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Irreversible thermodynamics of creep in crystalline solids
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We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline
solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material
undergoing the creep deformation is treated as a nonhydrostatically stressed multicomponent solid medium with
nonconserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields
describe microstructure evolution, which gives rise to redistribution of vacancy sinks and sources in the material
during the creep process. We derive a general expression for the entropy production rate and use it to identify
of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into
account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a
bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model
describe a creep deformation process accompanied by grain boundary migration and relative rigid translations
of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration
gradient across the boundary.
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I. INTRODUCTION

When subject to a high homologous temperature and a
sustained mechanical load below the yield strength, many
materials exhibit a slow time-dependent plastic deformation
called creep. This mode of deformation has been observed
in different classes of materials ranging from metals and
alloys to ceramics, polymers, and ice. While several creep
deformation mechanisms have been proposed over the years,
we will focus in this work on mechanisms that require creation
and annihilation of lattice sites.1 Such mechanisms include so-
called diffusional creep in which the deformation is mediated
by vacancy diffusion through the lattice (Nabarro-Herring
creep)2,3 or along grain boundaries (GBs) (Coble creep),4,5

as well as creep by dislocation climb. A number of other
mechanisms that do not necessarily involve site creation and
annihilation, such as the thermally activated dislocation glide,
will not be considered here.

Most of the models of creep developed so far have
an ad hoc character: they are obtained by postulating a
particular mechanism and assuming a constitutive relation
between the creep deformation rate and a chosen driving
force. The development of a general and rigorous theory
of creep deformation requires at least the following three
components: (i) a thermodynamic model of a mechanically
stressed crystalline solid with nonconserved lattice sites, (ii) a
model of microstructure evolution that includes redistribution
of vacancy sinks and sources and the motion of interfaces
separating different phases and/or grains, and (iii) a set of
kinetic equations derived from the entropy production rate6

and identification of the appropriate set of fluxes (including
the creep deformation rate) and the conjugate driving forces.
To our knowledge, a theory comprising all three components
has not been developed to date.

Several theories involving one or two of the above compo-
nents can be found in the literature. Svoboda et al.7,8 proposed

a creep model for multicomponent alloys with a continuous
distribution of vacancy sinks and sources. By contrast to
previous work, their kinetic equations have not been simply
postulated but rather derived from the maximum dissipation
principle. The authors identified and clearly separated two
components of the creep deformation tensor, the volume
dilation/contraction and the shear, and correctly established
their decoupled character. However, their thermodynamic
treatment of solid solutions is based on certain assumptions
and approximations that are not always justified. For example,
they use the Gibbs-Duhem equation, which is valid only
for hydrostatically stressed systems and introduce so-called
“generalized” chemical potentials, which include only the
hydrostatic part of the stress tensor σ [see, e.g., Sekerka and
Cahn9 for criticism of using only the hydrostatic part of σ

(“solid pressure”) in solid-state thermodynamics]. In view of
the nonuniqueness of chemical potentials of substitutional
components in nonhydrostatic solids9–15 and the fact that
the Gibbs free energy is no longer a useful thermodynamic
potential, development of thermodynamic models of stressed
solids should start from the first and second laws in the
energy-entropy representation16 and proceed with extreme
care.

As such, a very general and rigorous thermodynamic
treatment of multicomponent solids was developed by Larché
and Cahn10–12 as an extension of Gibbs’ thermodynamics16

to nonhydrostatic solid systems. Although their analysis is
valid for stressed solids with any number of substitutional and
interstitial components, it relies on the assumption that the
lattice sites are conserved. The lattice conservation imposes the
so-called “network constraint,” which penetrates through all
thermodynamic equations. It is assumed that lattice sites can be
created or destroyed only at defects such as surfaces, interfaces,
and dislocation cores. Such defective regions are excluded
from the direct thermodynamic treatment and only enter the
theory through boundary conditions. Thus the question of
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how the vacancy sinks and sources operate is essentially
left beyond the theory. Mullins and Sekerka13 proposed a
similar theory for multicomponent crystalline solids with
a more general treatment of point defects based on the
concepts of extended variable sets. Their theory assumes
the conservation of lattice unit cells, which is similar to
the “network constraint.” Both Larché and Cahn10–12 and
Mullins and Sekerka13 analyzed equilibrium states of the
solid and did not study the irreversible thermodynamics
of creep deformation. (In Sec. 8.5, Larché and Cahn12 do
discuss some creep problems, but they treat creep through
boundary conditions with perfect site conservation inside the
lattice.)

Furthermore, these thermodynamic theories of solids10–13

are purely “classical” in which all thermodynamic properties
depend only on local thermodynamic densities16 but not their
gradients. Accordingly, transition regions between different
phases are treated as geometric surfaces of discontinuity16

endowed with certain postulated properties, such as the
ability (or inability) to support shear stresses or the capacity
(or lack thereof) to generate or absorb vacancies. Existing
creep models7,8 are also classical and thus incapable of
describing the microstructure evolution as part of the creep
process.

On the other hand, there are nonclassical (by nonclas-
sical, we do not mean to imply that quantum mechanics
is used in the present paper) models of multicomponent
fluid systems in which interfaces between phases are treated
via the gradient thermodynamics approach17–20 also called
the phase-field method (see, e.g., Ref. 21 and references
therein). The fluid theories include rigorous derivations of
the entropy production rate for the simultaneous processes
of phase-field evolution, heat conduction, diffusion, and con-
vective flows accompanied by viscous dissipation. However,
extensions of such theories to solid materials are presently
lacking. The existing phase-field models of creep in solids22

describe creep deformation through a set of phase fields
related to dislocations in specific slip systems. Such theories
reproduce creep-controlled structural evolution in multiphase
materials without explicitly treating vacancies or the lattice.
We should also mention the recently developed phase-field
formulations involving large deformations,23–28 which do
not treat creep deformation per se but provide a useful
formalism, some of which could be incorporated in creep
theories.

The goal of this paper is to develop a general irreversible
thermodynamics framework for the description of creep
deformation in solid materials by mechanisms involving
site generation and annihilation and vacancy diffusion. The
proposed theory includes all three components (i)–(iii) men-
tioned above. It can be viewed as a generalization of the
nonclassical fluid theories21 to solid materials. Alternatively,
it can be considered as a generalization of classical solid-state
thermodynamics10–13 to nonclassical, nonequilibrium solid
systems with a nonconserved lattice.

In Secs. II and III, we introduce the kinematic description
of creep deformation and the balance relations that will be
used in the rest of the paper. Section IV presents a ther-
modynamic treatment of a nonclassical, nonhydrostatically
stressed multicomponent solid phase. We derive gradient

and time-dependent forms of the first and second laws for
reversible thermodynamic processes in such a solid, along
with a generalized form of the Gibbs-Duhem equation. Before
proceeding to irreversible thermodynamics, we derive the
conditions of full and constrained thermodynamic equilibria
in the solid. These conditions constitute a generalization of
Larché and Cahn10–12 to nonclassical solids with continuously
distributed nonconserved sites. The entropy production rate
derived in Sec. VI serves as the starting point for the identi-
fication of the relevant fluxes and forces and formulation of
phenomenological relations between them. We emphasize the
importance of symmetry properties of the material, formulate
a set of phenomenological relations for isotropic materials,
and outline possible extensions to lower-symmetry systems
by analyzing the tensor character of the fluxes and forces.
The volume and shear components of the creep deformation
rate7,8 emerge naturally from this analysis and are shown to
be coupled to different driving forces. To provide a simple
illustration of how the theory can be applied, we present a
one-dimensional model of a bicrystal with a grain boundary
(GB) acting as a sink and source of vacancies (Sec. VII).
In the presence of vacancy oversaturation or under an applied
tensile stress, the kinetic equations describe creep deformation
of the sample accompanied by GB migration and relative rigid
translations of the grains. In Sec. VIII, we summarize the work
and draw conclusions.

II. MASS AND SITE CONSERVATION LAWS AND
KINEMATICS OF DEFORMATION

We consider a crystalline solid composed of n substitutional
chemical species labeled i. The solid contains vacancies but
not interstitials, although this theory can be generalized to
incorporate interstitials. We assume that there are no chemical
reactions among the species i. The crystalline structure is
assumed to have a Bravais lattice, i.e., primitive lattice with
a single basis site. The solid is subject to external potential
forces such as gravitational or electric (when the particles are
electrically charged as in ionic solids).

We start by formulating mass and particle conservation
conditions satisfied by our system. Some of them are specific
to a solid solution while others are equally valid for liquids
or gases. The substitutional lattice sites, referred to below
as simply sites, are generally not conserved. It is assumed,
however, that we can still define a lattice velocity field
vL(x,t). To this end, we assume that the solid contains an
imaginary network of sites which, on the time scale of our
observations, are not destroyed by the creep process. These
indestructible lattice sites will be called “markers.” (The term
“marker” may sound somewhat confusing because of the
association with the Kirkendall experiment29 in which the
markers were inert foreign objects intentionally embedded
in the lattice. In our case, the imaginary marker sites are
physically identical to other sites except for our knowledge
that they will “survive” the lattice site creation and annihilation
during the creep deformation process on a chosen time scale.)
The lattice velocity vL(x,t), also referred to as the total lattice
velocity, is defined as the velocity of a marker occupying the
location x (relative to a fixed laboratory coordinate system)
at a time t . We assume that the network of markers is
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dense enough to treat vL(x,t) as a continuous function of
coordinates.

The number density ns(x,t) of the lattice sites per unit
volume satisfies the balance equation30

∂ns

∂t
+ ∇ · (nsvL) = rs, (1)

where rs(x,t) is the site generation rate (number of sites per
unit volume per unit time). The sign of rs is positive for site
generation and negative for annihilation.1 This equation can
be rewritten as

dLns

dt
+ ns∇ · vL = rs, (2)

where the lattice material time derivative dL/dt is defined by

dL

dt
≡ ∂

∂t
+ vL·∇. (3)

The number density ni of each material species i obeys the
particle conservation law

∂ni

∂t
+ ∇ · (nivL + JL

i

) = 0, (4)

or

dLni

dt
+ ni∇ · vL + ∇ · JL

i = 0, (5)

where JL
i ≡ ni(vi − vL) is the diffusion flux of species i

relative to the lattice and vi is its observed velocity relative
to the laboratory.

Since the markers are conserved during the deformation
process, they can be used to define a deformation mapping
x = x(x′,t) with respect to a chosen reference state, x′, of the
material (see Fig. 1). This mapping defines the shape (or total)

x

y

x’

y’

F

F
~

Reference state Deformed state

FIG. 1. (Color online) Dual-scale deformation of a solid material
with site creation and annihilation. The marker sites (filled circles)
and regular lattice sites (open circles) are connected by dashed
lines to facilitate their tracking during the deformation. The shape
deformation gradient F is defined by the motion of the markers,
whereas the local lattice deformation gradient F̃ is defined by mapping
of lattice sites in the vicinity of markers. Note that the deformation
of the network of markers is different from the local lattice
distortion.

deformation gradient31

F ≡
(

∂x
∂x′

)
t

(6)

and is related to the total lattice velocity (i.e., the velocity of
the marker network) by

vL =
(

∂x
∂t

)
x′

. (7)

If the material is crystalline, then besides F we can also
define another lattice deformation gradient F̃.32 To do so, we
assume that for any lattice site we can identify instantaneous
directions of the crystallographic axes in its vicinity. This
allows us to establish a local mapping between lattice vectors,
y and y′, in the current and reference states, respectively (see
Fig. 1). (The lattice vector mapping can break down in core
regions of lattice defects. It is assumed that such regions
comprise a negligibly small fraction of the material and do not
occur in the neighborhood of the markers.) The deformation
gradient defined by

F̃ ≡
(

∂y
∂y′

)
x′,t

(8)

represents local lattice distortions in the vicinity of a marker
site x′. It should be emphasized that this definition of F̃ does
not imply conservation of sites in the vicinity of the marker.
With time, some of the sites may disappear, but their locations
are then filled by other sites resulting in a self-reproduced
local crystalline structure. This structure can be identified at
any instant by examining the current atomic positions around
the marker and establishing their mapping on the reference
crystal structure. Since F̃ is defined in a small vicinity of
every marker site x′, we assume that it is independent of
y′ and is a continuous function of x′, i.e., F̃ = F̃(x′,t). (The
ability to describe lattice deformations by a single deformation
gradient F̃ relies on the assumption of a Bravais lattice of
the crystal structure. Non-Bravais structures would require
additional variables describing internal strains of the unit
cell.)

