
PHYSICAL REVIEW B 88, 184107 (2013)

Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization
of α-quartz as a shock standard in the multimegabar regime
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α-quartz has been used prolifically in recent years as an impedance matching standard in the multimegabar
regime (1 Mbar = 100 GPa). This is due to the fact that above ∼90–100 GPa along the principal Hugoniot α-quartz
becomes reflective, and thus shock velocities can be measured to high precision using velocity interferometry. This
property allows for high-precision measurements, however, the accuracy of impedance matching measurements
depends upon the knowledge of both the Hugoniot and the release or reshock response of α-quartz. Here,
we present the results of several adiabatic release measurements of α-quartz from ∼300–1200 GPa states
along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ∼190
and ∼110 mg/cc silica aerogel standards. These data were analyzed within the framework of a simple, analytical
model that was motivated by a first-principles molecular dynamics investigation into the release response of
α-quartz. Combined, this theoretical and experimental study provides a method to perform impedance matching
calculations without the need to appeal to any tabular equation of state for α-quartz. As an analytical model,
this method allows for propagation of all uncertainty, including the random measurement uncertainties and the
systematic uncertainties of the Hugoniot and release response of α-quartz. This work establishes α-quartz for
use as a high-precision standard for impedance matching in the multimegabar regime. We also note that the
experimentally validated model framework should prove to be useful in the development of wide range equations
of state for silica, a major constituent in the Earth’s crust and mantle. Such models are crucial for accurate
simulations of high-velocity giant impacts that are thought to be prevalent in the final stages of terrestrial planet
formation.
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I. INTRODUCTION

The high-pressure equation of state (EOS) of materials
is important for various applications ranging from, among
others, planetary physics1–3 to inertial confinement fusion
(ICF).4,5 The predominant method of obtaining EOS data in
the multimegabar regime (1 Mbar = 100 GPa) is the use
of shock wave compression. Paramount to this method has
been the relative or impedance matching (IM) technique.6,7

Here, the shock response of the material of interest is
determined through comparison of the shock response of
that material with the shock response of a known material
standard.

In the past, aluminum has been the predominant IM
standard in shock wave experiments. Well character-
ized through gas gun,6 high-explosive,8 explosively driven
striker,9,10 magnetically driven flyer plate,11 and nuclear driven
techniques,12–15 the shock speed of aluminum would be used
to infer the pressure state of a baseplate upon which a sample
of interest was placed. Measurement of the shock speed of the
sample of interest and the known response of aluminum would
then allow the shocked state of the sample to be inferred. Of the
methods mentioned above, only nuclear driven experiments
could reach the energy densities necessary to support long
duration, multimegabar shock waves, which enable large
samples, accurate shock transit times, and therefore relatively
precise shock wave measurements in this regime.12–17

With the advent of high-energy density (HED) facilities,
such as large lasers or pulsed power accelerators, it is now
routinely possible to reach energy densities in the laboratory
capable of driving multimegabar shock waves. However, to

reach the required energy densities, the volume of energy
deposition is necessarily small, with sample sizes typically
of order 10’s–100’s of microns. This results in shortened
experimental durations, and subsequently less precise mea-
surement of shock velocities in opaque materials, such as
aluminum.

Because of this, α-quartz has recently become the preferred
IM standard at HED facilities. Above ∼90–100 GPa along the
principal Hugoniot, the locus of end states achievable through
compression by large-amplitude shock waves, α-quartz melts
into a conducting fluid, with appreciable reflectivity.18–20 This
enables the use of velocity interferometry [VISAR (Ref. 21)]
techniques to directly measure the shock velocity to high
precision. Several recent examples of the use of α-quartz as an
IM standard can be found in the literature, including CO2,22 a
glow-discharge polymer23 (GDP), Xe,24 H2O,25 He,26 and H2

and D2,27,28 which clearly show an improvement in precision
with respect to previous work that utilized aluminum as the
standard.

However, the accuracy of the inferred shock response of
the sample of interest depends not only upon the Hugoniot
response, but also the reshock or release response, depending
upon the sample’s relative shock impedance with respect to
α-quartz. This is particularly true in the multimegabar regime,
where the often used reflected Hugoniot (RH) approximation7

breaks down due to significant entropy and temperature
increases associated with large-amplitude shock waves.29 In
all of the cases referred to above, the sample impedance is
less than that of α-quartz, and thus the release response is
crucial to accurately infer the shock response through the IM
technique.
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In previous work, we accurately determined the shock
response of α-quartz through numerous plate-impact, shock
wave experiments on the Sandia Z machine.19 Here, we present
a detailed study of the release response of α-quartz, with the
goal of characterizing the use of α-quartz as an IM standard
for lower-impedance materials in the multimegabar regime. In
particular, we set out to develop a simple, analytical model for
IM calculations that would not require the use of a particular
tabular EOS. Such a method would facilitate not only the
IM calculation, but would also simplify the use of Monte
Carlo methods for propagation of uncertainties in the inferred
results.24

This goal was accomplished through both theoretical
and experimental investigation of the release of α-quartz.
First-principles molecular dynamics (FPMD) calculations
were performed to provide insight into the release behavior.
Analysis of the FPMD release calculations led to a model
framework that was used as the basis to analyze a series
of plate-impact, adiabatic release experiments performed at
the Sandia Z machine, similar to the concept used previously
to investigate the adiabatic release response of aluminum.30

Three different low-impedance materials, full density poly-
methylpentene (commonly known as TPX), and both ∼190
and ∼110 mg/cc silica aerogel, were used as standards to
determine release states at various pressures along the α-
quartz release path. The results of these experiments validated
the model framework motivated by the FPMD calculations,
and provided experimentally determined parameters for the
model. We note that the experimentally validated model
framework should prove to be useful in the development of
wide range equations of state for silica, a major constituent
in the Earth’s crust and mantle,31 in that it constrains the
kinematic variables of α-quartz upon release over a wide
range of pressure and density. Such models are crucial for
accurate simulations of high-velocity giant impacts that are
thought to be prevalent in the final stages of terrestrial planet
formation.32

As a consistency check, this analytical release model was
used to perform IM calculations to infer Hugoniot states
of the standards for all of the release experiments. This
allowed comparison of the IM results with previous direct
impact experiments used to define the standards.33,34 In all
three cases, the IM results were found to be very consistent
with the direct impact results, lending confidence that the
analytical release model can be used over a wide range of
pressures along the Hugoniot and a wide range of shock
impedances. Finally, this model was used to reanalyze recent
Hugoniot experiments on GDP,23 a candidate ablator material
for ICF capsules at the National Ignition Facility, to illustrate
how the model developed here differs from other methods
used in the literature to perform IM with α-quartz as the
standard.

Section II discusses the FPMD calculations performed
to investigate the release behavior of α-quartz. Section III
describes the plate-impact release experiments. The results of
the experiments are discussed in Sec. IV. Section V describes
the analytical release model in some detail, along with the
use of the model to perform IM calculations of the release
experiments and to reanalyze recent experiments on GDP. The
main findings are summarized in Sec. VI.

