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Pressure-induced bcc to hcp transition in Fe: Magnetism-driven structure transformation
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The pressure induced bcc to hcp transition in Fe has been investigated via ab initio electronic structure
calculations. It is found by the disordered local moment (DLM) calculations that the temperature induced spin
fluctuations result in the decrease of the energy of Burgers type lattice distortions and softening of the transverse
N -point T A1 phonon mode with [110] polarization. As a consequence, spin disorder in an system leads to the
increase of the amplitude of atomic displacements. On the other hand, the exchange coupling parameters obtained
in our calculations strongly decrease at large amplitude of lattice distortions. This results in a mutual interrelation
of structural and magnetic degrees of freedom leading to the instability of the bcc structure under pressure at
finite temperature.
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I. INTRODUCTION

Since many years, considerable effort has been made
to investigate the problem of nucleation and growth of a
new phase upon martensitic transformation. Despite these
attempts, there is no clear understanding so far of the atomic
scale mechanism of the bcc-hcp reconstructive transformation
occurring even in nonmagnetic materials. In the case of
Fe—considered here—there are convincing arguments, both
from theoretical and experimental sides, that magnetism plays
a crucial role for the stability of bcc structure, making the
problem more complicated.1–6

The bcc-hcp transformation observed in nonmagnetic ma-
terials has been extensively discussed in the literature.7–12 The
corresponding mechanism suggested by Burgers13 consists in
two types of simultaneous distortions (see Appendix, Fig. 9):
(i) opposite displacement of adjacent (110) planes along the
[110]bcc direction, described by the parameter δ, associated
with the transverse N -point T A1 phonon mode with [110]
polarization; (ii) shear deformation along the [001] direction,
characterized by the angle θ between the diagonals in (110)
plane, which should change from 109.5◦ in the case of bcc
structure to 120◦ in the case of hcp structure. The shear
modulus is determined by the slope of the T A1 phonon branch
[ξ,ξ,2ξ ] with [111] polarization.

Note that even for nonmagnetic materials a phenomeno-
logical description of this type of martensitic transformation
is not straightforward: as pointed out in the literature,7–12 the
transition is discontinuous, having large critical displacements
and no group-subgroup relationship between the symmetries
of the initial and final phases. This causes problems for a
Landau free energy expansion with respect to an order param-
eter. To deal with first-order transitions, the phenomenological
Landau theory was extended7,8,14 using two order parameters
representing shuffle and shear deformations and have been
applied rather successfully to the bcc-hcp phase transitions in
Ti15 and Zr,16 associated with the softening of the N point T A1

phonon mode. According to these theoretical findings, already
small phonon softening (as it takes place in the case of Ti and
Zr) can be sufficient for a first order transformation.4,14–16

The theoretical approach used for nonmagnetic systems has
been applied to Fe, showing the important role of magnetism.
In contrast to the nonmagnetic bcc metals mentioned above,
no softening of the N point phonon modes have been observed
under pressure neither experimentally up to 10 GPa17–19

nor theoretically.3,20 However, some DFT based theoretical
investigations report about the key role of the shear stress in
Fe under pressure for the bcc-hcp transition.21,22 Their role has
been investigated by Sanati et al.14 in application to Ti and Zr
showing that the bcc structure in these materials is completely
stable with respect to shear deformation and only the N point
phonon mode is responsible for bcc-hcp transformation.

Ab initio investigations by Ekman et al.3 clearly showed that
the stability of the bcc phase of Fe is due to magnetic ordering.
They have shown that the Burgers type of lattice distortion
results in the transition to the paramagnetic state at a certain
amplitude of the atomic displacements and that way to the
instability of the bcc structure. Liu and Johnson4 have analyzed
the potential-energy surface and minimum-energy pathway
obtained within ab initio calculations and have also found that
the magnetization collapse during the shuffle-shear (Burgers
type) deformation leads to the instability of the bcc phase of Fe
under pressure. A new mechanism for the bcc-hcp transition
was suggested recently by Dupé et al.23 pointing out that the
shuffle and shear deformations in bcc Fe have different time
scales that allows their independent treatment. The authors
stress also that the new mechanism requires some peculiar
magnetic order for the distorted state, which is different from
the magnetic order of bcc and hcp phases.