Generally, F and F̃ are two different tensors. In particular,
the derivative

ṽL ≡
(

∂y
∂t

)
x′,y′

(9)

defines the local lattice velocity ṽL due to elastic deformation,
thermal expansion, and compositional strains. This velocity
is generally different from the marker network velocity vL.
The latter incorporates the same deformation effects as ṽL but
additionally includes the permanent deformation due to site
generation and annihilation.

Thus we introduce two different deformation gradients
between the same pair of deformed and reference states of
the material: the shape deformation gradient F defined by
the marker-to-marker mapping, and the lattice deformation
gradient F̃ defined by local lattice mapping in the vicinity
of every marker. The lattice site generation and annihilation
during the creep process produces permanent deformation
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leading to deviations of F from F̃. Experimentally, information
about F̃ could be obtained by x-ray diffraction measurements
whereas F could be simultaneously measured by dilatome-
try. This type of measurement was used by Simmons and
Balluffi33,34 to determine the equilibrium vacancy concen-
tration in metals. This approach continues to be a powerful
experimental tool for studying point-defect properties.35 This
dual description of deformation is central to our theory and will
be employed for the calculations of the entropy production rate
in the material and other kinetic characteristics of diffusional
creep.

There is an important kinematic relation between the
two velocities vL and ṽL, on one hand, and the lattice
site production rate rs on the other. To derive it, return to
the site balance (2). This equation can be rewritten in the
form

dLns

dt
≡

(
∂ns

∂t

)
x′

= rs − ns∇x · vL. (10)

On the other hand, the site density can be expressed as

ns = n′
s

G̃
, (11)

where G̃ ≡ det F̃ and n′
s is the lattice site density in the

reference state, assumed to be a constant. Using the Jacobi
identity31 it can be shown that

dLG̃

dt
≡

(
∂G̃

∂t

)
x′

= G̃∇y · ṽL, (12)

where we used the local lattice mapping y = y(y′,x′,t) con-
sidering the marker position x′ as a parameter. Applying this
relation to Eq. (11), we have

dLns

dt
≡

(
∂ns

∂t

)
x′

= n′
s

[
∂(1/G̃)

∂t

]
x′

= −ns∇y · ṽL. (13)

There is a subtle difference between Eqs. (10) and (13). In
Eq. (10), ns is the coarse-grained site density averaged over a
volume containing a group of neighboring markers, whereas
in Eq. (13), ns is a more detailed function of coordinates
near a particular marker x′. Assuming that ns is a slowly
varying function of coordinates on the scale of intermarker
distances, we treat both densities as equal and their time
derivatives in Eqs. (10) and (13) as identical. This immediately
gives

∇ · vL − ∇ · ṽL = rs

ns

. (14)

We dropped the subscripts of the divergence symbols, but it
should be remembered that the divergence of ṽL is taken locally
whereas the divergence of vL is coarse-grained over a volume
containing multiple markers.

Equation (14) reflects the fact that the site generation
causes deviations of the total velocity divergence ∇ · vL

from the local velocity divergence ∇ · ṽL arising solely
from lattice distortions. In the absence of site generation,
the two velocity fields are identical and Eq. (14) correctly

predicts rs = 0. We will show later that rs is the trace of
a more general tensor representing a more complete view
of the permanent deformation caused by site generation and
annihilation.

III. BALANCE EQUATIONS

In this section, we summarize the momentum, energy and
entropy balance relations that will be used in this work and
discuss the assumptions and approximations underlying these
relations.

A. Momentum balance

For our multicomponent system, it is necessary to derive
a consistent momentum balance equation. The standard
momentum equation for a single component solid, such as
treated by Malvern,31 is no longer applicable because of the
momentum carried by multicomponent diffusion. As shown in
Appendix A, the correct momentum equation is

∂

∂t
(ρv) + ∇ ·

(
n∑

i=1

minivivi

)
= b + ∇ · σ , (15)

where v is the barycentric velocity, ρ is the material density
(mass per unit volume), b = ∑n

i=1 nibi is the external force
per unit volume, and ∇ · σ is the force exerted by the stress σ

per unit volume of the material. We assume that the external
fields are conservative, so that the force per particle is

bi = −∇ψi, (16)

where ψi are species-specific potential functions.
Equation (15) can be rewritten with respect to the lattice

(see Appendix A):

ρ
dLvL

dt
= b + ∇ · (σ − M) − dLq

dt
− q∇ · vL − q · ∇vL,

(17)

where tensor M is given by

M ≡
n∑

i=1

mi

ni

JL
i JL

i (18)

and vector

q ≡
n∑

i=1

miJL
i = ρ (v − vL) (19)

is the momentum density carried by the local center of mass
relative to the lattice. Here, mi is the mass of particles of
species i. The derivative dLq/dt is the inertia force, which
arises due to the fact that the lattice and barycentric references
are both noninertial.

B. Energy balance

The total energy e of the material per unit volume can be
expressed as

e = K + ψ + u, (20)

184303-4



IRREVERSIBLE THERMODYNAMICS OF CREEP IN . . . PHYSICAL REVIEW B 88, 184303 (2013)

where

K = 1

2

n∑
i=1

mini |vi |2 (21)

is the macroscopic kinetic energy of the particles per unit
deformed volume,

ψ ≡
n∑

i=1

niψi (22)

is potential energy in external fields per unit volume, and
the remaining term u is identified with internal energy per
unit deformed volume. The latter includes the energy of
interactions between the particles and the kinetic energy of
their microscopic motion (e.g., lattice vibrations, molecular
rotations, etc.), but excludes the macroscopic kinetic energy
due to diffusion. The internal energy can be shown to satisfy
the following balance equation with respect to the lattice (see
Appendix A):

dLu

dt
+ u∇ · vL

= −∇ · JL
u +

n∑
i=1

bi · JL
i + (σ − M) : ∇vL

−
n∑

i=1

{
∇

[
mi

2n2
i

(
JL

i · JL
i

)] + mi

dLvi

dt

}
· JL

i , (23)

where JL
u is the internal energy flux relative to the lattice.

Equation (23) is valid for all, not necessarily reversible,
process and expresses the first law of thermodynamics stating
that the change in internal energy equals the work done on
the system less the energy dissipated through its boundaries.
As with the momentum balance relation (17), Eq. (23) is
exact: it represents the internal energy balance without any
approximations or assumptions other than the conservation of
energy and the total energy ansatz (20).

We will also need the potential energy balance relation,

dLψ

dt
+ ψ∇ · vL = −

n∑
i=1

bi · JL
i −b · vL − ∇ ·

(
n∑

i=1

ψiJL
i

)
,

(24)

where the last term represents the divergence of the diffusive
flux of potential energy. This relation is also exact.

C. Entropy balance

The entropy balance is postulated in the form

dLs

dt
+ s∇ · vL + ∇ · JL

s = ṡ, (25)

where s is entropy per unit deformed volume, JL
s is the entropy

flux carried by the conduction of heat relative to the lattice, and
ṡ is the entropy production rate due to irreversible processes.

The goal of the subsequent development will be to compute
ṡ. The common approach6 to achieving this goal is to calculate
the entropy rate (dLs/dt + s∇ · vL) and then rearrange the
terms to form the divergence of fluxes that can be identified
with −∇ · JL

s . The remaining terms are then identified with

ṡ. We will follow this route to derive ṡ for a solid material
containing nonconserved lattice sites.

IV. LOCAL REVERSIBLE THERMODYNAMICS

A. The local equilibrium postulate

It is assumed that, although the entire solid material can
be away from equilibrium, its local internal energy, entropy
and other thermodynamic variables are related to each other
via a fundamental equation of state describing reversible
processes. “Local” means here that this equation is followed
only by subsystems of the entire system that are small
enough to reach thermodynamic equilibrium before the entire
system does, yet large enough to apply the full formalism of
thermodynamics. The locally equilibrium subsystems need not
be uniform and can be treated using the formalism of gradient
thermodynamics.17–20

Relative to the moving lattice, the fundamental equation is
postulated in the functional form:

u = u(s,{ni},{ϕk},{∇ni},{∇ϕk},F̃). (26)

Here, ϕk (k = 1, . . . ,K) are nonconserved phase fields, ∇ni

and ∇ϕk are respective gradients, and F̃ is the lattice deforma-
tion gradient relative to a chosen reference state (see Sec. II).
The phase fields ϕk can represent different thermodynamic
phases of the material or be associated with different lattice
orientations (grains) in a single-phase polycrystalline material.
The gradients ∇ϕk and ∇ni are usually negligibly small inside
the bulk phases or grains but are important in the description
of interphase interfaces and GBs. The material regions whose
thermodynamic description requires the gradients17–20 are
referred to as “nonclassical” as opposed to “classical” regions,
which can be treated within the standard thermodynamics16 of
homogeneous phases. Since u is a scalar while the gradients are
vectors and F̃ is a tensor, it is assumed that Eq. (26) satisfies the
required invariance under rotations of the coordinate system.
It is also assumed to satisfy the frame-invariance (objectivity)
requirement.31

When Eq. (26) is applied to different locations in the solid,
it is assumed that the reference state used to describe the lattice
deformation is the same for every location and is fixed once
and for all. For example, for a cubic crystal, the reference state
can be a perfectly cubic unit cell with a given (e.g., stress-free)
lattice constant. This explains why properties of the reference
state, such as the reference volume per site, are not listed
among the variables of u.

B. The first and second laws of thermodynamics for local
reversible processes

To derive the differential form of Eq. (26), let us first
consider a uniform region containing a fixed number of lattice
sites. Suppose for the moment that the phase fields ϕk are not
included. The standard differential form of the fundamental
equation for such a region is

dU = T dS +
n∑

i=1

MidNi + V (F̃−1 · σ̃ ) · ·dF̃. (27)
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Here, U = uV , S = sV , and Ni = niV are the total internal
energy, entropy, and numbers of particles of the chemical
components inside the region, respectively, V is its volume,
T ≡ ∂U/∂S is temperature, and F̃−1 is the inverse of F̃. The
tensor σ̃ is formally defined through the derivative ∂U/∂F̃,

σ̃ ≡ 1

V
F̃ · ∂U

∂F̃
, (28)

and has the meaning of the equilibrium Cauchy stress tensor
in a uniform lattice. The Cauchy stress tensor is symmetrical
as dictated by the angular-momentum balance in the absence
of body couples.31 As will be discussed later, σ̃ is generally
different from the actual stress tensor σ in a nonuniform and/or
nonequilibrium material. The obvious motivation behind the
definition (28) is the standard form V ′P · ·dF̃ of the mechanical
work term in continuum mechanics,31 V ′ being the reference
volume of the region and P = J̃ F̃−1 · σ̃ the first Piola-
Kirchhoff stress tensor. Finally, the derivative Mi ≡ ∂U/∂Ni

has the meaning of the diffusion potential of species i relative
to vacancies if the latter are treated as massless species. If
only the material particles are treated as species, Mi can be
considered as simply the chemical potential of species i. As
discussed in the literature,12,13 both interpretations of Mi are
equally legitimate and give the same results for all physically
observable quantities.

Equation (27) can be rewritten in terms of the volume
densities u, s, and ni :

du = T ds +
n∑

i=1

Midni + (F̃−1 · σ̃ )

· · dF̃ −
(

u − T s −
n∑

i=1

Mini

)
dV

V
. (29)

Using the identity31

dV

V
= F̃−1 · ·dF̃, (30)

we obtain

du = T ds +
n∑

i=1

Midni + [F̃−1 · (σ̃ − ωI)] · ·dF̃, (31)

where I is the second rank unit tensor and

ω ≡ u − T s −
n∑

i=1

Mini (32)

is the grand-canonical potential per unit volume.
Equation (31) is the differential form of Eq. (26) for the

particular case of a uniform material without phase fields. In
the presence of phase fields and the gradients ∇ϕk and ∇ni ,
this equation becomes

du = T ds +
n∑

i=1

Midni +
K∑

k=1

∂u

∂ϕk

dϕk +
n∑

i=1

∂u

∂∇ni

· d∇ni

+
K∑

k=1

∂u

∂∇ϕk

· d∇ϕk + [F̃−1 · (σ̃ − ωI)] · ·dF̃. (33)

Note that ω appearing in the last term is now a nonclassical
quantity as it depends on the gradients through u [cf. Eq. (26)].

