, these data
show an excellent degree of mass separation for Li and Al in
backscattering geometry. This result further corroborates the
ability of the TOF technique to separate nuclei with m > 4
amu, as also shown by Seel et al.18 in recent MANSE studies
of Li and F in 7LiF using the same setup in backscattering.

In the fitting sessions associated with model 4 (cf. Tables II
and III), σ , k, and c4 for H and D were all free parameters
in forward scattering. The momentum distributions of Li and
Al were assumed to be Gaussian with the expansion terms
k responsible for the magnitude of the FSEs constrained
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FIG. 4. (Color online) Representative LiD forward-scattering
TOF spectrum at an angle of 58◦ (detector S143). (a) Raw data with
γ -background correction shown in red; (b) data after γ -background
corrections, with calculated MS corrections shown in red.

using the result obtained from the simple 3D-HO model,
kLi,Al =

√
2

12 σLi,Al. For the backscattering data, σLi, kLi, and c4Li

were also free fit parameters and the momentum distribution
of Al was assumed to be Gaussian with the expansion term
k constrained using the relation kAl =

√
2

12 σAl. In all cases, Al
widths were fixed to the Debye value σAl = 13.39 Å−1 as
detailed in Sec. III. Results for LiH forward scattering and
backscattering data are shown in Figs. 8 and 9. Analogous
results for LiD are presented in Figs. 10 and 11.

Our results using model 4 in both forward and backscat-
tering geometries not only provide a satisfactory description
of the experimental data, but they also yield values for σ and
c4 for H, D, and Li with no apparent angular dependence
within a statistical confidence band of two STDs (2-STD).
Moreover, c4 coefficients stay close to zero within this 2-
STD confidence band. As model 4 imposes no constraints
between fit parameters, it may be regarded as the most general
NMD of the set. In terms of an underlying physical model,
model 4 makes therefore no assumptions about harmonicity
or the underlying phonon-dispersion relations or VDOS for
these three light nuclides. Moreover, as fits are performed
sequentially one detector at a time, this model does not
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FIG. 5. (Color online) Representative LiD forward-scattering
TOF spectra recorded at an angle of 58◦ (S143). Panel (a) shows
the entire spectrum containing D, Li, and Al recoil peaks. Panel
(b) shows the region of the TOF spectrum containing Li and Al.
Individual contributions to the TOF spectrum from different masses
are shown by thick colored lines, namely red (D and total), green (Li),
and blue (Al). For further details, see the text.

constrain the fitted parameters obtained at different scattering
angles (and corresponding to different amounts of energy and
momentum transfers). Hence, model 4 allows in principle to
ascertain the presence of nonadiabatic effects, as these would
manifest themselves in terms of energy- and momentum-
transfer-dependent NMDs, i.e., the appearance of additional,
energy-shifted NMDs associated with the participation of
excited electronic states in the scattering process. In light
of the above remarks, the observed constancy in σ and
c4 values for H, D, and Li constitutes strong evidence for
the absence of statistically significant effects associated with
nonadiabatic dynamics over the whole range of forward and
backscattering angles in both LiH and LiD, regardless of the
degree of harmonicity or the specific details of the underlying
phonon-dispersion relations dictating the vibrational dynamics
of H, D, and Li in these two materials.

Due to its generality, model 4 can also be used to examine
possible departures from the Sears model of FSEs in the
context of the recent theoretical work Karlsson.11 Figures 8
and 9 (10 and 11) report results for H, D, and Li using model
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FIG. 6. (Color online) Representative LiH backscattering TOF
spectrum at an angle of 161◦ (detector S133). (a) Raw data with MS
contributions shown in red; (b) data after the subtraction of MS. See
text for further details.