II. FIRST-PRINCIPLES MOLECULAR DYNAMICS
INVESTIGATION OF THE RELEASE RESPONSE

OF α-QUARTZ

To investigate the release response of α-quartz, first-
principles molecular dynamics (FPMD) calculations were
performed using VASP (Vienna ab-initio simulation program),
a plane-wave density functional theory code developed at the
Technical University of Vienna.35 We used the same method
that was recently reported to be in excellent agreement with
plate-impact shock wave experiments on α-quartz using the
Z machine.19 In particular, the calculated shock velocity as
a function of particle velocity exhibited curvature similar to
that observed experimentally in the ∼100–1000 GPa range,
found to be the effect of disordering and dissociation of the
fluid, with the maximum difference between the calculations
and experiment being ∼0.8%. This level of agreement lends
confidence in the use of this FPMD method to investigate the
release response of α-quartz.

Specifically, the silicon and oxygen atoms were represented
with projector augmented wave (PAW) potentials36,37 and
exchange and correlation was modeled with the Armiento-
Mattsson (AM05) functionals.38 A total of 72 atoms were
included in the supercell, with a plane-wave cutoff energy of
600 eV. We note that convergence tests were run with 162
atoms and plane-wave cutoff energy of 900 eV, with markedly
similar results. Simulations were performed in the canonical
ensemble, with simple velocity scaling as a thermostat, and
typically covered a few to several picoseconds of real time.

The release paths were calculated by taking advantage of
the fact that at the initial reference state the isentrope and the
Hugoniot have a second-order contact,29 which is most easily
seen by considering a Taylor series expansion of the entropy
as a function of volume. Thus, for small volume changes
the isentrope is well approximated by the Hugoniot. We
therefore approximated each release path as a series of small
Hugoniot jumps, where each calculated Hugoniot state along
the approximated release path served as the initial reference
state for the subsequent Hugoniot calculation. Typical volume
jumps were of the order of 5%, resulting in pressure jumps
of ∼5%–10%, with a total of ∼12–15 individual calculations
per release path.

The Rankine-Hugoniot jump conditions,29 which are de-
rived by considering conservation of mass, momentum, and
energy across a steady propagating wave, provide a set of
equations relating the initial energy, volume, and pressure with
steady-state, post-shock values:

(E − E0) = (P + P0)(V0 − V )/2, (1)

(P − P0) = ρ0Usup, (2)

ρ = ρ0Us/(Us − up), (3)

where E, P , V , ρ, Us , and up denote the energy, pressure,
volume, density, shock velocity, and particle velocity, respec-
tively, and the subscript 0 denotes initial values. The first
of these equations, derived from the conservation of energy,
provides a prescription for calculation of the Hugoniot. For
a given ρ, an initial estimate is made for the temperature T

or P that would satisfy Eq. (1). A slow T ramp, typically
spanning several hundred K about the estimated Hugoniot
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FIG. 1. (Color online) Comparison of the FPMD release path
(green) to the RH (black). Also shown are the Hugoniots of CO2

(dashed dark gray), GDP (solid dark gray), H2O (dotted-dashed light
gray), TPX (dotted-dashed blue), 190 mg/cc aerogel (dashed blue),
D2 (solid light gray), He (dashed light gray), 110 mg/cc aerogel (solid
blue), and H2 (dotted light gray). The right panel shows the particle
velocity residual of the FPMD release with respect to the RH.

T , is then applied to the system at a rate of ∼1 K/fs.
The resulting FPMD simulation allows the determination
of P and E for which Eq. (1) is satisfied at the given ρ.
Furthermore, the T ramp method also allows for the estimation
of both � = V (dP/dE)V and the specific heat, which are
very useful in estimating the T and P for the subsequent
Hugoniot calculation along the approximated release path.
Steady-state calculations at selected points along the release
path confirmed the accuracy of the T ramp simulations in
locating the Hugoniot jumps.

A release path calculated in this way from ∼400 GPa is
shown as the green line in Fig. 1. Also shown for comparison
(black line) is a reflection of the α-quartz principal Hugoniot
about the particle velocity of the shocked state. This so-called
reflected Hugoniot (RH) is often times used to approximate
the release path in the P − up plane.7 At sufficiently low
stress or pressure states on the principal Hugoniot, the RH
approximation is reasonably good; recall that the isentrope
and Hugoniot have a second-order contact. However, at higher
pressures, the RH approximation breaks down, as can be seen
in Fig. 1. The right panel of Fig. 1 shows a useful metric, the
particle velocity residual, defined to be the percent difference
in particle velocity of the FPMD release with respect to the
RH. Initially, the release path drops below the RH, due to
the higher sound speed at high P , however, at lower pressures
the release path crosses above the RH. This is due to the
fact that at a given volume, the release path has significantly
higher entropy, and therefore increased thermal pressure, than
the corresponding state on the RH.

For reference, shown as gray lines in Fig. 1, are Hugoniots
for several materials that have recently been studied with α-
quartz as a standard. As can been seen in the right panel of
Fig. 1, for moderate-impedance materials, such as CO2, GDP,
and H2O, the correction to the RH in up is ∼−2%, while
for low-impedance materials, such as D2, He, and H2, the
correction to up is of similar magnitude, but opposite sign.
This is significant given that errors in up are magnified by a

factor of roughly (ρ/ρ0 − 1) when expressed in terms of ρ or
density compression, i.e., δρ/ρ ∼ (ρ/ρ0 − 1)δup/up, as can
be seen by considering Eq. (3). These materials exhibit density
compression between 3 and 4 in the multimegabar regime, and
thus errors in ρ are two to three times larger than the errors
in up.

We first chose to compare the FPMD calculated release
path with that from a Mie-Grüneisen (MG) model holding �

constant. This is an approach that has been used to determine
the release path in previously reported impedance match (IM)
studies that have used α-quartz as a standard.23,28 In these
studies, the reference curve for the MG model was the actual
Hugoniot which shows significant curvature in the Us − up

plane. For reasons that will become clear later on, we will
refer to this model as the MG, nonlinear reference (MGNR)
model. In the studies referred to above, a value for � = 0.64
was chosen based upon both the consideration of various EOS
models for α-quartz39 and high-P Hugoniot data for solid and
porous silica.18,40,41 The computed release path for the MGNR
model with � = 0.64 is shown as the red line in Fig. 2. As
can be seen in the figure, the MGNR model does not agree
well with the calculated FPMD release path. In particular,
the MGNR release path drops significantly below the FPMD
release path. As can be seen in the right panel of Fig. 2, the
particle velocity residual reaches a maximum of ∼−5% at
∼125 GPa, then abruptly increases and eventually changes
sign at ∼50 GPa.

Better agreement with such a MGNR model can be found
for larger values of �. The dashed red line in Fig. 2 shows the
MGNR release path for � = 1. However, while the agreement
at higher P is adequate, below ∼150 GPa the release path
swings out to significantly higher up, reaching residuals of
∼5% at ∼50 GPa. We note that the FPMD calculations
necessary to determine the release path also allow one to infer
�. Interestingly, the larger value of � necessary to improve
the agreement of the MGNR model at pressures on the release

FIG. 2. (Color online) Comparison of the FPMD release path
(green) with the MGNR release for � = 0.64 (solid red) and � =
1 (dashed red). Also shown for reference are the RH (black) and
Hugoniots for TPX (dotted-dashed blue), 190 mg/cc aerogel (dashed
blue), and 110 mg/cc aerogel (solid blue). The right panel shows the
particle velocity residuals of the MGNR releases for � = 0.64 (solid
red) and � = 1 (dashed red) with respect to the FPMD release.
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adiabat above ∼150 GPa is in reasonable agreement with the
value of � that is inferred from the FPMD release calculation,
which is closer to unity at ∼400 GPa on the Hugoniot. This
implies that the problem with the MGNR model is likely
the assumption that � be treated as a constant along the
entirety of the release path. This is not surprising given that
the FPMD calculations of the Hugoniot show that the effects
of disordering and dissociation of the fluid strongly influence
the response of α-quartz in this regime, and one might expect
that these effects may influence dP/dE in a more complicated
way.