The gradient terms in Eq. (33) can be rearranged using the
identities

n∑
i=1

∂u

∂∇ni

· d∇ni

=
n∑

i=1

∇ ·
(

∂u

∂∇ni

dni

)
−

n∑
i=1

(
∇ · ∂u

∂∇ni

)
dni

+
n∑

i=1

∂u

∂∇ni

· (d∇ni − ∇dni) , (34)

K∑
k=1

∂u

∂∇ϕk

· d∇ϕk

=
K∑

k=1

∇ ·
(

∂u

∂∇ϕk

dϕk

)
−

K∑
k=1

(
∇ · ∂u

∂∇ϕk

)
dϕk

+
K∑

k=1

∂u

∂∇ϕk

· (d∇ϕk − ∇dϕk) , (35)

where we recognize that the operations d and ∇ may not
commute. Equation (33) finally becomes

du = T ds +
n∑

i=1

M∗
i dni +

K∑
k=1

�∗
kdϕk

+∇ ·
(

n∑
i=1

∂u

∂∇ni

dni +
K∑

k=1

∂u

∂∇ϕk

dϕk

)

+
n∑

i=1

∂u

∂∇ni

· (d∇ni − ∇dni)

+
K∑

k=1

∂u

∂∇ϕk

· (d∇ϕk − ∇dϕk) + [F̃−1 · (σ̃ − ωI)] ·· dF̃,

(36)

where36

M∗
i ≡ ∂u

∂ni

− ∇ · ∂u

∂∇ni

= Mi − ∇ · ∂u

∂∇ni

(37)

is the nonclassical diffusion potential and

�∗
k ≡ ∂u

∂ϕk

− ∇ · ∂u

∂∇ϕk

. (38)

Note that M∗
i and �∗

k are variational derivatives37 of the
internal energy with respect to the concentrations ni and phase
fields ϕk , respectively.

The obtained Eq. (36) is a formulation of the first and
second laws of thermodynamics for local reversible processes
in a lattice obeying the fundamental equation (26). It will serve
as the starting point for several derivations performed below.

C. Generalized Gibbs-Duhem equation

By applying a partial Legendre transformation37 with
respect to s and ni , Eq. (36) can be transformed

184303-6



IRREVERSIBLE THERMODYNAMICS OF CREEP IN . . . PHYSICAL REVIEW B 88, 184303 (2013)

to

sdT +
n∑

i=1

nidM∗
i + dω −

K∑
k=1

�∗
kdϕk +

n∑
i=1

d

(
ni∇ · ∂u

∂∇ni

)
− ∇ ·

(
n∑

i=1

∂u

∂∇ni

dni +
K∑

k=1

∂u

∂∇ϕk

dϕk

)

−
n∑

i=1

∂u

∂∇ni

· (d∇ni − ∇dni) −
K∑

k=1

∂u

∂∇ϕk

· (d∇ϕk − ∇dϕk) − (F̃−1 · (σ̃ − ωI)) · ·dF̃ = 0. (39)

This equation can be viewed as a generalization of the
Gibbs-Duhem equation16 to a nonclassical solid subject to
nonhydrostatic mechanical stresses. In the particular case of
a hydrostatically stressed classical (no gradients) solid we
have σ̃ = −pI, where p = −ω is the equilibrium hydrostatic
pressure, and Eq. (39) reduces to the standard Gibbs-Duhem
equation16

sdT +
n∑

i=1

nidMi − dp = 0. (40)

As an application of Eq. (39), suppose the differentials
represent infinitesimal differences between the values of
properties at two nearby points x and x + dx at a fixed moment
of time. Then dT = ∇T · dx, dM∗

i = ∇M∗
i · dx, and similarly

for all other terms. In this particular case, the operators d

and ∇ commute, ∇d = d∇ = dx · ∇∇, and both sums in the
third line of Eq. (39) vanish. The remaining terms contain the
common factor dx which cancels, giving

s∇T +
n∑

i=1

ni∇M∗
i −

K∑
k=1

�∗
k∇ϕk + ∇ · (A∗ + ωI)

− [F̃−1 · (σ̃ − ωI]) · ·(F̃←−∇ ) = 0, (41)

where

A∗ ≡
(

n∑
i=1

ni∇ · ∂u

∂∇ni

)
I −

n∑
i=1

∂u

∂∇ni

∇ni −
K∑

k=1

∂u

∂∇ϕk

∇ϕk

(42)

is a purely nonclassical second-rank tensor.
Equation (41) is a gradient form of the generalized Gibbs-

Duhem equation (39). As will be shown later (see Sec. V),
when the material reaches full thermodynamic equilibrium
(including equilibrium with respect to site generation and
annihilation), the first, third, and last terms in Eq. (41) vanish
while the nonclassical chemical potentials satisfy the condition
∇M∗

i − bi = 0. It follows that under the full equilibrium
conditions,

∇ · (A∗ + ωI) + b = 0. (43)

Thus, in the absence of external fields, tensor (A∗ + ωI) is
divergence free. In a one-dimensional system, this means
conservation of the quantity (A∗

11 + ω).
The divergence-free character of (A∗ + ωI) in the absence

of external fields originates from the property of the funda-
mental equation (26) that the internal energy does not depend
explicitly on the position vector x. If it did, an additional term
∂u/∂x would appear in Eq. (33) and eventually propagate
to Eq. (43), so that the divergence of (A∗ + ωI) would no

longer be zero. The mathematical procedure that produced
the divergence term in Eqs. (41) and (43) is essentially
equivalent to a derivation of Noether’s theorem37 for a system
with continuous translational symmetry. Applied fields bi

obviously destroy this symmetry and lead to a nonzero
divergence of (A∗ + ωI) as indicated in Eq. (43).

D. Time-dependent form of the first and second laws

Returning to the general Eq. (36), we now consider the case
where the differentials represent changes in time. Because the
internal energy u has been defined relative to the stationary
lattice, its time evolution must be described by the lattice
material derivative dLu/dt defined by Eq. (5). We will
therefore interpret all differentials d in Eq. (36) as dL/dt .

The operators dL/dt and ∇ do not commute, but it can be
shown that38

dL

dt
∇ − ∇ dL

dt
= −∇vL · ∇. (44)

As a result, the second line in Eq. (36) becomes

−
n∑

i=1

∂u

∂∇ni

· ∇vL · ∇ni −
K∑

k=1

∂u

∂∇ϕk

· ∇vL · ∇ϕk

and can be simplified to

−
(

n∑
i=1

∂u

∂∇ni

∇ni +
K∑

k=1

∂u

∂∇ϕk

∇ϕk

)
: ∇vL.

The last term in Eq. (36) can be transformed to

[F̃−1 · (σ̃ − ωI)] · ·d
LF̃
dt

= (σ̃ − ωI) : ∇ṽL,

where we used the identity39

dLF̃
dt

= (ṽL

←−∇ ) · F̃. (45)

Equation (36) becomes

dLu

dt
= T

dLs

dt
+

n∑
i=1

M∗
i

dLni

dt
+

K∑
k=1

�∗
k

dLϕk

dt

+∇ ·
(

n∑
i=1

∂u

∂∇ni

dLni

dt
+

K∑
k=1

∂u

∂∇ϕk

dLϕk

dt

)

−
(

n∑
i=1

∂u

∂∇ni

∇ni +
K∑

k=1

∂u

∂∇ϕk

∇ϕk

)
: ∇vL

+ (σ̃ − ωI) : ∇ṽL. (46)
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Note that this equation contains both the total (marker network)
velocity and the local velocity of the lattice, the former coming
from the material time derivatives and the latter from the local
lattice deformation gradient.

The term with the chemical potentials can be further
rearranged using the species conservation law, Eq. (5):

n∑
i=1

M∗
i

dni

dt
= −

n∑
i=1

M∗
i ∇ · JL

i −
(

n∑
i=1

M∗
i ni

)
∇ · vL

= −∇ ·
(

n∑
i=1

M∗
i JL

i

)
+

n∑
i=1

JL
i · ∇M∗

i

−
(

n∑
i=1

M∗
i ni

)
∇ · vL. (47)

For further calculations we need the energy and entropy
rates to appear in the combinations (dLu/dt + u∇ · vL) and
(dLs/dt + s∇ · vL), respectively. This is readily achieved by
adding and subtracting u∇ · vL and s∇ · vL in Eq. (46). After
simple rearrangements, we arrive at the equation

dLu

dt
+ u∇ · vL

= T

(
dLs

dt
+ s∇ · vL

)
+

n∑
i=1

JL
i · ∇M∗

i +
K∑

k=1

�∗
k

dLϕk

dt

+∇ ·
(

n∑
i=1

∂u

∂∇ni

dLni

dt
+

K∑
k=1

∂u

∂∇ϕk

dLϕk

dt
−

n∑
i=1

M∗
i JL

i

)

+(σ̃ + A∗) : ∇vL − (σ̃ − ωI) : R, (48)

where

R ≡ (∇vL − ∇ṽL) . (49)

The tensor R represents the permanent part of the total
deformation rate coming from the site generation and annihi-
lation. According to Eq. (14) its trace,

Tr(R) = (∇ · vL − ∇ · ṽL) = rs

ns

, (50)

gives the site generation rate rs . However, the tensor R
carries more information than rs as it reflects the possible
anisotropy in the generation of lattice sites. It differentiates,
for example, between insertion of new lattice planes normal
to a certain direction and creation of the same number of sites
by uniform “swelling” of the material. In fact, R captures
even a pure shear deformation rate in which new lattice planes
are inserted parallel to one crystallographic orientation and
simultaneously removed parallel to another crystallographic
orientation perpendicular to the first, so that the total number
of sites remains constant. One possible mechanism of this
process would be a concurrent climb of two perpendicular
sets of edge dislocations, one inserting lattice planes and
the other eliminating perpendicular lattice planes. This could
be accomplished by vacancy diffusion between the cores of
the two dislocation sets without changing the net amount of
vacancies in the region.

Tensor R is related to the generalized creep strain-rate
tensor εgc introduced by Svoboda et al.7,8 although the latter,
by contrast to R, comprises both permanent and elastic parts

of the deformation. Similar to R, the tensor εgc includes both
the volume creep deformation by “swelling” or contraction
and shear deformation arising due to orientational anisotropy
of the microstructure or from nonhydrostatic components of
the stress tensor.

It should be emphasized that Eq. (48) has been derived
from the fundamental Eq. (26) by a chain of mathematical
transformations without any additional physical assumptions
or approximations other than the conservation and balance
equations of Secs. II and III. Equation (48) represents a time-
dependent form of the first and second laws of thermodynamics
for reversible processes in a continuous medium with the
postulated equation of state (26).

V. THE STATE OF EQUILIBRIUM

A. Derivation of equilibrium conditions

Before analyzing irreversible processes, we will derive the
conditions of thermodynamic equilibrium of a multicompo-
nent solid capable of site generation. This could be done
by requiring that the first-order variation of the total energy
of a given material region enclosed in a rigid envelope be
zero under the constraints of fixed entropy and fixed total
number of particles of every species. Instead of considering
infinitesimal variations of the relevant parameters, we will
reuse Eq. (48) by treating the rates of the reversible changes of
those parameters as their variations. For example, the variation
δϕk can be formally considered to occur per unit time and be
represented by the material derivative dLϕk/dt . Likewise, the
virtual lattice displacement δxL can be thought of as occurring
per unit time and be replaced by the lattice velocity vL.
The macroscopic kinetic energy is a second-order variation
and is excluded. This treatment is completely equivalent to
the virtual displacement method usually applied for finding
thermodynamic equilibrium of continuous media.10,14,31

The equilibrium condition is∫ (
dLu

dt
+ u∇ · vL

)
dV +

∫ (
dLψ

dt
+ ψ∇ · vL

)
dV

−λ

∫ (
dLs

dt
+ s∇ · vL

)
dV = 0. (51)

The first integral is equivalent to∫ (
∂u′

∂t

)
x′

dV ′, (52)

u′ being internal energy per unit reference volume,40 and
represents the rate of internal energy change of a given material
region defined by lattice markers. Likewise, the second and
third integrals represent the rates of potential energy and
entropy changes of the same material region. The entropy
integral has been added to impose the entropy constraint
using the Lagrange multiplier λ. The required conservation
of the total amount of each species will be enforced by zero
normal components of the diffusion fluxes at the boundary of
the region and need not be imposed via additional Lagrange
multipliers.