4. Inspection of theses figures shows that although no trends are
visible for LiD in both forward and backscattering, a linearlike
trend for kH in LiH as a function of angle cannot be entirely
excluded. In this case, the values of k remain constant and
within 3D-HO values below 45◦, yet they appear to grow
in absolute magnitude with increasing scattering angle. The
absence of a similar behavior for D and Li in both forward and
backscattering would be in line with the established view that
FSEs are satisfactorily accounted for by the Sears expansion
for nuclei other than H.8 Moreover, whereas the fitted values
of k for D and Li stay within the value k =

√
2

12 σ , this behavior
does not seem to apply for H in LiH. As discussed in Sec. II, the
link between k and the NMD width σ is entirely dependent on
the underlying vibrational dynamics, and a simple analytical
relation between these two parameters is only known for an
Einstein solid, yet we stress that model 4 makes no underlying
assumption about correlations between these two physical
parameters. The quality of the present experimental data does
not allow us to be conclusive within comfortable levels of
statistical confidence (i.e., � 2-STD) and, therefore, we must
defer a more detailed assessment of these (quite weak) trends
to future investigations.

The above results are further corroborated by the sums of
unit-area-normalized LiH and LiD TOF spectra measured by
individual detectors in forward and backscattering, as well
as by a comparison of this figure of merit with the sum of
fitted curves representing unit-area-normalized expressions for
C(θ = const,t), i.e.,

∑N
i=1

C(θi=const,t)∫
C(θi=const,t)dt

(cf. Figs. 12 and 13).
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FIG. 7. (Color online) Representative LiD backscattering TOF
spectrum at an angle of 161◦ (detector S133). (a) Raw data with
the multiple scattering contribution shown in red; (b) data after the
subtraction of the multiple scattering contribution. See text for further
details.
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The summation range for this quantity corresponds to a
selection of detectors after exclusion of outliers and faulty
detectors as described in Sec. III.

As shown in Figs. 12 and 13, the agreement between
experimental data and associated fits of unit-normalized sums
for LiH and LiD TOF spectra is very good both in forward
and backscattering and within a 1-STD confidence band on
individual count rates. These summed TOF data contain broad
distributions from H (D) in LiH (LiD). This feature arises from
purely kinematic considerations defining the center of NCS
profiles, with H and D peaks appearing over a broad range
of TOFs at different scattering angles θ . In backscattering
[cf. Figs. 12(b) and 13(b)], such a dependence of recoil-peak
TOF positions as a function of θ is far less pronounced. This
situation offers the possibility of clean isolation of summed
NCS data representing individual recoil peaks for m > 1 amu,
as previously explored by the MANSE studies of Seel et al.
in backscattering.18 In addition, our results show that a similar
strategy is also possible in forward scattering, as the sums
of unit-normalized TOF data are resolved well enough to
be unique functions of the underlying individual NMDs.
This feature is further demonstrated in Figs. 12(a) and 13(a)
showing the presence of distinct shoulders and subsidiary
maxima in the H and D recoil spectra, as well as a reasonable
degree of separation of Li and Al. It is also important to
note that the insights brought forward by the analysis of
these summed data are of direct relevance to the possibility
of significant enhancements in effective count rates in NCS
studies. With the present experimental setup on VESUVIO,
these gains can be greater than two orders of magnitude,
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FIG. 12. (Color online) Sum of unit-area-normalized LiH TOF
spectra (black symbols) in forward (a) and backscattering (b)
compared with the sum of unit-area-normalized individual fits (black
line). Individual mass contributions are shown as colored solid lines:
red for H, green for Li, and blue for Al.

provided that the resulting NCS line shape is still sensitive
to the spectral moments of the underlying NMD. Whereas the
viability of this approach is quite clear for backscattering data,
further work is required to assess its range of applicability in
the forward-scattering direction. To this end, one possibility
may involve increasing recoil-peak visibility by focusing
specific sets of forward-scattering detectors to yield the best
possible peak separation, i.e., in the angular range between
55◦ and 65◦. The other possibility would be the use of
summed and normalized foil-in spectra. Here the gain would
be twofold, first from a sheer signal-to-noise gain obtained
by avoiding the need to perform foil-in/foil-out differencing,
and, secondly, from a significant reduction in data-acquisition
times.
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FIG. 13. (Color online) Sum of unit-area-normalized LiD TOF
spectra (black symbols) in forward scattering (a) and backscattering
(b) compared with the sum of unit-area-normalized individual fits
(black line). Individual mass contributions are shown as colored solid
lines: red for D, green for Li, and blue for Al.