In evaluating the MG model framework, we fortuitously
discovered that the FPMD release paths could be reproduced
quite accurately with a very simple alteration of the model
discussed above. Specifically, if one prescribes a linear Us −
up Hugoniot response as the reference curve for the MG model,
which we will call the MG, linear reference (MGLR) model,
the release path can be accurately reproduced with constant �

along nearly its entirety.
The MGLR model has two parameters: � and the slope

S of the linear Us − up Hugoniot (Us = C0 + Sup) used for
the reference curve. Note that for a given value of S, there
is a unique value of C0 that will produce (P1,up1) along the
Hugoniot;

C01 = P1

ρ0up1
− Sup1, (4)

where the notation C01 explicitly denotes that C0 is a function
of P along the Hugoniot. The values of � and S can be
simultaneously optimized to minimize the integral:∫ P1

Pmin

[
urel

p (P ′) − uFPMD
p (P ′)

]2
dP ′, (5)

where urel
p and uFPMD

p are the particle velocities along the
MGLR and FPMD release paths, respectively.

The optimal release path for the MGLR model is shown as
the dashed red line in Fig. 3, with � = 0.356 and S = 1.198.
The MGLR release path with these values of � and S agrees
quite well with the calculated FPMD release path, as can be
seen by the particle velocity residual with respect to the FPMD
release path shown in the right panel of Fig. 3 (note the change
in scale with respect to the right panel of Fig. 2).

Similar optimizations were performed for four other cal-
culated FPMD release paths from various states along the
principal Hugoniot ranging from ∼300–1050 GPa. The results
of these optimizations are shown in Fig. 4, and the values
for � and S are displayed in Table I. As can be seen in the

TABLE I. Values for � and S for the MGLR model for both cases
(i) �,S optimized, and (ii) � optimized and S fixed.

PH �,S optimized � optimized

(GPa) � S � S

306.3 0.205 1.189 0.220 1.197
407.5 0.356 1.198 0.355 1.197
536.7 0.447 1.190 0.457 1.197
805.4 0.578 1.211 0.558 1.197
1048 0.592 1.205 0.580 1.197

FIG. 3. (Color online) Comparison of the FPMD release path
(green) with the MGLR release for � = 0.356 and S = 1.198 (dashed
red). Also shown for reference are the RH (black) and Hugoniots for
TPX (dotted-dashed blue), 190 mg/cc aerogel (dashed blue), and
110 mg/cc aerogel (solid blue). The right panel shows the particle
velocity residual of the MGLR release with respect to the FPMD
release (note the change in scale with respect to the right panel of
Fig. 2).

figure, the MGLR model is able to reproduce quite well the
FPMD release paths over the entire regime studied here. Note
that the values of S obtained from the optimizations did not
vary significantly over this pressure regime, nor did S change
monotonically with Hugoniot pressure. This led us to consider
a simplification to the model by making S a constant, thereby
reducing the model to a single free parameter �. To do this,
we considered a simultaneous minimization of the sum of
integrals [Eq. (5)] for all five release paths. The results of this
optimization are shown in Fig. 5 and the values of � and S are
displayed in Table I. Comparison of Figs. 4 and 5 indicates
that such a simplification in the MGLR model results in a

FIG. 4. (Color online) Comparison of the MGLR release paths
(black) with the FPMD release paths (green) from five different
principal Hugoniot states of α-quartz. Here, both � and S are
optimized for each release path; the values are listed in Table I. Also
shown for reference are the Hugoniots for TPX (dotted-dashed blue),
190 mg/cc aerogel (dashed blue), and 110 mg/cc aerogel (solid blue).
The right panel shows the particle velocity residuals of the MGLR
release paths with respect to the FPMD release paths.
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FIG. 5. (Color online) Comparison of the MGLR release paths
(black) with the FPMD release paths (green) from five different
principal Hugoniot states of α-quartz. Here, S is held constant at
1.197 and only � is optimized for each release path; the values are
listed in Table I. Also shown for reference are the Hugoniots for
TPX (dotted-dashed blue), 190 mg/cc aerogel (dashed blue), and
110 mg/cc aerogel (solid blue). The right panel shows the particle
velocity residuals of the MGLR release paths with respect to the
FPMD release paths.

negligible degradation in the agreement between the MGLR
and FPMD release paths.

Unlike S, � was found to have a strong dependence on P . �
is quite low at low P , increases with increasing P , and appears
to saturate at a value of ∼0.6. This is quite close to the value
of 2

3 that one would expect for an ideal gas. Furthermore, the
simultaneous optimization results in S = 1.197, which is very
close to the asymptotic slope of the experimentally determined
Hugoniot19 of S = 1.193 ± 0.01. While these values for � and
S are quite intriguing, it is not clear whether these behaviors
of � and S are the result of underlying physics, or merely a
coincidence. To understand this further would require a rather
extensive FPMD investigation, which is outside of the scope
of this study.

It should be emphasized that the MGLR model discussed
here is only intended to calculate kinematic variables for
α-quartz upon release, in particular, the release paths in the
P − up plane for purposes of impedance matching. Obviously,
the linear Us − up reference for the Hugoniot is in stark
contrast to what is observed between ∼100 and 1000 GPa
experimentally.19 Furthermore, the rather low values of � that
results from the MGLR model at low P are in disagreement
with the estimates from the FPMD release calculations, which
are closer to unity at ∼200–400 GPa and monotonically
decrease with increasing pressure along the Hugoniot. For
these reasons, it is fully expected that other aspects of the
MGLR model will be incorrect. In particular, it is anticipated
that the temperatures and specific heats of the MGLR model
do not reflect the behavior of α-quartz in this regime. To
underscore this, we choose to refer to � in the MGLR model
as the effective �, or �eff, from this point forward.

The FPMD investigation of the release response of α-quartz
therefore suggests that from a given α-quartz Hugoniot state,
the release path can be calculated using a MGLR model with
a constant �eff. �eff is a function of P , or more appropriately

for the purposes of an IM model, a function of U
quartz
s along

the α-quartz Hugoniot. S of the linear Us − up Hugoniot used
as the reference for the MG model is held fixed at S = 1.197.
C01 is then determined through Eq. (4). This model serves as
the framework for analysis of the release measurements that
will be discussed in the next section.

III. EXPERIMENTAL α-QUARTZ RELEASE
MEASUREMENTS

A series of planar, plate-impact, shock wave experiments
were performed to investigate the release response of α-quartz.
Three different low-impedance standards were used to obtain
release states from shocked α-quartz: polymethylpentene
(commonly known as TPX), and both ∼190 and ∼110 mg/cc
silica aerogel. The shock response of these standards have
been previously investigated on the Z machine through plate-
impact, shock wave experiments.33,34 Since these samples are
solid, they could be directly impacted by the flyer plate, and
thus the Hugoniot states could be inferred through simple
IM with aluminum under compression, to relatively high
precision. The linear Us − up coefficients and associated
uncertainties for these three materials, which were used in the
analysis of the release experiments described here, are listed
in Table II.