Inserting the first integrand from Eq. (48), the divergence
term becomes the surface integral over the boundary of the
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region,

∫
n·

(
n∑

i=1

∂u

∂∇ni

dLni

dt
+

K∑
k=1

∂u

∂∇ϕk

dLϕk

dt
−

n∑
i=1

M∗
i JL

i

)
dA,

(53)

n being a unit normal vector pointing outside the region and
dA an increment of area. To ensure that the region is closed,
the normal components of the diffusion fluxes will be taken
to be zero, n · JL

i = 0. Imposing also fixed boundary values
of ni and ϕk , this surface integral vanishes. Furthermore, the
volume integral ∫

(σ̃ + A∗) : ∇vLdV (54)

can be rewritten using the divergence theorem as∫
n · (σ̃ + A∗) · vLdA −

∫
∇ · (σ̃ + A∗) · vLdV, (55)

where the surface integral is zero due to the boundary condition
vL = 0 (rigid boundary). Similarly, per Eq. (24), the potential
energy integral contains the potential energy flux which
vanishes on the boundary, leaving∫ (

dLψ

dt
+ ψ∇ · vL

)
dV = −

∫ (
n∑

i=1

bi · JL
i + b · vL

)
dV.

(56)

Combining the above equations, Eq. (51) becomes∫ (
dLs

dt
+ s∇ · vL

)
(T − λ)dV

+
∫ n∑

i=1

JL
i · ∇(M∗

i + ψi)dV +
∫ K∑

k=1

�∗
k

dLϕk

dt
dV

−
∫

[∇ · (σ̃ + A∗) + b] · vLdV −
∫

(σ̃ − ωI) : RdV = 0.

(57)

In the state of equilibrium, this relation must hold for
any arbitrarily chosen region of the material. The integrands
are proportional to the entropy rate (dLs/dt + s∇ · vL), the
phase-field rates dLϕk/dt , the diffusion fluxes JL

i , the lattice
velocity vL, and the creep deformation rate R, respectively.
All these rates represent independent variations away from the
equilibrium state. Assuming that they can take any arbitrary
positive or negative values, the coefficients multiplying these
rates must be zero. We thus arrive at the following set of
necessary conditions of equilibrium:

T = λ = const: thermal equilibrium, (58)

M∗
i + ψi = const: chemical equilibrium, (59)

�∗
k = 0: phase-field equilibrium, (60)

∇ · (σ̃ + A∗) + b = 0: mechanical equilibrium, (61)

σ̃ = ωI: site generation equilibrium. (62)

B. Discussion of the equilibrium conditions

Equations (58)–(60) reproduce the well-known conditions
of thermal, chemical, and phase-field equilibrium: the unifor-
mity of the temperature field, the constancy of the nonclassical
chemical potential M∗

i plus the external potential ψi for every
species, and vanishing variational derivative �∗

k for every
phase field. The mechanical equilibrium condition could have
been obtained from zero accelerations and zero diffusion fluxes
in the momentum balance equation (17), giving ∇ · σ + b = 0.
Equation (61) shows that tensor (σ̃ + A∗) plays the role of the
nonclassical stress tensor. The latter has long been known
in fluid systems as the capillary tensor or Korteweg stress.41

In classical regions where the gradients of the chemical
composition and phase fields can be neglected and thus
A∗ = 0, the mechanical equilibrium condition reduces to
∇ · σ̃ + b = 0, confirming that the tensor σ̃ defined earlier by
Eq. (28) is indeed the equilibrium stress tensor in a classical
solid.

Equation (62) is the condition of equilibrium with respect
to site generation and annihilation, stating that tensor σ̃

must be diagonal: σ̃ ≡ −pI. This condition must be fulfilled
everywhere in the equilibrium material, including nonclassical
regions with significant gradients of ni and/or ϕk , such
as interface regions. However, the actual stress tensor in
such regions, (−pI + A∗), remains nonhydrostatic due to the
nonclassical contribution A∗.

If Eq. (62) is satisfied, the mechanical equilibrium condition
becomes

−∇p + ∇ · A∗ + b = 0 (63)

and in classical regions reduces to the standard hydrostatic
equilibrium condition ∇p = b.31 Thus, in the presence of
efficient sinks and sources of vacancies capable of maintaining
site equilibrium, the solid behaves rheologically like a fluid.

Note that by inserting the obtained equilibrium conditions
(58)–(60) and (62) in the generalized Gibbs-Duhem equation
(41), we immediately recover Eq. (43) or its equivalent form
(63). In other words, if all other equilibrium conditions are
satisfied, the mechanical equilibrium condition follows from
the generalized Gibbs-Duhem equation (41). The reverse is not
true: the mechanical equilibrium condition (61) can be satisfied
even if the material has not reached complete equilibrium, in
which case Eq. (43) is invalid.

According to Eq. (62), in equilibrium p = −ω, i.e.,

u − T s + p −
n∑

i=1

Mini = 0, (64)

in both classical and nonclassical regions. In classical regions,
this relation has a clear thermodynamic meaning. In such
regions, the actual state of stress of the material is hydrostatic
with the pressure p. Under such conditions, one can uniquely
define the chemical potentials μi of all chemical species as
well as the chemical potential μv of vacancies treated as ficti-
tious massless species. (In nonhydrostatically stressed solids,
chemical potentials of material species and vacancies cannot
be defined simultaneously due to the network constraint.10–12)
The diffusion potentials Mi are then Mi = μi − μv and the
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left-hand side of Eq. (64) becomes

0 =
(

u − T s + p −
n∑

i=1

μini − μvnv

)
+ μvns = μvns,

(65)

where nv ≡ ns − ∑
i ni is the number density of vacancies

per unit volume and we used the Gibbs relation for hydrostatic
systems,16

u − T s + p =
n∑

i=1

μini + μvnv. (66)

Thus Eq. (64) predicts that the equilibrium chemical potential
of vacancies in classical regions is zero:

μv = 0. (67)

This relation cannot be extended to nonclassical regions, e.g.,
interfaces, where μv remains undefined.

It is important to recognize that the equilibrium condition
(62) has been derived by considering independent variations of
all components of the creep deformation rate tensor R. Under
real conditions, the material’s microstructure can impose re-
strictions on some of such variations. For example, the material
can be only capable of site generation/annihilation by insertion
or removal of lattice planes normal to a particular direction,

e.g., by growth or shrinkage of extrinsic stacking faults in
those planes. Alternatively, the site generation/annihilation
can occur exclusively by growth or dissolution of nanopores
permitting only isotropic “swelling” or contraction of the
material. In all such cases, the material can reach a constrained
thermodynamic equilibrium with only some of the components
of (σ̃ − ωI), or their linear combinations, being zero. In such
cases, the equilibrium stress tensor σ̃ need not be hydrostatic.
Under such constrained equilibrium conditions, Eq. (67) is no
longer valid, and furthermore, μv itself is undefined.

In the limiting case when the material does not contain
any sinks or sources of vacancies, R is identically zero and
the material can be equilibrated in any nonhydrostatic state of
stress. Equation (62) should be then removed from the list of
equilibrium conditions.

VI. IRREVERSIBLE THERMODYNAMICS

A. The entropy production rate

As indicated in Sec. III C, a route to the entropy production
is to (i) insert in Eq. (48) the internal energy rate (dLu/dt +
u∇ · vL) from the energy balance equation (23), and (ii) split
the obtained total entropy rate (dLs/dt + s∇ · vL) into the
entropy flux −∇ · JL

s and entropy production rate ṡ.
Step (i) gives

T

(
dLs

dt
+ s∇ · vL

)
+

n∑
i=1

JL
i ·

{
∇

[
M∗

i + mi

2n2
i

(Ji · Ji)

]
− bi + mi

dLvi

dt

}

+∇ ·
(

JL
u +

n∑
i=1

∂u

∂∇ni

dLni

dt
+

K∑
k=1

∂u

∂∇ϕk

dLϕk

dt
−

n∑
i=1

M∗
i JL

i

)

+
K∑

k=1

�∗
k

dLϕk

dt
− (σ − M − σ̃ − A∗) : ∇vL − (σ̃ − ωI) : R = 0. (68)

Solving this equation for the total entropy rate,

dLs

dt
+ s∇ · vL = −∇ ·

(
JL

q

T

)
− 1

T

n∑
i=1

JL
i ·

{
∇

[
M∗

i + mi

2n2
i

(Ji · Ji)

]
− bi + mi

dLvi

dt

}
− 1

T

K∑
k=1

�∗
k

dLϕk

dt
+ JL

q · ∇ 1

T

+ 1

T
(σ − M − σ̃ − A∗) : ∇vL + 1

T
(σ̃ − ωI) : R, (69)

where

JL
q ≡ JL

u +
n∑

i=1

∂u

∂∇ni

dLni

dt
+

K∑
k=1

∂u

∂∇ϕk

dLϕk

dt
−

n∑
i=1

M∗
i JL

i (70)

is a heat flux relative to the lattice. The latter equals the total internal energy flux JL
u less the internal energy transferred by

diffusion and by the motion of phase transformation fronts or GBs.
Identifying the entropy flux

JL
s ≡ JL

q

T
(71)

we finally obtain the entropy production rate:

ṡ = − 1

T 2
∇T · JL

q − 1

T

n∑
i=1

{
∇

[
M∗

i + mi

2n2
i

(Ji · Ji) + ψi

]
+ mi

dLvi

dt

}
· JL

i

− 1

T

K∑
k=1

�∗
k

dLϕk

dt
+ 1

T
(σ − M − σ̃ − A∗) : ∇vL + 1

T
(σ̃ − ωI) : R. (72)
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The individual terms of Eq. (72) describe the entropy
production due to (i) heat conduction, (ii) diffusion driven by
gradients of the nonclassical diffusion potentials M∗

i , kinetic
energy of diffusion mi(Ji · Ji)/2n2

i and external potentials
ψi , and by inertia forces mid

Lvi/dt , (iii) evolution of
the phase fields, (iv) viscous dissipation by conversion of
the strain rate to heat (e.g., generation of phonons), and
(v) generation/annihilation of lattice sites. Each term can be
interpreted as the product of a driving force and a conjugate
generalized “flux,” the “fluxes” being JL

q (heat), JL
i (diffusion),

dLϕk/dt (phase-field evolution rate), ∇vL (the symmetrical
part of which is the deformation rate), and R (site generation
rate).

Equation (72) represents the exact entropy production.
For applications to slow processes such as creep, it can be
simplified by neglecting the terms quadratic in diffusion fluxes
and the inertia terms (see Appendix B). The approximate form
of the entropy production rate, which will be used in the rest
of the paper, becomes

ṡ = − 1

T 2
∇T · JL

q − 1

T

n∑
i=1

∇(M∗
i + ψi) · JL

i

− 1

T

K∑
k=1

�∗
k

dLϕk

dt
+ 1

T
(σ − σ̃ − A∗) : ∇vL

+ 1

T
(σ̃ − ωI) : R. (73)

It is instructive to apply Eq. (73) to the state of ther-
modynamic equilibrium, in which all driving forces must
vanish. Equating the driving forces to zero recovers the
previously found conditions of thermal equilibrium (58),
chemical equilibrium (59), phase-field equilibrium (60), and
the site generation equilibrium (62) (see Sec. V A). Thus
the fully equilibrated material is correctly predicted to be
hydrostatic. According to Eq. (73), in the absence of viscous
dissipation, the dynamic stress tensor σ reduces to its static
value (σ̃ + A∗) (see Sec. V B):

σ = σ̃ + A∗ (no viscous dissipation). (74)

We do not recover the mechanical equilibrium condition (61).
However, the latter follows at once from the generalized Gibbs-
Duhem equation (41) (see Sec. IV C) provided that all other
equilibrium conditions are satisfied.

It is interesting to note that if any of the components of
(σ̃ − ωI) in the equilibrium state are nonzero due to restrictions
on site generation, the condition of zero entropy production
does not recover the mechanical equilibrium condition. This
should not be surprising since ṡ = 0 is only a necessary
but not sufficient condition of thermodynamic equilibrium.
The absence of entropy production can be satisfied not only
in the equilibrium state but also during (nearly) reversible
mechanical processes, such as propagation of elastic waves
with negligible dissipation.