To investigate experimentally the role of magnetism in
the bcc-hcp transformation, Mathon et al.2 have performed
measurements of near edge x-ray absorption (XANES) includ-
ing a determination of the x-ray magnetic circular dichroism
(XMCD) for Fe under pressure. The high sensitivity of XMCD
allows very precise measurements of the ordered magnetic
moment on the absorber at the magnetic phase transition
and to observe its correlation with the local geometrical
structure monitored via XANES. The pressure dependence of
the XMCD and XANES spectra around the transition pressure
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suggests that the magnetic transition slightly precedes the
structural one. This finding allowed the authors to ascribe a
leading role in the bcc-hcp transformation to the magnetic
order in the system. Nevertheless, this interrelation requires
further clarification, because, in general, the vanishing of
magnetism should lead immediately to the instability of the
bcc state and therefore, no difference in the transition pressure
deduced from XANES and XMCD spectra should be expected.

Although these results give information on the origin of
the pressure induced instability of bcc Fe and showing the
minimal-energy pathway for the transition, there is still the
question how the instability condition, which needs a certain
phonon softening under pressure occurs while no softening
could be found. One possible way has been suggested by
Vul and Harmon24 in their fluctuationless mechanism for
martensitic transformations triggered by the defects presented
in the crystal. In the present work, we analyze the conditions
that can result in the instability in perfect bcc Fe via
lattice fluctuations, in particular, the effect of temperature
induced spin fluctuations for the bcc-hcp transition. These
investigations in particular give an answer to the question,
why the decrease of the XMCD signal slightly precedes that
of the XANES signal corresponding to bcc structure upon a
pressure increase.

II. THEORETICAL INVESTIGATIONS

A. Details of calculations

Spin-polarized electronic structure calculations have been
performed using the spin-polarized KKR (Korringa-Kohn-
Rostoker) Green’s function method25 in the fully relativistic
approach. The generalized gradient approximation (GGA)
for density functional theory was used with the exchange-
correlation potential due to Perdew, Burke, Ernzerhof (PBE).26

The potential was treated within the full potential (FP) scheme.
For the angular momentum expansion of the Green’s function,
a cutoff of lmax = 4 was applied. To treat spin disorder in the
system, the self-consistent coherent potential approximation
(CPA) method was employed. For the calculation of the x-ray
absorption coefficient μ�qλ, the following expression has been
used:

μ�qλ(ω) ∝
∑

i occ

〈�iX̂�qλ �G+(Ei + ω) X̂×
�qλ

�i〉�(Ei + ω − EF ),

(1)
where �q, ω, and λ stand for the wave vector, frequency, and
polarization of the radiation, and X̂�qλ is the electron-photon
interaction operator.27

The finite temperature magnetic properties have been
investigated via Monte Carlo (MC) simulations based on
the classical Heisenberg model, using a standard Metropolis
algorithm.28 The exchange coupling parameters Jij for these
calculations are obtained within the approach described by
Lichtenstein.29,30

B. Total energy calculations for the bcc-structure

Figure 1 represents the results of total energy calculations
for bcc Fe in ferromagnetic (FM) and nonmagnetic (NM)
states as well as for hcp structure in the NM state. (Below, we

60 70 80
Volume per atom ((a.u.)3)

0

20

40

60

Pr
es

su
re

 (G
Pa

)

50 60 70 80 90
Volume per atom ((a.u.)3)

0

0.2

0.4

0.6

En
er

gy
 (e

V
/a

to
m

)

hcp, NM 

bcc, FM

bcc, NM

(a)

(b)

FIG. 1. (Color online) (a) Total energy as a function of volume
for ferromagnetic (FM) and nonmagnetic (NM) states of bcc-Fe as
well as for NM state of hcp-Fe. (b) Pressure as a function of volume
for bcc-Fe.