These experiments were performed at the Sandia Z
machine,42 a pulsed power accelerator capable of generating
∼20 MA currents and ∼10 MGauss magnetic fields in a
short-circuit load. The load, which is nominally 4 to 5 cm
in each dimension, is designed to compress the cathode and
explode the anode outward as flyer plates, producing impact
velocities in excess of 30 km/s.43,44

Two different load geometries were used in this study. The
first, referred to as a coaxial load, has anode plates completely
surrounding a central rectangular cathode stalk.43 Two of these
anode plates are designed to be aluminum flyer plates with
initial dimensions of approximately 40 mm in height, 20 mm
in width, and 1 mm in thickness. The anode box is intentionally
aligned asymmetric about the cathode stalk, with feed gaps of 1
and 1.4 mm on the two flyer plate sides. This asymmetry allows
for different magnetic pressure in the two gaps, resulting in
two different peak flyer plate velocities for each firing of the
Z machine, thereby increasing data return.

The second load geometry, referred to as a stripline
load, has a single anode plate opposite a similar cathode
plate with a single 1-mm feed gap.44 In this case, both the
anode and cathode are flyer plates with initial dimensions of

TABLE II. TPX and silica aerogel Us − up coefficients and
covariance matrix elements (Refs. 33 and 34). Note that the values
for the aerogel standards are slightly different than those reported
in Ref. 33 due to a more careful treatment of the uncertainty in the
refractive index of the aerogel.

C0 σ 2
C0

σ 2
S σC0σS

(km/s) S (×10−3) (×10−3) (×10−3)

TPX 2.707 1.307 3.485 0.0174 −0.2252
190 mg/cc aerogel −0.385 1.248 26.31 0.271 −1.493
110 mg/cc aerogel −0.710 1.233 44.37 0.156 −2.208
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approximately 36 mm in height, 10 mm in width, and 1 mm in
thickness. The benefit of this design is that a significantly larger
current density is achieved with respect to the coaxial load,
thereby enabling higher flyer plate velocities to be achieved.
However, in this case both flyer plates reach essentially the
same impact velocity and thus only a single Hugoniot point is
obtained for each firing of the Z machine.

Upon discharge of the stored energy within the Marx ca-
pacitor banks, a shaped current pulse of ∼300 ns duration and
∼20 MA in magnitude is directed through the experimental
load. The large current induces a large magnetic field, and
the resulting �J × �B force propels the flyer plates outward.
With proper load design and temporal shaping of the current
pulse, accelerations of a few tens of Gg are produced that
drive the solid aluminum panels across a 3–5 mm vacuum
gap, ultimately reaching impact velocities of ∼12–32 km/s
depending upon the load geometry and the peak charge voltage
of the accelerator. More details regarding the flyer plate launch
and the state of the flyer plates at impact can be found in
Refs. 43 and 44.

The α-quartz (single crystal, z cut, obtained from Argus In-
ternational), TPX (obtained from Mitsui Chemicals America),
and ∼190 and ∼110 mg/cc silica aerogel (fabricated by Gen-
eral Atomics) samples were all nominally 5 mm in lateral di-
mension. The thickness of the α-quartz was nominally 300 μm,
while the thicknesses of the release standards were all
nominally 1000 μm. The samples were metrologized using
a measuring microscope to determine sample diameters and
an interferometer to measure thickness to a precision of ∼5 μm
and less than 1 μm, respectively. Density of the silica aerogel
was inferred from high-precision mass measurements and
inferred volume assuming the samples were right-circular
cylinders. Slight departure from the right-circular cylinder
assumption resulted in density uncertainty of ∼2% and ∼5%
for the 190 and 110 mg/cc aerogels, respectively.

The α-quartz samples and release standards were glued
together to form experimental “stacks.” A low-viscosity
epoxy (Ångströmbond) was used to bond the TPX directly
to the α-quartz sample. For the silica aerogel standards, a
high-viscosity, UV cure epoxy was used. A high-viscosity
epoxy was chosen to inhibit wicking of the epoxy into the
porous aerogel samples. To further mitigate epoxy uptake, the
α-quartz and aerogel samples were tacked together using four
small beads of epoxy on the outer edges, thereby ensuring that
the central region of the “stack” was free from epoxy. These
experimental “stacks” were mounted into a target frame using
the UV cure epoxy with similar gluing techniques, with the
α-quartz sample facing the impact side of the target frame.
The target frame was then mounted into the panel with a
prescribed flight distance between 3 and 5 mm, depending
upon the desired peak impact velocity (see Fig. 1 in Ref. 33).

The flyer plates and experimental “stacks” were diagnosed
using a velocity interferometer [VISAR (Ref. 21)]. Since all
of the materials in the “stacks” are transparent, the 532-nm
laser light could pass through the “stack” and reflect off the
flyer plate surface, as illustrated in the inset of Fig. 6. This
allowed an in-line measurement of the flyer plate velocity
from initial motion to impact. Upon impact, a several 100’s of
GPa shock was sent through the α-quartz sample. This shock
was of sufficient magnitude that the shocked α-quartz became

FIG. 6. (Color online) Representative experimental VISAR data.
Black line, aluminum flyer plate velocity; blue (cyan) line, α-quartz
(release standard) shock velocity. The inset shows a schematic of the
experimental configuration. Note the dimensions are not to scale.

weakly reflective in the visible range. This immediate onset
of reflectivity allowed for direct measurement of the shock
velocity within the α-quartz using the VISAR diagnostic. Upon
traversal of the α-quartz sample, the shock was transmitted
into the release standard and a substantial release wave was
reflected back into the α-quartz sample. The resulting 10 to
100’s of GPa shock in the release standard was of sufficient
magnitude that the release standard also became weakly
reflecting, allowing direct measure of the shock velocity in the
release standard with the VISAR diagnostic. Representative
velocity profiles are shown in Fig. 6.

Ambiguity in the fringe shift upon both impact and
transition of the shock velocity measurement from the α-quartz
sample to the release standard was mitigated through the use
of three different VISAR sensitivities, or velocity per fringe
(vpf) settings, at each measurement location. Furthermore,
integration of the shock velocity provided a trajectory of
the shock through the α-quartz and release standard, which
allowed for comparison of the measured α-quartz and release
standard thicknesses to the inferred shock transit through
each of the materials. Each measurement location included
a high-sensitivity vpf setting of 0.2771 km/s/fringe. We
conservatively estimate the resolution of the VISAR system at
one tenth of a fringe, resulting in uncertainty in flyer plate and
shock velocities of a few tenths of a percent.

A correction to the vpf was necessary to obtain the
correct shock velocity in the α-quartz sample and the release
standards. As the reflecting shock transits the sample, the
thickness of the unshocked material through which the laser
passes decreases with time, which contributes to the rate of
change of the optical path. It can be shown that for this case,
the apparent velocity va must be reduced by a factor equal
to the refractive index of the unshocked material: v = va/n0.
The values of n0 used in this study for α-quartz, TPX, and
the ∼190 and ∼110 mg/cc silica aerogel were 1.547, 1.462,
1.038, and 1.02, respectively.33,45–48 The uncertainties in n0

for α-quartz and TPX are negligible, while the uncertainties in
n0 for both initial densities of aerogel were 1%.