In many situations, some of the driving forces appearing in
Eq. (73) can be negligibly small and the process can be driven
by the remaining forces. For example, on sufficiently short
time scales, the site generation and diffusion processes can be
neglected (R = 0, JL

i = 0) and the material can undergo fast
(e.g., shock) deformation accompanied by viscous dissipation,

conduction of heat and possibly diffusionless phase trans-
formations. As another example, for slow enough processes,
one can neglect the viscous dissipation and assume thermal
and mechanical equilibrium, leaving only diffusion, phase
transformations or GB motion, and site generation as the
dominant processes. It is this latter regime that appears to
be most relevant to diffusional creep and will be discussed in
more detail later in Sec. VII.

B. Phenomenological relations

1. Material symmetry considerations

We will next postulate linear phenomenological relations
between the fluxes and forces appearing in the entropy
production rate, Eq. (73). Generally, each flux can be linearly
related (coupled) to all forces entering this expression, and
the matrix of the linear coefficients must be symmetric by the
Onsager reciprocal relations.42,43 It is known, however, that
symmetry properties of the material44 can prevent coupling
between certain fluxes and forces (Curie symmetry principle).
In particular, if all properties of the material are isotropic,
a flux can be caused only by forces having the same
tensorial character. Quantities with four distinct types of
tensorial character usually occur in expressions for the entropy
production: scalars, polar vectors, axial vectors, and symmetric
traceless tensors of rank two. We will start by rearranging the
terms in (73) according to their tensorial character. This step
requires only mathematical rearrangements in Eq. (73) and
does not involve any assumptions regarding the symmetry of
the material.

The phase-field rates dLϕk/dt are scalars and the fluxes of
the chemical components and heat are polar vectors. The forces
conjugate to these fluxes have the same tensorial character as
the fluxes. Thus we need not do anything about these terms.
The remaining terms are double contractions of second rank
tensors, which will be partitioned as follows.6 Each tensor A
is split in three parts:

A = 1
3 Tr(A)I + A(s) + A(a), (75)

where

A(s) = 1
2 (A + AT ) − 1

3 Tr(A)I (76)

is the traceless symmetric part of A and

A(a) = 1
2 (A − AT ) (77)

is the antisymmetric part of A. Applying this decomposition
to two second-rank tensors A and B, it can be shown that

A : B = 1
3 Tr(A)Tr(B) + A(s) : B(s) + A(a) : B(a). (78)

The last term is equivalent to a dot product of two axial
vectors.6 Thus the operation “:” only couples parts of the
tensors that have the same tensorial character.

Applying this tensor decomposition and grouping to-
gether the terms with the same tensor character, the entropy
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production rate becomes

ṡ = − 1

T

K∑
k=1

�∗
k

dLϕk

dt
+ 1

T

∇ · vL − 1

T
(ω − σ̃h) r

− 1

T 2
∇T · JL

q − 1

T

n∑
i=1

∇(M∗
i + ψi) · JL

i

+ 1

T
τ : (∇vL)(s) + 1

T
(σ̃ − σ̃hI) : R(s)

− 1

T
A(a)∗ : W, (79)

where r ≡ rs/ns is the number of new sites generated per unit
time per existing site and σ̃h = (1/3)Tr(σ̃ ) is the “hydrostatic
part” of σ̃ . In the above equation,

(∇vL)(s) = D − 1
3 (∇ · vL) I (80)

is the total shear strain rate and

D = 1
2 [∇vL + (∇vL)T ] (81)

is the total deformation rate tensor.31 Tensor

W ≡ (∇vL)(a) = 1
2 [∇vL − (∇vL)T ] (82)

is sometimes called the vorticity tensor and characterizes the
rate of lattice rotation.31 The symmetric part of the creep
deformation rate R is

R(s) = D − D̃ − r

3
I, (83)

where

D̃ = 1
2 [∇ṽL + (∇ṽL)T ], (84)

and describes the rate of pure elastic deformation caused by
the creep process.

The scalar forces appearing in Eq. (79) include the
nonclassical bulk viscosity stress


 = σh − σ̃h − 1
3 Tr(A∗) (85)

and the volume driving force for the site generation, (ω − σ̃h).
The tensor forces include the nonclassical viscous shear stress

τ = σ − σ̃ − A(s)∗ − (σh − σ̃h) I (86)

and the driving force for the shear creep, (σ̃ − σ̃hI). The
individual components of tensor A∗ are

A(s)∗ = −
n∑

i=1

(
∂u

∂∇ni

∇ni

)(s)

−
K∑

k=1

(
∂u

∂∇ϕk

∇ϕk

)(s)

, (87)

A(a)∗ = −
n∑

i=1

(
∂u

∂∇ni

∇ni

)(a)

−
K∑

k=1

(
∂u

∂∇ϕk

∇ϕk

)(a)

, (88)

Tr(A∗) ≡ 3

(
n∑

i=1

ni∇ · ∂u

∂∇ni

)
−

n∑
i=1

∂u

∂∇ni

· ∇ni

−
K∑

k=1

∂u

∂∇ϕk

· ∇ϕk. (89)

Note that the entropy production due to viscous dissipation
is now split in three parts: the bulk viscosity 
∇ · vL,
the viscous shear τ : (∇vL)(s), and the rotational viscosity
A(a)∗ : W. A similar splitting is used for fluid systems.6

The site generation is split in two parts: the volume part
(ω − σ̃h)r describing isotropic “swelling” or shrinkage of
the material, and the shear part (σ̃ − σ̃hI) : R(s) describing
shape deformation without changing the total number of sites.
The latter process was discussed in the end of Sec. IV D. Note
that the antisymmetric part of tensor R does not appear in the
entropy production due to the symmetry of the equilibrium
Cauchy stress σ̃ .

2. Phenomenological relations for creep in isotropic materials

Each of the four lines in Eq. (79) contains terms with
contraction of tensors of the same tensor character. If the
material is isotropic, only terms appearing in the same line
can couple with each other but not with terms in other lines.6

Furthermore, the phenomenological coefficients have to be
scalars regardless of the tensor character of the fluxes and
forces. [It is worth noting that this is true only when the
symmetric tensors are traceless. Symmetric tensors with a
trace, such as the stress and small-strain tensors in elastically
isotropic (e.g, cubic) materials, are linearly related with
two phenomenological coefficients, e.g., the shear and bulk
moduli.45] This leads to the following phenomenological
equations.

The scalar quantities appearing in the first line of Eq. (79)
are coupled by the equations

dLϕk

dt
= − 1

T

K∑
m=1

Bkm�∗
m + 1

T
Bkv
 − 1

T
Bkr (ω − σ̃h) ,

k = 1, . . . ,K,
(90)

∇ · vL = 1

T

K∑
m=1

Bvm�∗
m + 1

T
Bvv
 − 1

T
Bvr (ω − σ̃h) ,

r = − 1

T

K∑
m=1

Brm�∗
m + 1

T
Brv
 − 1

T
Brr (ω − σ̃h) .

By the Onsager relations,42,43 the (K + 2) × (K + 2) matrix
B is symmetric and must be positive definite. In particular,
the diagonal coefficients Bkk , Bvv , and Brr must be positive.
Generally, the site generation can be influenced by viscous dis-
sipation, phase transformations and GB motion. Conversely,
the phase-field evolution and viscosity can be influenced by
site generation.

The second line of Eq. (79) describes diffusion of the
chemical species and heat. For simplicity, let us neglect the
thermodiffusion cross-effects and decouple heat conduction
from diffusion,

JL
q = −Lqq

1

T 2
∇T , (91)

where Lqq > 0 is related to the heat conductivity coefficient κ

by κ = Lqq/T 2. Then the diffusion equations form a separate
system,

JL
i = − 1

T

n∑
j=1

Lij∇(M∗
j + ψj ), i = 1, . . . ,n. (92)

The n × n matrix L is symmetric and positive definite.
In fluid systems in mechanical equilibrium, the chemical

potential gradients are linearly related to each other by the
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Gibbs-Duhem equation.6,29 As a result, one of the gradients can
be eliminated. The complex solid systems considered here fol-
low the generalized Gibbs-Duhem equation given by Eq. (41).
Even in the absence of external fields (ψj = 0), ∇M∗

i are
linearly related only if the material is in thermal, phase-field,
mechanical, and site-generation equilibrium (and thus in the
hydrostatic state of stress). To keep the treatment general,
we will treat the diffusion potential gradients as independent
forces and the system of equations (92) as n × n.

From the third line of Eq. (79), the shear viscosity rate and
the shear creep deformation rate are coupled by the equations

R(s) = 1

T
Srr (σ̃ − σ̃hI) + 1

T
Srvτ ,

(93)

(∇vL)(s) = 1

T
Svr (σ̃ − σ̃hI) + 1

T
Svvτ ,

where the matrix of coefficients is symmetric and positive
definite. The diagonal coefficients Srr > 0 and Svv > 0 char-
acterize the kinetics of shear creep deformation and shear
viscosity, respectively, the latter being related to the viscosity
coefficient η by Svv = 2T η. Finally, it has been shown25 that
in isotropic materials A(a)∗ = 0. For such materials, the last
line of Eq. (79) involving the vorticity tensor W disappears.

As already mentioned, for slow processes such as creep it
is reasonable to neglect the viscous dissipation and assume a
uniform temperature field and mechanical equilibrium. The
remaining phenomenological equations describe diffusion,
phase-field evolution, site generation and creep deformation.
Assuming for simplicity that the material is not subject to
external fields, the obtained system of equations is

JL
i = − 1

T

n∑
j=1

Lij∇M∗
j , i = 1, . . . ,n, (94)

dLϕk

dt
= − 1

T

K∑
m=1

Bkm�∗
m − 1

T
Bkr (ω − σ̃h) , k = 1, . . . ,K,

(95)

r = − 1

T

K∑
m=1

Brm�∗
m − 1

T
Brr (ω − σ̃h) , (96)

R(s) = 1

T
Srr (σ̃ − σ̃hI) . (97)

Equations (96) and (97) clearly display the fundamental
difference between the volume and shear components of
the creep deformation. To simplify the discussion, suppose
the material is at phase-field equilibrium, �∗

m = 0. Then, by
Eq. (96) the site generation (and thus volume creep) ceases
when the driving force (ω − σ̃h) turns to zero. The material
reaches equilibrium with respect to the net production and
annihilation of sites. By contrast, Eq. (97) shows that the shear
creep never stops as long as a shear stress exists in the material.
If Srr �= 0, the material continues to shear until it reaches a
hydrostatic state of stress (if this is permitted by the boundary
conditions). As indicated earlier, this type of shear flow could
occur, e.g., by the growth and dissolution of crystal planes
with different crystallographic orientations while preserving
the net number of sites. If this mechanism cannot operate,
we have Srr = 0 and the material is only capable of isotropic
site generation causing volume expansion or contraction. As

already indicated, the tensor character of the creep deformation
rate and its splitting into the volume and shear components was
identified by Svoboda et al.7,8

Equations (94)–(97) also demonstrate that for an isotropic
material, diffusion is decoupled from creep deformation in the
sense of irreversible thermodynamics. Diffusion can offer a
mechanism of creep (hence the term “diffusional” creep) and
may (or may not) kinetically control the total deformation rate.
However, diffusion fluxes alone cannot cause creep deforma-
tion and creep deformation cannot cause diffusion fluxes.

3. Example of phenomenological relations for
anisotropic materials

The above equations rely on the assumption that the mate-
rial is isotropic. While this assumption is adequate for fluids,
polycrystalline materials can possess a lower symmetry due to
the crystallinity of the grains, orientational texture or certain
features of the microstructure. In such cases, the form of the
phenomenological equations is established by (i) imposing the
requirement of frame-invariance (objectivity) of the entropy
production31 and (ii) analyzing the effects of the symmetry
operations available in the particular material on the individual
terms in the entropy production. Symmetry operations act
differently on fluxes and forces of different tensor character.
Thus the tensor-split form of the entropy production given by
Eq. (79) can be taken as the starting point for this analysis.
It should also be noted that the material deformations are
presented in Eq. (79) in the current (deformed) configuration.
Large deformations can modify the material symmetry in
comparison with the undeformed state. Thus the symmetry
analysis and derivation of phenomenological relations may
require reformulation of the entropy production with respect
to the undeformed state. A detailed analysis of anisotropic
materials lies beyond the scope of this paper and we will
restrict the discussion to one example.