The results of four separate fitting sessions to describe
forward and backscattering data using the models shown in
Tables II and III for LiH (LiD) are summarized in Tables IV
and V (Tables VI and VII). With these results, it becomes
possible to assess the physical validity of these models as well
as possible departures from the HBOA and IA in the NCS
data. Toward that end, we take the reduced 〈χ2〉 of these fits
as our primary figure of merit, along with a consideration
of the minimal set of assumptions necessary to describe the
experimental data. The values of the reduced 〈χ2〉 listed
in Tables IV and V (Tables VI and VII) were obtained
from a selected range of spectra recorded in forward and
backscattering after removal of faulty detectors and outliers
as described in Sec. III B. Average values and associated

TABLE IV. Best-fit parameters for LiH forward-scattering data using the models described in Table II. Asterisks denote fixed parameters.

Model σH kH c4H σLi kLi c4Li σAl kAl c4Al 〈χ 2〉

1 3.5 ± 0.1 0* 0* 6.9 ± 0.3 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.19 ± 0.05

2 3.5 ± 0.1 −1.1 ± 0.8 0* 6.9 ± 0.3 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.15 ± 0.04

3 3.4 ± 0.1 σH

√
2

12 −0.12 ± 0.06 7.1 ± 0.5 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.21 ± 0.03

4 3.4 ± 0.1 −1.1 ± 0.9 −0.13 ± 0.04 7.0 ± 0.4 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.21 ± 0.03

5 3.4 ± 0.1 0* −0.11 ± 0.06 7.0 ± 0.4 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.22 ± 0.03

6 3.5 ± 0.1 σH

√
2

12 0* 7.0 ± 0.4 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.14 ± 0.03
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TABLE V. Best-fit parameters for LiH backscattering data using the models described in Table III. Asterisks denote fixed parameters.

Model σLi kLi c4Li σAl kAl c4Al 〈χ 2〉

1 9.0 ± 2.1 0* 0* 13.39 σAl

√
2

12 0* 1.14 ± 0.14

2 9.0 ± 2.1 0.13 ± 3.3 0* 13.39 σAl

√
2

12 0* 1.15 ± 0.15

3 11.0 ± 1.4 σLi

√
2

12 0.5 ± 0.8 13.39 σAl

√
2

12 0* 1.21 ± 0.15

4 9.2 ± 2.1 −0.6 ± 4.3 0.5 ± 0.7 13.39 σAl

√
2

12 0* 1.22 ± 0.16

5 11.0 ± 1.3 0* 0.5 ± 0.7 13.39 σAl

√
2

12 0* 1.21 ± 0.15

6 9.0 ± 2.2 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.15 ± 0.14

STDs from the mean were calculated from selected groups
of reduced 〈χ2〉 values. In forward scattering, average 〈χ2〉
values are in the range 1.11–1.22, with associated STDs of
0.03–0.05 for LiH and 0.15–0.16 for LiD. In backscattering,
average 〈χ2〉 values for LiH lie in the range 1.14–1.33, with
STDs of 0.14–0.16 for LiH, whereas LiD gives 0.93–0.96
with STDs around 0.17. Within the reported uncertainties, it is
important to note that these 〈χ2〉 values are indistinguishable
from each other in both LiH and LiD, a strong indicator of the
equivalence of all six models within the statistical accuracy of
the NCS measurements. Furthermore, we note that NCS widths
σ show a consistent degree of insensitivity to the inclusion of
higher-order terms in our description of the NMDs. This result
suggests that this parameter is particularly robust and largely
independent of the underlying physical model used to describe
NMDs in both LiH and LiD.