will use the notation NM and PM to denote the nonmagnetic
state with with zero magnetic moments and the paramagnetic
state implying a random distribution of the localized magnetic
moments, respectively.) The calculations for the hcp structure
have been performed at a fixed c/a ratio equal to 1.596.
According to the results shown in Fig. 1, the minimum of the
total energy corresponds to the equilibrium lattice parameter
a = 5.37 a.u. in the case of the FM state of bcc-Fe, and in the
case of hcp-Fe, to a = 4.66 a.u. The critical pressure evaluated
from the equivalence of the enthalpy of the bcc and hcp phases
is equal to 8 GPa in reasonable agreement with experiment.

The FM to NM transition leading to the instability of the
bcc structure occurs at the lattice parameter a ≈ 4.6 a.u. [V ≈
48.7 (a.u.)3, Fig. 1] that corresponds to a pressure of about
200 GPa. This value is much too high when compared directly
to experiment. Therefore this type of instability does not seem
to play a role for the real system.

C. Total energy calculations for the distorted bcc Fe

The energy of Burgers type lattice distortion in bcc Fe
have been calculated first assuming FM order in the system.
In contrast to the works of Ekman3 and Vul and Harmon,24

where the authors used two parameters θ and δ to describe the
shear deformation within the (110) plane and displacements
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of the neighbor (110) planes with respect to each other (see
Introduction), in the present investigations we consider the
path from bcc to hcp transformation as suggested by Friak
and Sob,31 which includes both deformations using only one
parameter 	 (see Appendix). This approach avoids the high-
energy configurations occurring upon independent variation
of the parameters δ and θ , accounting only those being close
to the minimum total energy path.31 The parameter 	 = 0
corresponds to the bcc structure, while 	 = 1 corresponds
to the hcp structure with c/a = √

8/3. As soon as additional
calculations (not presented here) exhibit only a weak depen-
dence on the c/a ratio for the position of the minimum of
total energy as a function of lattice parameter, the following
discussion concerns the results for c/a = √

8/3 for the sake
of convenience.

Figure 2 represents the total energy as a function of
the parameter 	, E(	), for different lattice parameters a

corresponding to different pressure values. The E(	) curves
have two minima corresponding to the FM bcc structure (	 =
0) and NM hcp structure (	 = 1), which is a quasi-equilibrium
state. At low pressure, the FM bcc structure of Fe is more
stable, while as pressure increases, the energy of the NM hcp
structure becomes deeper leading to the stability of this state.
Note that the E(	) curves (see Fig. 2) calculated for three
different pressure values (or, equivalently, lattice parameters
a equal to 5.1, 5.2, and 5.3 a.u.) for the FM state of Fe,
have nearly the same dispersion. This is in line with previous
phonon calculations exhibiting no softening of the N -point
phonon modes under pressure as discussed above.

As follows from Fig. 1, the NM state of bcc Fe is higher
in energy than the FM state. EFM(	) increases while ENM(	)
decreases monotonously with 	 varying from 0 to 1 (open
symbols in Fig. 2), indicating the instability of NM bcc Fe
with respect to this type of distortions, in line with the results
on phonon calculations.3,20 The “critical” distortion values,
	c, correspond to the cross-points of the total energy curves
as functions of the lattice distortion 	, calculated for the FM
[EFM(	)] and NM [ENM(	)] states. That is, at the critical
values of distortions, EFM(	c) = ENM(	c). The magnitude
of the energy cusps in Fig. 2, defined by Eci = ENM = EFM
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FIG. 2. (Color online) Energy as a function of the parameter
	. Full symbols correspond to the FM state, open symbols to
the NM state. The vertical arrow indicates the energy difference
	E = ENM − EFM.
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FIG. 3. (Color online) Total DOS per atom as a functions of
the parameter 	 for Pauli paramagnetic (nonmagnetic) (a) and
paramagnetic (via DLM calculations) (b) states of bcc Fe. Dashed
(dashed-dotted) lines represent spin-up (spin-down) states.

for the various lattice parameters ai , Ec1, Ec2, Ec3 and
corresponding amplitude of the “critical” distortions (	c1,
	c2, and 	c3) are getting smaller when the pressure increases.