In simple cases, the symmetry restrictions can be under-
stood without resorting to rigorous analysis. For example,
suppose the only mechanism of site generation and annihi-
lation is the growth or dissolution of crystal planes normal to
a certain crystallographic direction defined by a unit normal
n. All other properties of the material related to diffusion and
phase fields are assumed to remain fully isotropic. Retracing
the derivation of the entropy production for this particular
case, the site generation term becomes (σ̃n − ω)Rn, where
σ̃n = n · σ̃ · n is the normal stress on the growing or dissolving
crystal planes and Rn = n · R · n is the normal creep rate (rate
of permanent tension-compression parallel to n).

In this case, the site generation is represented by only the
product of the scalar “flux” Rn and the scalar force (ω − σ̃n).
As such, this term belongs to the first line in Eq. (79) and can
couple to the scalar equations for the phase-field evolution. The
diffusion equations (94) remain unchanged but Eqs. (95)–(97)
are replaced by

dLϕk

dt
= − 1

T

K∑
m=1

Bkm�∗
m − 1

T
Bkr (ω − σ̃n) , k = 1, . . . ,K,

(98)
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Rn = − 1

T

K∑
m=1

Brm�∗
m − 1

T
Brr (ω − σ̃n) . (99)

Note that the separate shear creep equation (97) is now
redundant while the volume creep driven by (ω − σ̃h) has
been replaced by uniaxial tension-compression creep driven
by (ω − σ̃n).

VII. EXAMPLES OF APPLICATION

A. Model formulation

To illustrate the theory, we will apply it to a simple
one-dimensional system. Namely, we consider an elemental
bicrystal with a symmetrical (e.g., [001] twist) GB. The grains
are treated as isotropic media and the entire bicrystal is
assumed to possess the axial symmetry (∞/m) around the
coordinate axis x1 normal to the GB plane. The system is
characterized by a single phase field ϕ with the far-field values
ϕ = 0 in one grain and ϕ = 1 in the other. This field can be
interpreted, e.g., as the angle of lattice rotation around the
x1 axis normalized by the total lattice misorientation angle
between the grains.

The lattice supports vacancies but not interstitials. Vacan-
cies can be generated only within the GB region and only by
the growth or dissolution of lattice planes parallel to the GB.
We neglect thermal expansion and the effect of vacancies on
the lattice parameter. Thus the latter can only be altered by
elastic strains.

Elastic deformation of the lattice is described by the
isotropic linear elasticity theory with Hooke’s law

εij = 1 + ν

E
σij − 3

ν

E
δijσh, (100)

where εij is the small-strain tensor, E is the Young modulus,
and ν is Poisson’s ratio. Both E and ν are considered constant.
Although we use the small-strain approximation for elasticity,
the total deformation of the material is allowed to be finite due
to the creep process. Since the deformations are assumed to
be slow and the viscous energy dissipation is neglected, the
dynamic stress is identical to the static. The classical part of
the stress will be denoted σij without the tilde.

Due to the axial symmetry of the problem, the stress
components σ11 (normal stress) and σ22 = σ33 (lateral stresses)
depend only on the distance x along the x1 axis, the shear com-
ponents being zero. Likewise, the normal strain component ε11

is a function of x, the lateral strains ε22 = ε33 are assumed to
be fixed, and the shear strains are zero. Under these conditions,
knowing only the function σ11(x) and using Hooke’s law one
can recover

σ22(x) = σ33(x) = ν

1 − ν
σ11(x) + E

1 − ν
ε22 (101)

and

ε11(x) = (1 + ν)(1 − 2ν)

E(1 − ν)
σ11(x) − 2ν

(1 − ν)
ε22. (102)

The volume per site is

� = �0 (1 + KT σh) , (103)

where �0 is the stress-free value of �, KT = 3(1 − 2ν)/E is
the isothermal compressibility and

σh(x) = (1 + ν)

3(1 − ν)
σ11(x) + 2E

3(1 − ν)
ε22 (104)

is the hydrostatic part of the stress tensor.
To describe thermodynamics of the solid, two adjustments

will be made with respect to the previous discussion. First,
for practical convenience, all thermodynamic properties will
be described in terms of the Helmholtz free energy instead of
the internal energy. All previous expressions for the entropy
production remain unchanged, except that the derivatives of
the internal energy density (e.g., ∂u/∇ϕ) taken previously
at a fixed entropy are replaced by derivatives of the free
energy density f (e.g., ∂f/∇ϕ) taken at a fixed temperature.46

Secondly, the fundamental equation for a specific material
usually comes from statistical-mechanical models and is
formulated in terms of the site fractions of the components
and thermodynamic properties (e.g., free energy) per site. We
will therefore use the site fractions of atoms c and vacancies
cv , keeping in mind that only one of them can be used as
an independent variable (c + cv = 1). It is implicit in this
treatment that the GB structure is composed of sites and can
be obtained by an appropriate distortion of the lattice.

We postulate the fundamental equation of the solid in the
form

f (T ,cv,ε) = 1

�
[gc + gvcv + kT (c ln c + cv ln cv)] + w (ϕ)

+ 1

2
ε (∇ϕ)2 + e (ε) . (105)

Here, g and gv are parameters of the ideal solution model for
atoms and vacancies, k is Boltzmann’s factor,

w (ϕ) = Wϕ2 (1 − ϕ)2 (106)

is a double-well function with an amplitude W creating a
free-energy barrier between the two lattice orientations, ε is the
gradient energy coefficient20 considered constant, and finally
e (ε) is the elastic strain energy density of the lattice. The
latter is quadratic in strains (and thus stresses) and will not be
detailed here since this term will be neglected. The expression
in the square brackets is the free energy of a uniform ideal
solution per site. Note that this solution is treated classically,
i.e., without a gradient term in c. By the symmetry of the
problem, the gradient ∇ϕ has only one nonzero component
∇xϕ.

This model is different from previous nonclassical interface
models with elasticity. Rottman47 proposed a Landau theory
of coherent phase boundaries and computed the interface
stress and other excess properties by including a gradient
term in strains. Johnson48 modeled a phase boundary between
two binary substitutional solutions using a gradient term in
composition. His model includes a compositional strain and,
by contrast to Rottman’s work,47 treats the elastic strain
energy purely classically. Johnson carefully derives integral
expressions for the interface free energy, interface stress and
interface strain. While these workers were focused on the
equilibrium state of the interface, Levitas49 recently proposed
a time-dependent model with a single nonclassical order
parameter ϕ and elastic strain energy. Assuming mechanical
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equilibrium, he solved the phase-field evolution equation of the
form ∂ϕ/∂t = −L�∗ and studied in detail the dynamics of the
interface stress at the nonequilibrium interface. His model does
not include diffusion or site generation. Levitas proposed a few
other phase-field treatments of the interface stress.23–28 Phase-
field models of coherent interfaces have also been studied in
the context of multivariant phase transformations.50,51

The subsequent calculations will be limited to first order in
stresses and strains. Thus the elastic strain energy term appear-
ing in Eq. (105) and propagating to all other equations will be
neglected. This approximation is sufficient for demonstrating
some simple results of the model.

From Eq. (105), we obtain the diffusion potential M of
atoms relative vacancies,

M = g − gv + kT ln
c

cv

, (107)

and thus the grand potential density

ω = f − M
c

�
= 1

�
(gv + kT ln cv) + w (ϕ) + 1

2
ε (∇xϕ)2 .

(108)

The variational derivative of f with respect to the phase field
is given by the usual expression

�∗ = ∂f

∂ϕ
− ∇x · ∂f

∂∇xϕ
= w′ (ϕ) − ε∇2

xϕ. (109)

Finally, the nonclassical tensor A∗ defined by Eq. (42) is A∗ =
−ε∇ϕ∇ϕ and has only one nonzero component

A∗
11 = −ε (∇xϕ)2 . (110)

B. The state of equilibrium

Before discussing the dynamics of creep deformation,
we will find the state of thermodynamic equilibrium of the
system. We assume that the system is already in thermal
equilibrium and thus the temperature is uniform. The phase-
field equilibrium condition �∗ = 0 reduces to the standard
equation20

w (ϕ) = 1
2ε(∇xϕ)2 (111)

predicting the phase-field profile

ϕ(x) = 1
2 − 1

2 tanh
x

2
√

ε/2W
. (112)

Using Eq. (111), the grand potential density (108) becomes

ω = 1

�
(gv + kT ln cv) + ε (∇xϕ)2 . (113)

The mechanical equilibrium condition (61) reduces to σ11 +
A∗

11 = const, giving

σ11(x) = σ∞
11 + ε (∇xϕ)2 , (114)

where σ∞
11 is the coordinate-independent normal stress inside

the grains. The site-generation equilibrium condition is ω −
σ11 = 0 (see Sec. VI B3).

Using the above equations, we have

gv + kT ln cv = σ∞
11 �, (115)

which can be rewritten as

kT ln
cv

c0
v

= σ∞
11 �, (116)

where c0
v is the equilibrium vacancy concentration in the

absence of normal stress. The obtained Eq. (116) reproduces
Herring’s relation for the effect of stresses on the vacancy
concentration in solids.3,52

Using Eq. (114), the equilibrium grand-potential density
across the GB becomes

ω(x) = σ∞
11 + ε (∇xϕ)2 (117)

with ω∞ = σ∞
11 inside the grains.

The GB free energy γ is computed as the excess of ω over
the homogeneous grains:

γ =
∫ ∞

−∞
[ω(x) − ω∞]dx = ε

∫ ∞

−∞
(∇xϕ)2 dx =

√
εW

18
.

(118)

The interface stress of the GB is isotropic, τ22 = τ33 ≡ τ , and
is computed as the excess of σ22. Using Eqs. (101) and (114),

σ22(x) = ν

1 − ν
σ∞

11 + E

1 − ν
ε22 + ε

ν

1 − ν
(∇xϕ)2 , (119)

where only the last term contributes to the excess. Thus

τ =
∫ ∞

−∞

[
σ22(x) − σ∞

22

]
dx = ε

ν

1 − ν

∫ ∞

−∞
(∇xϕ)2 dx

= ν

1 − ν

√
εW

18
. (120)

We see that in this particular model γ and τ are proportional
to each other and independent of the stressed state of the
grains. They are generally different unless the materials is
incompressible (ν = 1/2).

We can also compute the GB excess volume E11 per unit
area as the excess of the strain component ε11. Using Eq. (102),

ε11(x) = (1 + ν)(1 − 2ν)

E(1 − ν)
σ∞

11 − 2ν

(1 − ν)
ε22

+ ε
(1 + ν)(1 − 2ν)

E(1 − ν)
(∇xϕ)2 , (121)

where only the last term contributes to the excess. Thus

E11 = ε
(1 + ν)(1 − 2ν)

E(1 − ν)

∫ ∞

−∞
(∇xϕ)2 dx = (1 + ν)(1 − 2ν)

E(1 − ν)
γ,

(122)

where we used Eq. (118). In this model, the GB excess volume
is proportional to the GB free energy. For an incompressible
material (ν = 1/2) we correctly obtain E11 = 0.

C. Dynamics of creep

1. Dynamic equations

We now consider irreversible processes involving vacancy
diffusion, site generation, and GB motion. Due to the simpli-
fied geometry of this example, we will obviously not be able to
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model a real three-dimensional creep process taking place in
polycrystalline materials. However, several elementary steps
of this process can be reproduced and studied.

The dynamic equations of the system are based on
Eqs. (94), (98), and (99) adapted to this model. Neglecting
all cross-effects, we have

JL
x = −L

T
∇xM, (123)

∂ϕ

∂t
+ vL∇xϕ = −B

T

[
w′ (ϕ) − ε∇2

xϕ
]
, (124)

Rn = −Brr

T
(ω − σ11) (125)

with three kinetic coefficients L, B, and Brr . Here vL is the
lattice velocity and Rn is the creep deformation rate (i.e., rate
of the sample elongation or compression) in the x-direction.
In keeping with the first-order approximation in stress adopted
here, we replace the elastically deformed site volume � by its
stress-free value �0. In addition, Rn = ∇xvL − ε̇11 (ε̇11 being
the elastic tensile strain rate) will be approximated by simply
∇xvL. This approximation is applicable to steady-state creep
under a sustained load when the elastic deformation does not
practically change with time while the permanent deformation
due to creep increases and may reach tens of per cent. In this
regime, this approximation should work. Finally, we assume
that the system maintains mechanical equilibrium at all times
and thus Eq. (114) remains satisfied.