To compare in more detail the results obtained across all
four fitting sessions, we make recourse to Ockham’s razor. In
this spirit, the best description of the underlying NMDs is given
by the model involving the smallest number of independent
fitting parameters and with 〈χ2〉 sufficiently close to unity.
This exercise provides an exhaustive and hitherto unattempted
analysis of the sensitivity of the measured TOF data to the
width of the NMDs, as well as to the inclusion of higher-order
corrections. On the basis of these considerations, model 6
constitutes the simplest one of the set, as it describes a Gaussian
momentum distribution (c4 = 0) and FSEs compliant with
the 3D-HO model (kM = σM

√
2

12 ) for all nuclei. Moreover,
model 6 gives σH = 3.5 ± 0.1 Å−1 and σLi = 7.0 ± 0.4 Å−1

in forward scattering, in excellent agreement with previous
ab initio calculations (σH = 3.57 Å−1 and σLi = 7.14 Å−1).2

For LiD, the same model gives σD = 4.4 ± 0.1 Å−1 and σLi =
7.2 ± 0.9 Å−1 in forward scattering. These values are within
one STD from ab initio predictions, namely σD = 4.43 Å−1

and σLi = 7.15 Å−1. Although considerably less accurate, the
widths of the Li momentum distributions in backscattering are
also consistent with the above results, with values for σLi of
9.0 ± 2.2 and 7.0 ± 0.8 Å−1 for LiH and LiD, respectively.

Our results and accompanying analysis indicate that both
the HBOA and the Sears model to account for FSEs are
sufficient to describe our experimental data. Any deviations
from the IA beyond Sears predictions are sensibly below
present instrumental capabilities. Moreover, NMDs of H, D,
and Li in LiH and LiD are adequately described via the use of
Gaussian NCS profiles J (y), thus also confirming the validity
of the GA to describe our experimental NCS data.

V. DISCUSSION

In previously reported first-principles calculations,2 the
NMD second moment σ as well as the Laplacian of the
effective Born-Oppenheimer potential � were calculated
quantum mechanically based on a PW-DFT approach for
optimized cubic LiH and LiD crystal cells. The GGA-PBE
functional52 was used in these calculations, and NCS observ-
ables were calculated within a strictly harmonic description
of all nuclear motions. These ab initio results for cubic
LiH agreed very well with proton kinetic energies obtained
from past NCS and INS experiments at 20 and 300 K.3,5

The ab initio value of σH = 3.57 Å−1 at T = 300 K was
only ∼2% larger than 3.49 ± 0.05 Å−1, corresponding to the
isotropic average obtained from previous NCS measurements
at the same temperature.4,5 Moreover, ab initio predictions at
T = 20 K (σH = 3.49 Å−1) fell between previously reported
experimental values, namely 3.44 Å−1 (NCS measurements)4

and 3.59 Å−1 (INS measurements).5 Also, ab initio values for
the isotropically averaged � in LiH agreed well with those
obtained in NCS and INS experiments assuming an isotropic

TABLE VI. Best-fit parameters for LiD forward-scattering data using the models described in Table II. Asterisks denote fixed parameters.

Model σD kD c4D σLi kLi c4Li σAl kAl c4Al 〈χ 2〉

1 4.4 ± 0.1 0* 0* 7.0 ± 1.0 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.17 ± 0.14

2 4.4 ± 0.1 0.1 ± 0.4 0* 7.0 ± 1.0 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.16 ± 0.14

3 4.4 ± 0.4 σD

√
2

12 −0.02 ± 0.2 7.2 ± 1.0 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.27 ± 0.15

4 4.8 ± 0.9 −0.1 ± 0.4 0.2 ± 0.4 7.0 ± 1.1 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.33 ± 0.14

5 4.8 ± 0.8 0* 0.2 ± 0.4 7.1 ± 1.1 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.25 ± 0.15

6 4.4 ± 0.1 σD

√
2

12 0* 7.2 ± 0.9 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 1.18 ± 0.15
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TABLE VII. Best-fit parameters for LiD backscattering data using the models described in Table III. Asterisks denote fixed parameters.