Figure 3(a) shows the DOS, n(E), corresponding to the
NM state of distorted bcc Fe. For small distortions, n(E) has
a maximum at the Fermi level EF indicating the instability
of the NM state. This DOS maximum is formed by the
double-degenerated eg electronic energy bands. Therefore
there are two scenarios to remove the instability by breaking
the symmetry of the system: either due to structure distortion
(e.g., Burgers distortion) leading to the splitting of doubly de-
generated eg states at EF or due to spontaneous magnetization
leading to the exchange splitting of the electronic states having
opposite spin directions. At ambient pressure the second
scenario is more favorable leading to the stabilization of the bcc
structure with FM order. Under high pressure, however, due to
a reduced tendency towards spontaneous magnetization via the
Stoner mechanism the first scenario (structure distortion) could
be more preferable, as discussed by Ekman.3 The same effect
can be achieved even at lower pressure, when the amplitude
of the distortion is big enough, as demonstrated in Fig. 2 by
the “critical” points 1,2, and 3. However, in this case, the
energy barrier EFM(	c) − EFM(	 = 0) is much too high to
be overcome assuming the fluctuation mechanism of phase
transition, even at the pressure p ≈ 23 GPa (a = 5.1 a.u.),
when the hcp structure becomes energetically more preferable.

So far, we have discussed the stability of the system with
respect to lattice distortions assuming no deviations from
perfect FM order. To discuss in more details the interrelation
between the structural and magnetic degrees of freedom, the
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effect of spin moment fluctuations should also be investigated.
Moreover, such investigations are required to account for the
conditions of the experimental measurements performed at
room temperature. To take the effect of temperature induced
spin fluctuations at T > Tc into account, the paramagnetic state
with nonzero local moments of Fe was simulated using the
so-called disordered local moment (DLM) scheme describing
a random distribution of the local magnetic moments over the
lattice sites. Accordingly, discussing the results of calculations
for the PM state we will use the term “DLM state” implying
the approximation used in these calculations. The DLM
calculations are done by means of the CPA alloy theory applied
to the effective alloy, Fe+

x Fe−
1−x , with equal amount of “alloy”

component (x = 0.5) having the spin magnetic moment along
the +z direction (Fe+) and in the opposite direction (Fe−).32,33

The expression for the exchange coupling parameters29,30 in
this case has been modified to deal with the effective CPA
medium (representing the random crystal potential) described
by the effective scattering path operator. As a result, it uses the
element-projected scattering path operators associated with the
atoms having “up” and “down” magnetic moment directions
(Fe+ and Fe−), as it was discussed, e.g., in Ref. 34.

The E dependence on 	 for the PM state obtained (via
DLM) at the pressure corresponding to a = 5.2 a.u. is shown
in Fig. 4(a) by solid circles. For 	 = 0 (i.e. ideal bcc structure),
the difference EPM(	 = 0) − EFM(	 = 0) is about two times
smaller than ENM(	 = 0) − EFM(	 = 0). EPM(	) decreases
slowly with 	 varying from 0 to 1, indicating an instability of
the DLM state of bcc Fe at this pressure value. Note that the
E(	) dependence for DLM state, EPM(	), is weaker than that
corresponding to the NM state, ENM(	). This behavior can be
understood using the DOS plots shown in Fig. 3. In the case
of DLM state, one can clearly see a local DOS minimum [see
Fig. 3(b)] at the Fermi energy, created by the exchange-split
majority and minority d-states of Fe. The dependence on 	 of
the DOS obtained for DLM state is rather weak, in contrast to
the DOS obtained for the NM state [see Fig. 3(a)], having a
pronounced maximum at EF strongly modified due to Burgers
type of distortions.