The diffusion equation (123) can be conveniently reformu-
lated in terms of the vacancy flux JL

xv = −JL
x and the vacancy

site fraction cv . Taking into account that cv 
 1, we have

JL
xv = −Dv∇x

cv

�0
, (126)

where Dv = k�0L/cv is the vacancy diffusion coefficient
assumed to be constant. Rewriting also the continuity equation
(4) in terms of cv , we finally obtain the vacancy diffusion
equation

∂cv

∂t
+ vL∇xcv − Dv∇2

x cv = ∇xvL. (127)

The driving force for site generation is (ω − σ11), which by
Eqs. (108) and (114) equals

kT

�0
ln

cv

c0
v

− σ∞
11 + w (ϕ) − 1

2
ε (∇xϕ)2 . (128)

The kinetic coefficient controlling the site generation is
postulated in the form

Brr

T
= Brw (ϕ) , (129)

where Br is a constant. This form ensures that site generation
occurs only within the GB region and not inside the grains
where w (ϕ) 
 1. Thus the site generation equation (125)
becomes

∇xvL = −Brw (ϕ)

[
kT

�0
ln

cv

c0
v

− σ∞
11 + w (ϕ) − 1

2
ε (∇xϕ)2

]
.

(130)

The three equations (124), (127), and (130) with appropriate
initial and boundary conditions describe the entire dynamics
of our system in the deformed configuration.

2. Numerical examples

For numerical calculations it is convenient to nondi-
mensionalize the above equations. We introduce the di-
mensionless time τ = 2WDvt/ε, dimensionless coordinate
ξ = x

√
2W/ε, dimensionless lattice velocity η = ∂ξL/∂τ =

(
√

ε/2W/Dv)vL, and normalized vacancy concentration ζ =
cv/c

0
v . In terms of these variables, the equilibrium interface

thickness is approximately �ξ ∼ 1 and the diffusion time
across the interface is approximately �τ ∼ 1. The dynamic
equations to be solved take the form

∂ϕ

∂τ
= −η

∂ϕ

∂ξ
− βϕ

[
ϕ

(
2ϕ2 − 3ϕ + 1

) − ∂2ϕ

∂ξ 2

]
, (131)

∂ζ

∂τ
= −η

∂ζ

∂ξ
+ ∂2ζ

∂ξ 2
+ 1

c0
v

∂η

∂ξ
, (132)

∂η

∂ξ
= −βsϕ

2 (1 − ϕ)2

{
ln ζ − aσ + aw

[
ϕ2 (1 − ϕ)2

−
(

∂ϕ

∂ξ

)2 ]}
. (133)

Here,

βϕ = Bε

DvT
(134)

and

βs = BrεkT

2�0Dv

(135)

are dimensionless kinetic coefficients characterizing the rates
of the phase-field evolution and site generation, respectively,
relative to diffusion. The two other dimensionless parame-
ters, aσ = σ∞

11 �0/kT and aw = W�0/kT , characterize the
strength of the applied stress and the phase-field barrier,
respectively, relative to the thermal energy kT .

The system of equations (131)–(133) was solved numeri-
cally on an interval 0 � ξ � L. The GB was initially placed
at ξ = L/2 by solving Eq. (131) with η ≡ 0 and the boundary
conditions

ϕ(0,τ ) = 0, ϕ(L,τ ) = 1. (136)

The obtained phase-field profile was very close to the infinite-
system solution (112). The boundary conditions (136) were
maintained throughout the subsequent calculations. The equi-
librium vacancy concentration was chosen to be c0

v = 10−4.
This is an order of magnitude larger than typical experimental
values at the melting point of metals. However, the choice was
dictated by computational efficiency and was deemed to be
sufficient for qualitative demonstration of the effects.

For the velocity field η(ξ,τ ), we used the initial condition
η(ξ,0) = 0 and the boundary condition η(0,τ ) = 0, which
fixes the position of the left end of the left grain. For
the vacancy concentration field ζ (ξ,τ ), we used different
initial conditions as specified below. Under these boundary
conditions, the system is open at its right end (ξ = L) where
the atoms as well as crystal planes are allowed to enter or leave
the system.

Example 1. We first consider a stress-free (aσ = 0) bicrys-
tal of length L = 800. The initial state is a uniform vacancy
oversaturation with concentration ζ = 100. We impose a
zero-flux condition ∂ζ/∂ξ = 0 at the left end (ξ = 0) and
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FIG. 2. (Color online) Dimensionless profiles of (a) vacancy
concentration ζ (initial value ζ = 100), (b) lattice velocity η and
(c) phase field ϕ. The time τ is indicated in the legends. The model
parameters are βϕ = 1, βs = 0.8, aσ = 0 (no stress), and aw = 0.5.
Note that the phase-field profile is drifting to the left (indicated by
the arrow) reflecting GB migration.

a fixed-concentration condition ζ (L,τ ) = ζ (L,0) at the right
end. In the absence of the GB or when the latter is unable
to generate/eliminate sites (βs = 0), this initially uniform
concentration profile will not change with time. When βs > 0,
the GB starts to eliminate excess vacancies, creating a local
concentration minimum (see Fig. 2). With time, this minimum
deepens and widens as the vacancy concentration in the
GB reaches its equilibrium value ζ = 1. This process is
accompanied by elimination of crystal planes in the GB region

resulting in shortening of both grains and thus a flow of the
right grain to the left. This explains the uniform negative
velocity field on the right of the GB. The GB itself also moves
to the left, although slower than the right grain. Since the
vacancy concentration is small, vacancies from vast lattice
volumes must be absorbed to eliminate even a single lattice
plane. It is not surprising, therefore, that the GB displacement
is much smaller than the width of the vacancy diffusion zone
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FIG. 3. (Color online) Dimensionless profiles of (a) vacancy
concentration ζ (initial value ζ = 1), (b) lattice velocity η, and
(c) phase field ϕ. The time τ is indicated in the legends. The
model parameters are βϕ = 1, βs = 0.8, aσ = 4.6 (tensile stress),
and aw = 0.5. Note that the phase-field profile is drifting to the right
(indicated by the arrow) reflecting GB migration.
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around the boundary, which eventually reaches the size of the
sample.

Example 2. Next we consider the same bicrystal (L = 800)
subject to the same boundary conditions. Suppose it has been
equilibrated at zero value of the tensile stress. At a moment τ =
0, the stress is suddenly raised to a value aσ = 4.6 (tension)
corresponding to the new equilibrium vacancy concentration
ζ ≈ 99.5. To reach it, the GB generates vacancies producing
a concentration maximum that grows and widens with time
(see Fig. 3). The vacancy generation occurs by embedding
extra crystal planes on either side of the GB, which results in
the motion of the right grain as well as the GB to the right.
In this example, the application of the tensile stress causes
the growth of both grains by accretion of material in the GB
region, resulting in creep deformation of the sample. As in the
previous case, the GB displacement is small in comparison
with the width of the diffusion zone due to the small vacancy
concentration.

Example 3. Suppose the bicrystal is stress free and a
vacancy concentration gradient has been created around the
initial GB position. Computationally, this has been achieved by
creating a linear vacancy concentration profile increasing from
ζ = 0 at ξ = 0 to ζ = 2 at ξ = L and keeping these boundary
values fixed (see Fig. 4). To amplify the concentration gradient,
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FIG. 4. (Color online) Dimensionless profiles of (a) vacancy
concentration ζ and (b) phase field ϕ. The time τ is indicated in
the legends. The model parameters are βϕ = 1, βs = 0.8, aσ = 0,
and aw = 0.5. The arrow indicates the trans-gradient induced GB
migration to the right.
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FIG. 5. (Color online) (a) Dimensionless profiles of the lattice
velocity η and (b) the GB velocity ηGB and the velocity of the right
grain as functions of time τ . In (a), the time τ is indicated in the
legends. The model parameters are βϕ = 1, βs = 0.8, aσ = 0, and
aw = 0.5.

this calculation was performed in a smaller system with
L = 40. Note that in its initial position at ξ = L/2, the GB sees
the equilibrium concentration ζ = 1. Thus this calculation is
a test of the GB response to a vacancy concentration gradient
around the equilibrium value.

Due to the concentration gradient, the vacancies are initially
oversaturated on the right of the GB and undersaturated on
the left. To approach equilibrium, excess vacancies must be
eliminated by the GB on its right and generated on its left.
This process is accompanied by elimination of crystal planes
on the right and creation of new crystal planes on the left. As a
result, locally within the GB region, the left grain grows while
the right grain shrinks, causing GB migration to the right. This
site generation/annihilation process results in the positive peak
of the lattice velocity in the GB region (see Fig. 5). The small
bump near the center of the peak is a nonclassical effect which
originates from the deviation of the system from phase-field
equilibrium [the term multiplying aw in Eq. (133)]. The fact
that the right grain has a negative velocity indicates that the
net vacancy balance is slightly shifted towards annihilation. It
is also observed that the height of the velocity peak decreases
with time and drifts to the right together with the GB.

This example demonstrates an interesting effect in which a
GB can be moved by a trans-gradient of vacancy concentration,
a phenomenon which could be observable experimentally. To
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provide an additional proof of this effect, the calculation was
repeated with the opposite sign of the vacancy concentration
gradient but the same boundary values of the phase field. As
expected, the gradient caused the GB to migrate to the left with
a nearly identical magnitude of the velocity.

VIII. SUMMARY AND CONCLUSIONS

The proposed theory of creep takes classical solid-state
thermodynamics10–13 as the starting point and generalizes it in
at least two ways. First, we have lifted the “network constraint”
and allowed lattice sites to be created or destroyed with a
rate that can be a continuous function of coordinates and
in addition can depend on crystallographic direction. This
has been achieved by introducing two different deformation
gradients co-existing in the same material, one describing
local lattice distortions due to elastic strains, compositional
strain and thermal expansion, and the other describing the total
deformation including the permanent distortion produced by
the creation and annihilation of lattice sites. The difference
between the two represents the amount of creep deformation.
Accordingly, its time derivative R defined by Eq. (49) is
identified with the creep deformation rate. Similar to recent
work7,8 and by contrast to other creep theories, the creep
deformation rate is a tensor that encapsulates both the
volume tension and compression due to the net production
or elimination of vacancies, and pure shear deformation by
concurrent site generation and annihilation without altering
the total number of sites.

The particular formulation of the theory presented in this
paper relies on the assumption of a substitutional solid solution
with a Bravais lattice. Accordingly, for a heterogeneous
material, its phases are assumed to be “coherent” with each
other, i.e., derivable from the same reference structure by affine
distortions. Furthermore, our treatment of the deformation
gradient F̃ as a continuous function of coordinates implies
that interfaces between the phases are coherent. In the future,
this version of the theory can be generalized to solids with
interstitials and nonBravais lattices, permitting a more general
treatment of the structures of the phases and interphase
interfaces. In the equilibrium limit, such a theory should
reproduce the recently developed thermodynamic treatment
of coherent solid-solid interfaces.53,54

The tensor R reflects the symmetry of the material’s
microstructure and the operation of particular site generation
mechanisms. We gave a few examples in which some of the
components of R are identically zero due to the absence of
certain site generation mechanisms or presence of geometric
restrictions. In such cases, the material can be capable of
supporting static shear stresses and can reach a (constrained)
thermodynamic equilibrium in a nonhydrostatic state of stress.
When R = 0, the theory reduces to the formulation in
which the solid is subject to the “network constraint.” If all
components of R are nonzero, the equilibrium state has to be
hydrostatic. The ultimate equilibrium state of the material is
uniform isotropic tension or compression.

The second generalization is the addition of phase fields
and their gradients, along with gradients of concentrations of
the chemical species. Owing to this nonclassical character,

the kinetic equations of the theory can automatically describe
the evolution of microstructure as part of the creep deforma-
tion process, eliminating the need to prescribe a particular
distribution of vacancy sinks and sources. For example, the
site creation and annihilation can be localized in GBs by
appropriate choice of the phase-field dependence of the kinetic
coefficient controlling the site generation rate. If the GB
moves, the vacancy sinks and sources will move together
with it.