The α-quartz release experiments were analyzed within the
framework of the MGLR model described in the previous
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TABLE III. α-quartz coefficients for the cubic Us − up relation
U quartz

s = ∑3
n=0 anu

n
p .

a0 (km/s) a1 a2 (km/s)−1 a3 (km/s)−2

1.754 1.862 −3.364 × 10−2 5.666 × 10−4

section, which is graphically illustrated in Fig. 7. The measured
U

quartz
s and known Hugoniot defined the initial state in the P −

up plane, (P1,up1). For the purposes of this analysis, we used
a weighted, least-squares cubic fit49 to the α-quartz Us − up

data of Ref. 19 along with recent data obtained using the same
method (see Appendix). The fit parameters and uncertainties
are listed in Tables III and IV. This functional form was used in
place of the modified universal liquid Hugoniot form reported
in Ref. 19 to facilitate the use of a Monte Carlo technique
for error propagation. The measured shock velocity and the
known Hugoniot of the release standard defined the release
state (Pr,upr ) along the α-quartz release path. The MGLR
model, with S = 1.197, was then used to determine the value
of �eff such that the release path emanating from (P1,up1) went
through the point (Pr,upr ).

This analysis lends itself well to a Monte Carlo method for
error propagation.24 A sequence of calculations was performed
where for each series of calculations the following procedure
was followed. First, the coefficients of the cubic fit to the
α-quartz Hugoniot (Table III) were sampled within their
uncertainty defined by the covariance matrix (Table IV) to
propagate the uncertainty in the α-quartz standard. In the case
of the aerogel release measurements, n0 was sampled within its
systematic uncertainty; as this is a systematic uncertainty, this
value for n0 was used for all of the subsequent direct impact
and release IM calculations within this series of calculations.
IM calculations were then carried out for the previous direct
impact experiments,33,34 where vf and U standard

s were sampled
within their random uncertainty (in the case of the aerogel
standards, each of the measured U

gel
s is multiplied by the

factor 1.032/n0 or 1.02/n0 depending on the initial density).
The resulting Us − up points were then used to determine a
weighted, least-squares linear fit for the Us − up response of
the standard. Next, the measured quantities U

quartz
s and U standard

s

for the release experiments described here were sampled
within their random measurement uncertainties and the cubic
and linear Us − up fits were used to determine (P1,up1)
and (Pr,upr ), respectively (again, in the case of the aerogel
standards, U

gel
s was further modified by the same n0 that was

used in the IM analysis of the direct impact experiments).
Finally, the inferred quantity �eff was determined for each
release experiment in the entire data set. This process was
repeated for 106 iterations. The reported value and one-sigma
uncertainty of the inferred quantity �eff was taken to be the

FIG. 7. (Color online) α-quartz release measurements. Black line,
α-quartz principal Hugoniot; black circles, initial shocked states of
α-quartz; dotted-dashed blue line, TPX Hugoniot; dashed (solid) blue
line, 190 mg/cc (110 mg/cc) silica aerogel Hugoniot; red diamonds,
measured release states; solid (dashed) gray lines, release paths for
the best fit �eff (one-sigma standard deviation). Right panels shown
for more detail.

mean and standard deviation of the Monte Carlo distributions,
respectively. We note that because (i) n0 for the aerogel
samples is common to both the direct impact experiments and
the release experiments, and (ii) the shock impedance of the
aerogel is so much lower than the shock impedance of both
aluminum and α-quartz, �eff is only weakly dependent on n0,
and the 1% uncertainty does not contribute significantly to the
uncertainty in �eff (the 1% uncertainty in n0 results in ∼0.5%
uncertainty in �eff).

Uncertainties determined in this way are illustrated in Fig. 7,
which show the one-sigma standard deviations of Pr and upr ,
and the release paths for �eff ± σ� . Note that the uncertainty
in upr that arises from both the uncertainty of the standard
Hugoniot and the measured U standard

s is less than 1%, and
provides a tight constraint on the value of �eff that connects
(P1,up1) and (Pr,upr ). This translates into an uncertainty
in �eff of between 0.03 and 0.08 for the individual release
measurements.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A total of 9, 6, and 6 α-quartz release experiments were
performed with TPX, ∼190 and ∼110 mg/cc silica aerogel,
respectively. The pertinent parameters for these experiments
are listed in Tables V–VII. U

quartz
s , U standard

s , and ρstandard
0

denote the measured shock velocities in the α-quartz sample
and release standard, and density of the release standard,
respectively. �eff denotes the inferred value of the effective

TABLE IV. α-quartz covariance matrix elements for the cubic Us − up relation U quartz
s = ∑3

n=0 anu
n
p .

σ 2
a0

σa0σa1 σa0σa2 σa0σa3 σ 2
a1

σa1σa2 σa1σa3 σ 2
a2

σa2σa3 σ 2
a3

(×10−2) (×10−3) (×10−4) (×10−5) (×10−3) (×10−4) (×10−6) (×10−5) (×10−7) (×10−8)

2.097 −6.159 5.566 −1.572 1.877 −1.742 5.017 1.650 −4.834 1.438
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TABLE V. �eff for the TPX release experiments. U quartz
s , UTPX

s , and ρTPX
0 are the measured shock velocities of the α-quartz and TPX samples,

and the measured TPX initial density. �eff is the inferred value of the effective � for the MGLR model determined as described in Sec. III. uIM
p

is the inferred particle velocity in the shocked TPX determined from the MGLR model as described in Sec. V.

Expt. U quartz
s (km/s) UTPX

s (km/s) ρTPX
0 (g/cc) �eff uIM

p (km/s)

Z2436 15.69 ± 0.03 17.64 ± 0.03 0.83 ± 0.004 0.233 ± 0.075 11.48 ± 0.07
Z2450N 16.30 ± 0.03 18.43 ± 0.03 0.83 ± 0.004 0.340 ± 0.070 12.05 ± 0.07
Z2450S 17.45 ± 0.03 19.90 ± 0.03 0.83 ± 0.004 0.442 ± 0.061 13.17 ± 0.07
Z2345N 20.45 ± 0.03 23.79 ± 0.03 0.83 ± 0.004 0.582 ± 0.047 16.14 ± 0.08
Z2345S 21.69 ± 0.03 25.44 ± 0.03 0.83 ± 0.004 0.622 ± 0.043 17.40 ± 0.08
Z2333N 22.00 ± 0.03 25.86 ± 0.03 0.83 ± 0.004 0.631 ± 0.043 17.72 ± 0.08
Z2333S 22.97 ± 0.03 27.15 ± 0.03 0.83 ± 0.004 0.633 ± 0.040 18.71 ± 0.08
Z2375 25.19 ± 0.03 30.10 ± 0.03 0.83 ± 0.004 0.611 ± 0.034 21.02 ± 0.09
Z2332 25.82 ± 0.03 30.95 ± 0.03 0.83 ± 0.004 0.604 ± 0.033 21.68 ± 0.10

� for the MGLR model with S = 1.197, obtained using the
method described in the previous section. uIM

p is the inferred
particle velocity in the shocked standard as determined through
IM calculations using the MGLR model. These calculations
will be discussed in the next section.

The values for �eff inferred from all three release standards
are plotted as a function of U

quartz
s in Fig. 8. Also plotted in the

figure are the optimized �eff that best match the FPMD release
paths using the MGLR model with S = 1.197. The trend
exhibited by the experimentally determined �eff is very similar
to that exhibited by the FPMD derived values. Furthermore,
the data for all three release standards, which vary by roughly
one order of magnitude in shock impedance, all fall along the
same trend line. These two observations are a strong indicator
that the MGLR framework adequately describes the release
response of α-quartz in the multimegabar regime over a fairly
substantial pressure range along the Hugoniot and over a wide
range of shock impedances.