Model σLi kLi c4Li σAl kAl c4Al 〈χ 2〉

1 7.0 ± 0.8 0* 0* 13.39 σAl

√
2

12 0* 0.94 ± 0.17

2 7.1 ± 0.9 0.6 ± 1.8 0* 13.39 σAl

√
2

12 0* 0.94 ± 0.17

3 7.2 ± 1.5 σLi

√
2

12 0.0 ± 0.6 13.39 σAl

√
2

12 0* 0.99 ± 0.14

4 7.2 ± 1.5 0.4 ± 2.2 0.4 ± 0.7 13.39 σAl

√
2

12 0* 0.99 ± 0.14

5 7.5 ± 1.5 0* 0.1 ± 0.6 13.39 σAl

√
2

12 0* 0.99 ± 0.14

6 7.0 ± 0.8 σLi

√
2

12 0* 13.39 σAl

√
2

12 0* 0.93 ± 0.17

3D-HO model. A theoretical value of � = 7622 meV Å−2 for
H in LiH was also intermediate between experimental values
of 6968 and 8265,4,5 and only 3% above NCS experiments at
300 K.4 On the whole, no evidence was found for the postulated
broadening of the H NMD in solid LiH originating from a
breakdown of the Born-Oppenheimer approximation.26,53,54

In and of itself, comparison of previous experimental data3,5

with these theoretical predictions2 served to demonstrate
the possibility of using the NCS technique for the reliable
measurement of NMDs beyond H and D.

The NCS experiments mentioned above were performed
using a previous detector configuration of the VESUVIO
spectrometer.4,5 Since then, the overall resolution of the NCS
method has been greatly improved on VESUVIO.32 These
recent developments should allow, in principle, access to finer
changes in line shape and/or shifts in recoil features than
previously accessible, as well as the possibility of testing more
subtle effects associated with nonadiabatic effects in quantum
nuclear dynamics.26,53,54 These improvements in accuracy and
resolution in backscattering geometry have already enabled
MANSE studies for moderate-mass systems such as 7LiF,18

yet parallel efforts exploiting neutron detection in both forward
and backscattering directions have not been attempted prior to
the present work. The results presented here for H, D, and Li
demonstrate the feasibility of the approach.

Guided by Ockham’s razor, we have also carried out a
detailed analysis so as to select the most appropriate model for
the underlying NMDs. From this analysis, we conclude that
the GA provides a satisfactory description of NMDs and that
possible higher-order effects are sufficiently small such that
their overall influence on the estimation of second moments
σ for H, D, and Li is practically negligible in both LiH and
LiD. Moreover, our analysis of the experimental data gives
values of σ and k which are fully consistent with ab initio
HBOA predictions,2 as well as with the absence of detectable
nonadiabatic effects in the NCS response of these fcc solids.
Conversely, the fact that the above ab initio predictions of the
VDOSs and phonon-dispersion relations lead to isotropic σ

and k values further reinforces the notion that the underlying
NMDs for H, D, and Li in LiH and LiD are well accounted for
within the GA.

Notwithstanding the above, the apparent absence of de-
partures from the Born-Oppenheimer approximation in our
NCS experiments does not necessarily imply that other (and
equally interesting) effects could not be verified using the
current incarnation of the NCS spectrometer VESUVIO. One
of these, as recently postulated by Karlsson,11 relates to the