However, instability of the DLM state of bcc Fe with respect
to the lattice distortion 	 occurs only at the pressure exceeding
a certain critical value [closed circles and squares in Fig. 4(b)].
In the vicinity of ambient pressure, the EPM(	) curve has a
minimum at 	 = 0 [closed triangles in Fig. 4(b)], that means
stability of this state with respect to Burgers distortions.

To simulate the magnetic disorder corresponding to the
temperature below the critical one, TC , so-called noncompen-
sated DLM (NDLM) calculations have been performed with
the NDLM state simulated by an effective alloy Fe+

1−xFe−
x with

x ∈ [0.0,0.5]. In this case, the normalized magnetic moment
M/Ms = (Msn+ − Msn−)/Ms at each lattice site is equal to
(1 − 2x), assuming Ms to be a saturated local spin magnetic
moment of the Fe atoms. Open circles in Fig. 4(a) correspond
to the NDLM state of bcc Fe (a = 5.2 a.u.) with M/Ms = 0.5.
In this case, the curve E(	) has a minimum at 	 = 0 [open
circles in Fig. 4(b)] and exhibits a slow increase with 	

increasing up to the critical displacement 	c ≈ 0.25. The total
energy ENDLM(	 = 0) decreases further, when M/Ms changes
up to M/Ms = 1, which is associated with the temperature
decrease and increase of FM order. As an example, open
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FIG. 4. (Color online) Total energy as a function of the lattice
distortion parameter 	 for bcc Fe with a = 5.2 a.u.: (a) comparison
of the results for FM (triangles), PM (DLM, closed circles), partially
disordered FM (NDLM) with noncompensated magnetic moment
M/Ms = 0.5 (opened circles), and M/Ms = 0.8 (opened squares);
(b) comparison of the DLM and NDLM (M/Ms = 0.5) results for
different lattice parameters; (c) total energy as a function of the
amplitude of the N point TA1 phonon mode for FM state (closed
triangles), NM state (opened triangles), and DLM state (closed
circles).

squares in Fig. 4(a) represent the ENDLM(	) dependence for
M/Ms = 0.8 (i.e., x = 0.1). Thus the energy of Burgers type
lattice distortions, E(	) − E(0), decreases in the presence of
temperature induced magnetic disorder and close to the PM
state (DLM state) becomes much smaller than in the case of
perfect FM order. As a consequence, this leads to an increase
of atomic displacements, caused directly by magnetic disorder
in the system.

Additional calculations have been performed to check
explicitly the influence of magnetic disorder on the energy
of the N point T A1 phonon mode (opposite displacement
of adjacent (110) planes along the [110]bcc direction), i.e.,
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without accounting for shear deformation along the [001]
direction present in the case of the Burgers type deformation.
The results are shown in Fig. 4(c). The energy dependence
E(δ) on the atomic displacements δ is rather similar to that
obtained for the Burgers deformations, shown in Fig. 4(a).
Thus these results show an explicit evidence of the crucial role
of magnetic disorder for the softening of the N point T A1

phonon mode making it responsible as the driving mechanism
for the bcc to hcp transition.

Additional investigations have been performed to show
an effect of lattice displacements on the magnetic order in
the system. Considering atomic fluctuations corresponding to
the Burgers type of lattice deformation,31 two series of the
exchange coupling parameters, Jij , have been calculated for
the DLM state: (1) for different pressure values (i.e., different
lattice parameters) for the perfect bcc structure and (2) for the
distorted bcc lattice with a = 5.2 a.u. with different distortion
parameter 	. Figure 5 shows the results for the case 1, for
which Jij values are presented together with corresponding
Curie temperatures, determined by means of MC simulation,
and exhibiting their decrease when the pressure increases.
These results are in good agreement with theoretical results
obtained by other authors within the DLM scheme34,35 despite
some differences related to the details of the calculations.
In particular, the differences can be ascribed to the different
type of exchange-correlation potential (as shown by Ruban35),
to different approximations used for the atomic potential
[e.g., ASA (atomic sphere approximation) versus FP used
in the present work], and so on. The exchange coupling
parameters Jij for distorted bcc Fe (case 2) are shown in
Fig. 6 where one can easily see that lattice Burgers distortions
are accompanied by pronounced variations of the exchange
coupling parameters. In particular, we can point out a decrease
of the FM and increase of the AFM exchange interactions
when the 	 parameter increases.