Just as in the case of the FPMD derived �eff, the exper-
imentally determined �eff appears to saturate at high P . We
therefore fit the experimentally determined �eff to a simple
exponential functional form that exhibits this type of behavior:

�eff = a1{1 − exp[−a2(Us − a3)3/2]}. (6)

As can be seen in Fig. 8, the weighted fit to this
functional form provides a reasonably good description of
the experimentally determined �eff. Also shown in the figure

are the one-sigma uncertainty bands, which take into account
the correlation of the uncertainty in the parameters from the
weighted fit. These best-fit values of the parameters and the
covariance matrix elements are listed in Table VIII.

The best-fit trend line, while exhibiting similar behavior to
FPMD determined �eff, appears to be systematically larger
at the highest pressures investigated in this study (above
∼5 Mbar). As can be seen from Fig. 2, a larger value
of � corresponds to a larger up along the release path.
The magnitude of the difference between the experimentally
determined �eff with that determined through the FPMD
calculations is on the order of the one-sigma uncertainty bound,
which is ∼0.02–0.04 over this pressure range. This translates
to roughly 0.5% in up, and thus the experimentally determined
�eff suggest that the actual release paths have systematically
larger up of ∼0.5% with respect to the FPMD release paths
from Hugoniot states at high pressure.

We caution against the use of this model outside of the range
of the experimental data. This is particularly true for U

quartz
s

below ∼15 km/s, where there is no data and it is unclear how
best to extrapolate. Because �eff seems to be saturating at high
P , one could likely use this fit for U

quartz
s above ∼26 km/s

with some confidence. At pressures above this limit, roughly
1150 GPa, the Hugoniot asymptotes to a linear response19

and �eff approaches a value consistent with the actual � from
the FPMD calculations, close to what one would expect for an
ideal gas. Both of these behaviors are presumably because P is

TABLE VI. �eff for the ∼190 mg/cc silica aerogel release experiments. U quartz
s , U

gel
s , and ρ

gel
0 are the measured shock velocities of the

α-quartz and aerogel samples, and the measured aerogel initial density. �eff is the inferred value of the effective � for the MGLR model
determined as described in Sec. III. uIM

p is the inferred particle velocity in the shocked aerogel determined from the MGLR model as described

in Sec. V. Note that in addition to the random uncertainty in U
gel
s listed below, there is an additional 1% systematic uncertainty arising from

the uncertainty in the refractive index of the aerogel.

Expt. U quartz
s (km/s) U

gel
s (km/s) ρ

gel
0 (mg/cc) �eff uIM

p (km/s)

Z2093N 15.27 ± 0.03 17.07 ± 0.03 190 ± 4 0.248 ± 0.045 14.01 ± 0.10
Z2093S 16.64 ± 0.03 19.20 ± 0.03 188 ± 4 0.347 ± 0.040 15.75 ± 0.10
Z2125N 18.69 ± 0.03 22.45 ± 0.03 187 ± 4 0.464 ± 0.037 18.38 ± 0.11
Z2125S 20.23 ± 0.03 24.89 ± 0.03 187 ± 4 0.503 ± 0.036 20.40 ± 0.12
Z2094N 20.89 ± 0.03 26.04 ± 0.03 185 ± 4 0.539 ± 0.037 21.29 ± 0.12
Z2094S 22.29 ± 0.03 28.28 ± 0.03 187 ± 4 0.559 ± 0.036 23.12 ± 0.13
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TABLE VII. �eff for the ∼110 mg/cc silica aerogel release experiments. U quartz
s , U

gel
s , and ρ

gel
0 are the measured shock velocities of the

α-quartz and aerogel samples, and the measured aerogel initial density. �eff is the inferred value of the effective � for the MGLR model
determined as described in Sec. III. uIM

p is the inferred particle velocity in the shocked aerogel determined from the MGLR model as described

in Sec. V. Note that in addition to the random uncertainty in U
gel
s listed below, there is an additional 1% systematic uncertainty arising from

the uncertainty in the refractive index of the aerogel.

Expt. U quartz
s (km/s) U

gel
s (km/s) ρ

gel
0 (mg/cc) �eff uIM

p (km/s)

Z2436 15.69 ± 0.03 18.25 ± 0.03 107 ± 6 0.326 ± 0.055 15.32 ± 0.12
Z2450N 16.31 ± 0.03 19.21 ± 0.03 105 ± 6 0.329 ± 0.052 16.20 ± 0.12
Z2450S 17.42 ± 0.03 20.99 ± 0.03 106 ± 6 0.374 ± 0.050 17.72 ± 0.13
Z2345N 20.46 ± 0.03 26.20 ± 0.03 112 ± 6 0.555 ± 0.058 21.88 ± 0.14
Z2345S 21.72 ± 0.03 28.34 ± 0.03 110 ± 6 0.552 ± 0.056 23.71 ± 0.15
Z2375 25.13 ± 0.03 34.29 ± 0.03 107 ± 6 0.549 ± 0.055 28.69 ± 0.18

sufficiently high that the effects of disordering and dissociation
are becoming less important.19,20

V. ANALYTICAL RELEASE MODEL

In this section, we discuss in some detail exactly how one
uses the MGLR model for performing IM calculations and how
to incorporate the IM calculation into a Monte Carlo approach
for uncertainty propagation. We then provide several examples
of the use of the MGLR model. We first use the MGLR model
to obtain Hugoniot states through IM for all of the α-quartz
release experiments described in the previous sections. Finally,
the MGLR model is used to reanalyze recent experiments on a
glow-discharge polymer23 (GDP) to illustrate the differences
between the MGLR model and approaches that have been used
in the literature to infer Hugoniot states with α-quartz as the
standard.

Measurement of U
quartz
s determines (i) the Hugoniot state

of the α-quartz, and thus (P1,up1) from which the release path
emanates, (ii) the value of C01 that, along with S = 1.197,
defines the Hugoniot reference curve for the MGLR model
[Eq. (4)], and (iii) the value of �eff [Eq. (6)]. One then solves
the set of equations

P = PH (V ; C01,S) + �eff

V
[E − EH (V ; C01,S)], (7)

d(Es − E0) = −PsdV, (8)

where PH and EH denote the pressure and energy of the
reference Hugoniot, which are related through the Rankine-
Hugoniot jump conditions [Eqs. (1)–(3)], and Ps and Es denote
the pressure and energy along the isentrope. The solution to
this set of equations provides Ps :

Ps = PH (V ; C01,S)

[
1 − �eff

2

(
V0

V
− 1

)]

+ �eff

V
(Es − E0) , (9)

where Eq. (8) is integrated using Eq. (9) to give

(Es − E0) = P1V0

2

(
η − 1

η

)(
V1

V

)�eff

−
(

V1

V

)�eff
∫ V

V1

(
V ′

V1

)�eff

×PH

[
1 − �eff

2

(
V0

V ′ − 1

)]
dV ′, (10)

and η = V0/V1 = ρ1/ρ0 has been introduced as the compres-
sion factor. Note that for a linear Us − up reference Hugoniot,
PH can be written as

PH = ρ0C
2
01

(
V0
V

− 1
) (

V0
V

)
[
S − (S − 1) V0

V

]2 . (11)

Given U
quartz
s , which determines P1, V1, C01, �eff, and η,

Eqs. (9)–(11) then express Ps strictly as a function of V .
One can then compute up along the release isentrope

through the Reimann integral:

up = up1 +
∫ P

P1

V dPs

Cs

, (12)

where the sound speed along the release isentrope Cs is given
by

C2
s = −V 2 ∂Ps

∂V

∣∣∣∣
S

. (13)

Finally, P
sample
1 and u

sample
p1 in the shocked state of the sample

material are determined by the intersection of (P,up) along the
release path and the chord P = ρ

sample
0 U

sample
s up [see Eq. (2)].