elastic slowing-down of recoiling H and D during the scattering
process, as described by the Watson scattering time.7 For the
case of diatoms, Karlsson presents an alternative treatment of
FSEs leading to quantitative results that differ from those of the
standard (and widely used) treatment of Sears.13,14 In essence,
there are two main differences between these two approaches,
namely (i) the skewness of the NMD scales differently from
Sears predictions, as it becomes proportional to the expectation
value of �, as well as inversely proportional to the magnitude
of neutron-momentum transfer; and (ii) the resulting NMDs
show quantitative differences compared to the Sears result
in the high-energy tail of the NCS profiles. In simple terms,
the arguments put forth by Karlsson are predicated on the
assumption that at very short (albeit finite) scattering times,
different sets of vibrational levels are accessed by the recoiling
nucleus during a given NCS event. Thus, different values of the
neutron-momentum transfer translate into a different extent
of averaging over vibrational levels, naturally leading to an
overall non-Gaussian NMD. In the IA limit, we recall that
the standard treatment by Sears would predict a Gaussian line
shape. Such a nonuniform averaging is specially pronounced
for diatomic molecules such as H2 and D2, as their vibrational
levels are far apart, thereby precluding vibrational excitation at
low scattering angles. LiH (LiD) vibrational-stretch motions
are approximately four times slower than in H2 (D2), and in this
regime our results conform with the expectations of the Sears
treatment of the NCS process. Specifically, the magnitude of
FSE contributions remains constant with increasing scattering
angle for all three nuclei under consideration. In the spirit
of the approach by Karlsson, and considering that the LiH
molecule can be treated as a fixed target, excitation to the
lowest vibrational state takes place at a momentum transfer
of ∼9 Å−1, a value sensibly smaller than in the case of
H2 (∼16 Å−1). These differences in momentum transfer
imply that the elastic slowing-down of the recoiling H and
D nuclei in LiH and LiD will be less pronounced than in
the case of the lighter H2 or D2, thus leading to NMDs
much closer to the IA limit at smaller forward-scattering
angles.

On the whole, our experimental results and accompanying
data analysis yield no apparent departures from Sears scaling
due to the elastic-slowing-down mechanism postulated by
Karlsson, effects which would manifest themselves as extra
scattering intensity in the high-energy tails of the NCS
profile compared to the (purely symmetrical) IA result. This
conclusion is further corroborated by the absence of FSEs
or higher-order terms in the Gram-Charlier expansion for the
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NMDs of H, D, and Li beyond those expected within the GA
and ab initio HBOA predictions.

VI. OUTLOOK

We have reported NCS measurements for solid LiH and
LiD. With the present experimental setup, we demonstrate the
ability to perform detailed and simultaneous MANSE studies
on H, D, and Li in forward and backscattering geometries.
Moreover, our strategy allowed for an assessment of deviations
from ab initio HBOA predictions and the IA. The measured
widths of H, D, and Li NMDs in solid LiH and LiD are in very
good agreement with previously reported ab initio calculations
within the HBOA. This result further demonstrates the validity
of these approximations for first-principles predictions of NCS
observables. LiH and LiD have also been tested for the exis-
tence of elastic-slowing-down effects as recently postulated by
Karlsson. On the whole, our analysis yields no departures from
Sears scaling within experimental uncertainties, a conclusion
which is reinforced by the observed magnitudes of FSEs
as well as their compliance with the HBOA. Our extensive
experimental results also confirm an upper bound of a few
% for the effects of nonadiabatic dynamics on the second

moment σ and Laplacian � of the underlying NMDs, in agree-
ment with previous theoretical and experimental studies of
these systems.

Heavier nuclei characterized by m > 4 amu remain a
challenge to NCS techniques, and much work still remains
to be done in order to provide access to the fine details of these
NMDs relative to what is possible at present with either H or D.
In the case of Li, the present work has shown that such a task is
possible in both forward and backscattering geometries. The
latter case could greatly benefit from further improvements
in DD techniques for final-energy selection. In addition to
a sheer increase in incident neutron flux, implementation of
detector-focusing techniques also offers the exciting prospects
of order-of-magnitude gains in effective count rates, thereby
paving the way for routine MANSE investigations of complex
materials as well as detailed parametric studies as a function
of external stimuli.
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