Assuming that the biggest amplitude of atomic displace-
ments is related to this type of distortions (due to their
softening), the corresponding critical temperature have been
calculated using the simulations for different values for the
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ij obtained by Böttcher et al.34

(cFe+ = cFe− = 0.5) are presented pointed by asterisks.

-10
0

10
20 Fe1-Fe1

Fe1-Fe2
Fe1-Fe3
Fe1-Fe4

-10
0

10
20

J ij (m
eV

)

1 1.5 2 2.5
Rij (units of lattice parameter)

-10
0

10
20

Δ = 0.1

Δ = 0.3

Δ = 0.5

FIG. 6. (Color online) Dependence of the exchange coupling
parameters on the amplitude of lattice distortion for bcc Fe under
pressure corresponding to lattice parameter a = 5.2 a.u. for case 2
(see text).

	 parameter [see Fig. 7(a)]. This simplified approach was
used to demonstrate the effect of atomic displacements on
the finite-temperature magnetic properties of Fe under fixed
pressure (corresponding to a = 5.2 a.u.). At small distortions,
the system has FM order with the Curie temperature decreasing
upon 	 increase. At 	 � 0.3, the system exhibits AFM
properties (noncollinear or collinear, depending on 	). The
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corresponding to the temperature T = 300 K.
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average magnetic moment calculated for different 	 values at
the temperature T = 300 K is presented in Fig. 7(b). It drops
down at rather small lattice distortions, 	 > 0.2, first, due to
transition to the state with noncollinear magnetic structure and
then, for 	 > 0.3, to the PM state.

In spite the simplifications used for our analysis, the
results presented above directly demonstrate the strong mutual
influence of the lattice Burgers distortion and spin moment
fluctuations resulting in a pronounced pressure and temper-
ature dependence of the geometric and magnetic structure in
the system. Both effects are the counterparts of the mechanism
leading to a softening of the corresponding phonon modes
responsible for the instability of the bcc state of Fe and leading
to the bcc-hcp transition.

D. Experimental observations versus theory: K -edge XMCD

Experimental investigations on bcc Fe under pressure have
been performed using x-ray absorption spectroscopy at the
K edge of Fe, with the XANES and XMCD spectra measured
simultaneously.2 This allowed to check experimentally the role
of magnetic order for the stability of bcc-Fe, as discussed in
the literature (see, e.g., Ref. 3). In particular, a synchronous
decrease of the “structural” and “magnetic” XAS signals
related to the ferromagnetic bcc phase of Fe would be expected
at the critical pressure, where this loss of stability is associated
with a transition to the Pauli paramagnetic (i.e., NM) state.

Theoretical calculations of the x-ray absorption and XMCD
spectra at the K edge of Fe have been performed for different
lattice parameters corresponding to the pressure values below
the critical one. These results are compared in Fig. 8 with
experimental spectra measured at different pressures below the
critical value. In this case, the spectra are associated to the bcc
structure with a slow variation upon pressure increase caused
by the pressure induced variation of the lattice parameter.
As one can see, the theoretical calculations reproduce the
experimental XANES results quite well. The same applies for
the XMCD spectra. At the pressure above the critical value,
the XANES spectrum reflects the hcp structure and is again
in good agreement with experiment (see Fig. 8). In this case
the pronounced peaks at ≈90 and 110 eV, specific for the bcc
structure have disappeared, while new ones characterizing the
hcp phase occur at the energy ≈50 eV and just above 100 eV.
The XMCD signal above the critical pressure is very weak and
corresponds to the remnant bcc phase at this pressure, which
disappears completely if the pressure is further increased.