This IM model lends itself well to a Monte Carlo method for
uncertainty propagation.24 For each series of IM calculations,
the coefficients of the cubic fit to the α-quartz Hugoniot
(Table III) are sampled within their uncertainty defined by the
covariance matrix (Table IV). This propagates the uncertainty

TABLE VIII. Fit parameters and covariance matrix elements for �eff(Us).

a2 a3 σ 2
a1

σa1σa2 σa1σa3 σ 2
a2

σa2σa3 σ 2
a3

a1 (km/s)−2/3 (km/s) (×10−4) (×10−4) (×10−3) (×10−4) (×10−2) (×10−1)

0.619 0.0882 12.0922 4.357 −3.935 −9.324 5.039 1.370 4.103
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FIG. 8. (Color online) �eff as a function of U quartz
s . Cyan di-

amonds, TPX release measurements; blue (red) diamonds, ∼190
(∼110) mg/cc silica aerogel release measurements; green circles,
FPMD release calculations; blue solid (dashed) line, best fit (one
sigma deviation) to the experimental data.

in the initial state (P1,up1) as well as the uncertainties
in V1, C01, and η. Then, for each IM calculation in the
series of measurements, �eff, U

sample
s , and ρ

sample
0 are all

sampled with their one-sigma uncertainty. (P sample
1 ,u

sample
p1 ) is

then determined as the intersection of the chord and release
path, and the remaining kinematic variables can be evaluated
through the use of the Rankine-Hugoniot jump conditions
[Eqs. (1)–(3)]. This process is repeated for 106 iterations, and
the reported values and one-sigma uncertainties of the inferred
quantities are taken to be the mean and standard deviations of
the Monte Carlo distributions, respectively.

As examples of this analytical release model, and as a
consistency check, this IM method was used to determine the
shocked states of the release standards for all of the α-quartz
release measurements listed in Tables V–VII. The results of
these analyses are listed in the last column of Tables V–VII,
and shown graphically as the blue symbols in Figs. 9–11. Also
shown in these figures as red symbols are the direct impact
data used to define the shock response of the standards.33,34

Two observations can be made from these comparisons.
First, the resulting Us − up points from the IM method using
the analytical release model are in excellent agreement with
the direct impact results. This provides a consistency check
and indicates that the assumptions of the analytical model,
namely, that �eff can be treated as a constant regardless of
the impedance of the unknown material, is justified. Second,
the uncertainties in the inferred up for both the analytical
IM release model and for the direct impact experiments are
comparable. At first this might seem counterintuitive in that
the analytical model requires knowledge of both the Hugoniot
and release of α-quartz, and thus the uncertainty should be
significantly larger than the uncertainties in the direct impact
experiments. However, given the high precision in which
U

quartz
s can be measured and the highly constrained α-quartz

Hugoniot,19 the uncertainty in up of the shocked state of the
α-quartz is roughly equivalent to the uncertainty in the impact

FIG. 9. (Color online) IM Us − up Hugoniot data (blue dia-
monds) compared to direct impact Hugoniot data (Ref. 34) (red
diamonds) for TPX. Red line indicates the linear Hugoniot determined
from a weighted, least-squares linear fit of the direct impact data. Inset
shown for more detail.

velocity of the direct impact experiments. Furthermore, the set
of release experiments described here characterize the release
response of α-quartz as precisely, if not better, than the high-P
Hugoniot of aluminum. Thus, there is essentially no loss in
precision or accuracy in using the analytical IM model. This
comparison illustrates the fact that α-quartz has become the
most well-studied material in the multimegabar regime.

As a final example, we discuss recent Hugoniot experiments
by Barrios et al.23 on GDP, a candidate ablator material
for inertial confinement fusion (ICF) capsules. This example
illustrates the effect of both the α-quartz Hugoniot and the
α-quartz release on inferred shock states when using α-quartz
as an IM standard. In their study, Barrios et al.23 used an

FIG. 10. (Color online) IM Us − up Hugoniot data (blue dia-
monds) compared to direct impact Hugoniot data (Ref. 33) (red
diamonds) for ∼190 mg/cc silica aerogel. Red line indicates the
linear Hugoniot determined from a weighted, least-squares linear fit
of the direct impact data. Inset shown for more detail.
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FIG. 11. (Color online) IM Us − up Hugoniot data (blue dia-
monds) compared to direct impact Hugoniot data (Ref. 33) (red
diamonds) for ∼110 mg/cc silica aerogel. Red line indicates the
linear Hugoniot determined from a weighted, least-squares linear fit
of the direct impact data. Inset shown for more detail.

α-quartz Hugoniot derived from the laser-driven data of Hicks
et al.,18 and a MGNR release model with a constant � = 0.64.
Later, Hamel et al.50 revisited these results using the α-quartz
Hugoniot from Knudson and Desjarlais,19 but with the same
MGNR release model as that used by Barrios et al. Finally,
we reanalyze the results using the α-quartz Hugoniot from
Ref. 19, and the MGLR release model developed in this work.

A comparison of these three analyses is shown in Fig. 12 and
the results are tabulated in Table IX. Comparison of the anal-
yses of Refs. 23 and 50 show that, consistent with the conclu-
sions of Knudson and Desjarlais in Ref. 19, the stiffer α-quartz

FIG. 12. (Color online) P , density compression Hugoniot for
GDP. Black line, LEOS-5350 (Ref. 23); red line, Hamel model
(Ref. 50). Data: open circles, Barrios et al. (Ref. 23); red circles,
Hamel et al. reanalysis (Ref. 50); blue circles, this reanalysis. Gray
and black error bars show representative uncertainties for the analysis
of Barrios et al. and the present reanalysis, respectively.

Hugoniot leads to a stiffer inferred response of the GDP (the
inferred up is lower for a given Us , leading to a lower inferred
ρ). Comparison of our analysis and that of Ref. 50 illustrates
that the use of the MGLR release model leads to a softer
response with respect to the MGNR release model (the inferred
up is larger for a given Us , leading to a higher inferred ρ).

Note that at P above ∼700 GPa in the GDP, which
corresponds to drive P at or above ∼1000 GPa in the α-quartz,
all three analyses lead to essentially the same result. This is due
to the fact that (i) above ∼1000 GPa the α-quartz Hugoniots
of Refs. 18 and 19 more or less converge to the asymptotic

TABLE IX. Comparison of the inferred P and ρ/ρ0 for recent experiments on GDP using three different IM methods described in the text.