The entropy production rate derived herein identifies several
dissipation mechanisms in the material: conduction of heat,
diffusion of chemical species, evolution of the phase fields,
viscous dissipation (e.g., by phonons), and finally site creation
and annihilation. It also identifies the generalized forces
and generalized fluxes corresponding to different dissipation
mechanisms. It particular, the creep deformation rate R is
identified as one such flux and the thermodynamic force
driving the creep deformation is found to be (σ̃ − ωI) /T ,
where ω is the nonclassical grand potential density and σ̃

is the classical recoverable stress tensor. Diffusion is driven
by gradients of the nonclassical diffusion potentials M∗

i and
viscous dissipation by the deviation of the dynamic stress
tensor σ from the nonclassical (Korteweg) stress (σ̃ + A∗).
The latter gives rise to interface stresses, which are thus
automatically included in this theory.

In formulating phenomenological relations between the
fluxes and forces, we take into account the symmetry properties
of the material.6 The symmetry analysis is prepared by
partitioning the entropy production into groups of terms
with the same tensor character. The existence or absence of
coupling between different groups is established by analyzing
the effect of the symmetry operations on the terms with
a particular tensor character. The case of a fully isotropic
material is analyzed in greatest detail. The splitting of the creep
deformation rate R into the volume and shear components
emerges as a result of this coupling analysis, with each
component driven by a different thermodynamic force. The
case of axial symmetry is also discussed as an example of
less symmetric materials. In this case, the volume and shear
components of R are inseparable and merge into a single tensile
deformation rate Rn = n · R · n, where n is the unit vector
parallel to the axis of symmetry. Rigorous analysis of other
symmetries relevant to particular classes of materials would
be an interesting direction for future work.

The obtained phenomenological equations can be used for
formulating a set of kinetic equations describing the evolution
of the material during creep deformation. This requires input
in the form of a thermodynamic equation of state, coordinate
and time dependencies of the kinetic coefficients and other
specific properties of the material. While this theory awaits
applications to real materials, it is illustrated in this paper
by a simple one-dimensional example of a bicrystal with a
GB acting as a sink and source of vacancies. The kinetic
equations have been formulated and solved numerically for
three different cases. The calculations demonstrate how the
vacancy generation or absorption due to deviations from
vacancy equilibrium or caused by applied stresses can induce
not only creep deformation of the sample but also GB
migration (moving vacancy sink/source). The calculations
also reveal an interesting effect of GB motion induced by
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a vacancy concentration gradient across the boundary. This
transgradient induced GB migration might occur in processes
such as radiation creep and deserves further study in the
future.
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APPENDIX A: EXACT MOMENTUM AND ENERGY
BALANCE RELATIONS

In this appendix, we derive the exact momentum and energy
balance relations with respect to the lattice.

1. Momentum balance

Consider a fixed control region of a volume V . The rate of
the total linear momentum P of the region is

dP
dt

=
∫

V

∂

∂t
(ρv) dV +

∫
∂V

n∑
i=1

minivi (vi · n) dA, (A1)

where the second integral represents the momentum dissipa-
tion through the boundaries. Here, n is a unit normal pointing
outside the region and dA is an increment of area of the
boundary. All other notations have been defined in the main
text. Applying the divergence theorem,

dP
dt

=
∫

V

[
∂

∂t
(ρv) + ∇ · Z

]
dV, (A2)

where

Z ≡
n∑

i=1

minivivi = ρvLvL + vLq + qvL + M. (A3)

On the other hand, the total force acting on the region is

F =
∫

V

bdV +
∫

∂V

n · σdA =
∫

V

(b + ∇ · σ ) dV. (A4)

Writing down the Newton law dP/dt = F, we obtain the
momentum balance equation in the barycentric formulation,

∂

∂t
(ρv) + ∇ · Z = b + ∇ · σ . (A5)

Using the mass conservation relation

∂ρ

∂t
= −∇ · (ρv) , (A6)

it can be shown that

∂

∂t
(ρv) = ρ

dLvL

dt
+ dLq

dt
− ∇ · (ρvLvL) − vL∇ · q

− vL · ∇q. (A7)

Combining the above equations, we obtain the momentum
balance equation in the lattice representation:

ρ
dLvL

dt
= b + ∇ · (σ − M) − dLq

dt
− q∇ · vL − q · ∇vL.

(A8)

2. Energy balance

The internal energy density u was defined in the main text
through the total energy ansatz (20). This internal energy
appears in De Groot and Mazur,6 where it is denoted u∗,
but most of their discussion is focused on an approximate
internal energy defined by replacing K by only the barycentric
kinetic energy ρ|v|2/2. Although this approximation greatly
simplifies all equations, our calculations will be based on the
full kinetic energy K .

The energy balance is governed by the energy conservation
law,

∂e′

∂t
+ ∇ · (

e′vL + JL
u + JL

K

) = ẇ, (A9)

where ẇ is the rate of mechanical work per unit volume, e′ ≡
e − ψ is the energy without the potential energy since the latter
is already included in ẇ, JL

u is the internal energy flux and JL
K

is the kinetic energy flux relative to the lattice. The internal
energy rate

dLu

dt
+ u∇ · vL

= −∇ · (JL
u + JL

K

) + ẇ −
(

dLK

dt
+ K∇ · vL

)
(A10)

can be derived by computing the terms appearing in the right-
hand side.

To compute ẇ, we consider a material region bounded by
a set of moving markers. The total work rate on this region
includes the work of volume forces and the work of stress
acting on its boundary,

Ẇ =
∫

V

n∑
i=1

nibi · vidV +
∫

∂V

n · σ · vLdA

=
∫

V

[
n∑

i=1

nibi · vi + ∇ · (σ · vL)

]
dV, (A11)

from which

ẇ =
n∑

i=1

bi · JL
i + vL · (b + ∇ · σ ) + σ : ∇vL· (A12)

The kinetic energy (21) can be split into three terms,

K = KL + Kd + q · vL, (A13)

where

KL = 1

2
ρ|vL|2 (A14)

is the macroscopic kinetic energy of the lattice motion and

Kd =
n∑

i=1

mi

2ni

JL
i · JL

i = 1

2
Tr(M) (A15)
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is the kinetic energy of diffusion. Calculations show that

dLKL

dt
+ KL∇ · vL = ρ

dLvL

dt
· vL − 1

2
|vL|2∇ · q, (A16)

dLKd

dt
+ Kd∇ · vL

= −
n∑

i=1

mi

2n2
i

(
JL

i · JL
i

)∇ · JL
i +

n∑
i=1

miJL
i · dLwi

dt
, (A17)

dL

dt
(q · vL) + (q · vL) (∇ · vL)

= q · dLvL

dt
+ vL · dLq

dt
+ (q · vL) (∇ · vL) , (A18)

where we denoted wi ≡ vi − vL. Summing up Eqs. (A16),
(A17), and (A18), we obtain kinetic energy rate

dLK

dt
+ K∇ · vL

= (ρvL + q) · dLvL

dt
+ vL · dLq

dt
+ (q · vL) (∇ · vL)

−1

2
|vL|2∇ · q −

n∑
i=1

mi

2n2
i

(
JL

i · JL
i

)∇ · JL
i

+
n∑

i=1

mi

ni

JL
i · dLwi

dt
. (A19)

For the lattice flux of kinetic energy, we have

JL
K =

n∑
i=1

1

2
mini (vi · vi) (vi − vL)

=
n∑

i=1

mi

2n2
i

(
JL

i · JL
i

)
JL

i + 1

2
q|vL|2 + M · vL. (A20)

Inserting Eqs. (A12), (A19), and (A20) in the right-hand
side of Eq. (A10), after lengthy calculations, we finally obtain

dLu

dt
+ u∇ · vL = −∇ · JL

u +
n∑

i=1

bi · JL
i + (σ − M) : ∇vL

−
n∑

i=1

{
∇

[
mi

2n2
i

(
JL

i · JL
i

)] +mi

dLvi

dt

}
· JL

i .

(A21)

APPENDIX B: JUSTIFICATION OF THE APPROXIMATE
FORM OF THE ENTROPY PRODUCTION

In the main text, we derived the exact expression for the
entropy production rate (72). Deriving the linear constitutive
relations we assumed that the fluxes and forces were both
small. Under this linear approximation, all terms quadratic
in fluxes and/or forces must be neglected. Tensor M defined
by Eq. (18) is quadratic in the diffusion fluxes JL

i and can
be neglected. Further, the term mi(Ji · Ji)/2n2

i in the driving
force of diffusion is also quadratic in diffusion fluxes and can
also be neglected.

Furthermore, for slow processes such as creep, the inertia
terms mid

Lvi/dt can be neglected after a short transient. To
demonstrate this, consider an isotropic material not subject

to external fields. Assuming a uniform temperature field,
diffusion is decoupled from all other processes and is described
by the equations

JL
i = − 1

T

n∑
j=1

Lij

(
∇M∗

j + mj

dLvj

dt

)
, i = 1, . . . ,n,

(B1)

where the n × n matrix of kinetic coefficients L is symmetric
and positive definite.

Rewrite (B1) as

JL
i = − 1

T

n∑
j=1

Lij

(
∇M∗

j + mj

dLwj

dt
+ mj

dLvL

dt

)
,

i = 1, . . . ,n (B2)

and consider the effect of each inertia term separately. To
understand the role of the first inertia term, suppose all
other driving forces are zero. Neglecting also the cross-effects
among the diffusion fluxes, the diffusion equations reduce to

wi = −miLii

T ni

dLwi

dt
≡ −τi

dLwi

dt
, i = 1, . . . ,n. (B3)

Assuming that

τi = miLii

T ni

(B4)

is a slow-varying function of time, Eq. (B3) have approxi-
mately exponential solutions wi ∝ exp(−t/τi) showing that
any initial acceleration of the particles relative to the lattice
damps after a characteristic time τi . Thus, for processes
occurring on time scales much longer than τi , the inertia terms
mjd

Lwj /dt can be neglected.
To evaluate typical values of τ , take one of the species,

say 1, and express the kinetic coefficient L11 through the
diffusion coefficient D1 via L11 = n1D1/kB , which gives τ =
m1D1/(kBT ). Taking the molecular weight of 100 a.m.u., the
upper bound of the diffusion coefficients in solids D1 = 10−9

m2/s and the temperature of 1000 K, we obtain τ ≈ 10−14 s. At
lower temperatures, τ is even smaller. Thus the time scale of
damping of the inertia terms is much smaller than the typical
time scale of creep tests (many hours).

The inertia terms mid
LvL/dt originate from the accelerated

lattice motion due to applied mechanical stress as well as the
site generation and other relatively slow processes. Before the
material reaches mechanical equilibrium, the lattice velocities
can be very high, possibly comparable with the speed of
sound, and the inertia force mid

LvL/dt can be significant. But
the subsequent creep deformation is a slow process in which
the material maintains mechanical equilibrium and dLvL/dt

reflects only the slow changes in the creep deformation rate.
As a crude estimate, the magnitude of the lattice acceleration
is related to variations in the creep deformation ε̇ by

dL ln |vL|
dt

≈ d ln ε̇

dt
. (B5)

During the steady-state creep, ε̇ remains nearly constant
and depends only on the applied stress and temperature, so
that the inertia terms mid

LvL/dt can be neglected. During the
primary and tertiary stages, the right-hand side of Eq. (B5) still
remains small. For example, typical steady-state creep rates in
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metallic alloys are ε̇ ≈ 10−6 to 10−3 s−1. During the primary
and tertiary stages, the rate changes by at most an order of
magnitude over hundreds of hours. Thus, as an upper bound
ε̈ ≈ 10−7 s−2, and thus dL ln |vL|/dt ≈ 0.1 s−1.

To show that the inertia effects are negligible, we combine
the particle conservation law with the diffusion equation for
species i,

JL
i = − 1

T
Lii

(
∇M∗

j + mi

dLvL

dt

)
, (B6)

in which we again neglected the cross effects among the
fluxes. Treating the kinetic coefficient as a constant,

∂ni

∂t
= − 1

T
Lii∇2M∗

j − ∇ ·
(

nivL − 1

T
Liimi

dLvL

dt

)
.

(B7)

The ratio of the second term to the first inside the divergence
is on the order of

Liimi

T ni

dL ln |vL|
dt

= τi

dL ln |vL|
dt

, (B8)

where τi is the characteristic time (B4). The latter was
estimated to be ∼10−14 s. Thus the inertia term in Eq. (B7)
is more than ten orders of magnitude smaller than the normal
term nivL, reducing the diffusion equation to the usual
form

∂ni

∂t
= − 1

T
Lii∇2M∗

j − ∇ · (nivL) . (B9)

These estimates justify the approximate form (73) of the
entropy production for creep applications.
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