To explain the pressure dependence of the experimental
XMCD spectra, we refer to the theoretical results discussed
above. The XANES experiment performed at the K edge of Fe
implies that the induced orbital polarization of the p-electrons
is probed. In ordered FM systems this implies that the K

edge XMCD signal should be roughly proportional to the spin
magnetic moment of the 3d electrons (see, e.g., Refs. 36,37 and
references therein). At finite temperature, however, a decrease
of the dichroic signal can occur due to an increase of the
magnetic disorder in the system, even for weak changes of
the local magnetic moment. In the present case of bcc Fe
at fixed (room) temperature, the increase of the magnetic
disorder is governed by the increasing pressure. At the same
time, the XANES signal does not change because the bcc
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FIG. 8. (Color online) K-edge XANES for bcc Fe at different
pressures as well as hcp Fe at a pressure above the critical one:
(a) XANES and (b) XMCD spectra. Solid and dashed lines correspond
to theoretical and experimental results, respectively.

structure remains stable until the critical value of the magnetic
disorder (associated with a critical pressure) is reached. This is
indeed observed in the experimental XMCD spectra. A further
pressure increase should result in a quick drop down for the
average magnetic moment leading to the instability of the bcc
structure and to a transition to the hcp phase, as it is observed
in the XANES and XMCD spectra.

III. SUMMARY

In summary, our investigations led to the following results:
(i) assuming no structural nor spin distortions for bcc Fe, a
transition to the hcp structure can occur only at very high
pressures, corresponding to a lattice parameter ≈4.6 a.u., at
which the system becomes paramagnetic; (ii) Burgers-type
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FIG. 9. (Color online) Transformation from bcc to hcp structure
according to Burgers scheme: (a) (110) planes of the bcc structure;
(b) opposite displacement of adjacent (110) planes along the [110]bcc

direction; (c) hcp structure, after shear deformation along [001]
direction with θ changing from 109.5o in the case of bcc structure to
120o.

lattice distortions in collinear FM bcc Fe can lead to a transition
to the NM state and as a result to the bcc-hcp transition at the
pressure close to the one observed experimentally, implying
fluctuation mechanism of transition. However, the energy
of lattice fluctuations required for the FM-PM transition is
too high; (iii) DLM calculations show an instability of spin
disordered bcc Fe upon a pressure increase. This requires
the transition to the PM state. To get this condition at
the temperature of measurements, Te, the Curie temperature
should be low enough, i.e., TC < Te. However, this is not the
case. On the other hand, even a partial spin disorder can result
in the decrease of the energy of lattice fluctuations required for
transition to the PM state. This implies that both effects, spin
and lattice fluctuations, are the counterparts of the mechanism
leading to a softening of the corresponding phonon modes

responsible for the instability of the bcc state of Fe and leading
to bcc-hcp transition.
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APPENDIX

According to Friak and Sob,31 transformations using only
one parameter 	 include both transformations represented by
the parameters δ or θ (see Fig. 9), avoiding the high-energy
configurations occurring upon their independent variation.
Variation of 	 parameter keeping the volume V (	) unchanged
leads to the hcp structure with the ratio c/a = √

8/3, following
the path being close to the minimum energy path.31 The
lattice parameters for the distorted orthorombic structure with
4 atoms/u.c. varies as follows:

a = a0

√
2/(V/V0)1/3,

b = a[	(2
√

3 − 3
√

2)/6 + 2
√

2],

c = a[	(2
√

2 − 3)/3 + 1],

V/V0 =
√

2[	(2
√

3 − 3
√

2)/6 + 2
√

2][	(2
√

3 − 3)/3 + 1].

The atomic positions in the unit cell with distortion are
(0,0,0),(1/2,1/2,0),(1/2 − 	/6,0,1/2),(−	/6,1/2,1/2).

1J. P. Rueff, M. Krisch, Y. Q. Cai, A. Kaprolat, M. Hanfland,
M. Lorenzen, C. Masciovecchio, R. Verbeni, and F. Sette, Phys.
Rev. B 60, 14510 (1999).

2O. Mathon, F. Baudelet, J. P. Itié, A. Polian, M. d’Astuto, J. C.
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