Barrios et al. (Ref. 23) Hamel et al. (Ref. 50) This reanalysis

Shot P (GPa) ρ/ρ0 P (GPa) ρ/ρ0 P (GPa) ρ/ρ0

55782 122 ± 4 2.60 ± 0.14 125 2.68 127 ± 5 2.75 ± 0.09
55783 162 ± 4 2.66 ± 0.14 161 2.59 162 ± 6 2.66 ± 0.08
55781 229 ± 4 2.92 ± 0.11 218 2.67 222 ± 9 2.77 ± 0.08
55780 311 ± 5 2.99 ± 0.11 307 2.69 301 ± 11 2.83 ± 0.08
55785 322 ± 6 2.95 ± 0.10 294 2.72 313 ± 12 2.80 ± 0.08
55779 377 ± 6 3.06 ± 0.12 358 2.78 367 ± 14 2.91 ± 0.09
55784 382 ± 7 3.17 ± 0.13 365 2.88 373 ± 14 3.01 ± 0.10
55778 414 ± 7 3.13 ± 0.12 395 2.86 404 ± 15 2.99 ± 0.09
55777 490 ± 9 3.21 ± 0.14 472 2.96 481 ± 18 3.09 ± 0.10
52635 565 ± 9 3.25 ± 0.12 550 3.07 558 ± 9 3.15 ± 0.07
55774 576 ± 11 3.30 ± 0.16 562 3.11 568 ± 21 3.22 ± 0.13
55775 589 ± 11 3.31 ± 0.15 575 3.13 580 ± 5 3.22 ± 0.07
54127 593 ± 11 3.25 ± 0.16 580 3.08 586 ± 12 3.17 ± 0.11
54187 661 ± 11 3.32 ± 0.14 648 3.21 656 ± 11 3.27 ± 0.08
57164 707 ± 13 3.37 ± 0.16 697 3.26 707 ± 26 3.35 ± 0.12
57126 800 ± 14 3.35 ± 0.15 794 3.33 801 ± 13 3.37 ± 0.09
54185 867 ± 16 3.45 ± 0.16 868 3.46 872 ± 14 3.50 ± 0.09
57162 891 ± 18 3.48 ± 0.19 888 3.45 898 ± 8 3.54 ± 0.07
57163 1204 ± 27 3.53 ± 0.21 1219 3.64 1222 ± 10 3.67 ± 0.07
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linear Us − up reported in Ref. 19, and (ii) above ∼1000 GPa
�eff is approaching a value of ∼0.62, which is very close to
� = 0.64 used in the MGNR release model analyses of both
Refs. 23 and 50, and roughly what one would infer for �

from the FPMD calculations along the α-quartz Hugoniot in
this regime. Based upon the discussion surrounding Fig. 2
it is expected that both the MGNR and MGLR models with
the actual � would reproduce reasonably well the α-quartz
release response in this pressure regime, particularly for a
moderate impedance material such as GDP. At P below
∼700 GPa in the GDP, which corresponds to the regime that is
the most relevant for ICF applications,50 these three analyses
differ substantially. This is the result of the rather significant
differences between the reference Hugoniots and �eff in this
regime, presumably due to the strong effects of disordering
and dissociation in the fluid silica.19,20

Finally, and perhaps more significantly, the comparison of
the three analyses displayed in Fig. 12 demonstrates that the
uncertainty in the inferred shock state is significantly smaller
for the MGLR analysis as compared to the MGNR analysis.
This is due to the significant reduction in the uncertainty
of �eff. With no direct experimental guidance, Barrios et al.
were forced to resort to examination of various EOS models
and high-P Hugoniot data on solid and porous silica in an
attempt to constrain �, with a resultantly large uncertainty
of ±0.11. The experiments described in Sec. III enabled a
determination of �eff with an uncertainty roughly three to five
times smaller. As a result, the inferred quantities, particularly
ρ, exhibit significantly lower uncertainty, thereby increasing
the precision of the IM method with α-quartz as the standard.

VI. CONCLUSION

The release response of α-quartz was investigated
within the framework of first-principles molecular dynamics
(FPMD). These calculations provided insight into the release
response, and motivated a simple Mie-Grüneisen model with
a linear Us − up Hugoniot as the reference, referred to as the
MGLR model. This model was shown to reproduce the FPMD
release paths extremely well with a constant S = 1.197 and a
constant �eff along the release path, with �eff being a function
of U

quartz
s .

A series of plate-impact, shock wave experiments were
performed on the Sandia Z machine to obtain adiabatic
release data for α-quartz from ∼300–1200 GPa states on the
principal Hugoniot. Three different low-impedance standards
were used, TPX, ∼190 and ∼110 mg/cc silica aerogel, which
vary in shock impedance by roughly one order of magnitude.
These data validated the MGLR model that was motivated by
the FPMD study, and provided an experimentally determined
�eff as a function of U

quartz
s .

This theoretical and experimental study of the release
response of α-quartz provides a simple, analytical model for
performing IM calculations without the need to appeal to any
particular tabular equation of state for α-quartz. Since the
model is analytical, it is well suited for the use of Monte
Carlo analysis methods, enabling all uncertainties, including
the random measurement uncertainties and the systematic
uncertainties in the Hugoniot and release response of α-quartz,
to be propagated to the inferred quantities. We also note that

the experimentally validated model framework should prove to
be useful in the development of wide range equations of state
for silica, a major constituent in the Earth’s crust and mantle,
in that it constrains the kinematic variables of α-quartz upon
release over a wide range of P and ρ. Such models are crucial
for accurate simulations of high-velocity giant impacts that are
thought to be prevalent in the final stages of terrestrial planet
formation.

It is emphasized that the MGLR model discussed here is
only intended to calculate kinematic variables for α-quartz
upon release, in particular, the release paths in the P − up

plane for purposes of impedance matching. Obviously, the
linear Us − up reference for the Hugoniot in this P regime is in
stark contrast to what is observed experimentally. Furthermore,
the rather low values of �eff that result from the MGLR model
at low P are in disagreement with the estimates from the
FPMD release calculations, which are closer to unity at ∼200–
400 GPa and monotonically decrease with increasing pressure
along the Hugoniot. For these reasons, it is fully expected
that other aspects of the MGLR model will be incorrect. In
particular, it is anticipated that the temperatures and specific
heats of the MGLR model do not reflect the behavior of α-
quartz in this regime.

Finally, we caution against the use of this model outside
of the range of the experimental data. This is particularly true
for U

quartz
s below ∼15 km/s, where there are no data and it

is unclear how best to extrapolate. Because �eff seems to be
saturating at high P , one could likely use this fit for U

quartz
s

above ∼26 km/s with some confidence. At pressures above
this limit, roughly 1150 GPa, the Hugoniot asymptotes to a
linear response and �eff approaches a value of �eff = 0.62
consistent with the actual � from the FPMD calculations, and
close to what one would expect for an ideal gas. Both of these
behaviors are presumably because P is sufficiently high that
the effects of disordering and dissociation in the shocked fluid
are becoming less important.

As an example of its use, the MGLR model was used to
infer Hugoniot states through the IM method for all of the
α-quartz release measurements performed in this study. This
provided a consistency check in that the IM results could
be compared to the direct impact Hugoniot measurements
of the standards. The Hugoniot response inferred using the
analytical IM model was found to be in excellent agreement
with the direct impact Hugoniot results, suggesting that the
IM method can confidently be used to obtain high-precision
Hugoniot measurements regardless of the shock impedance of
the unknown material. Furthermore, the uncertainties in the
inferred up for both the analytical IM release model and for
the direct impact experiments were found to be comparable,
indicating that there is essentially no loss in accuracy in
using the analytical IM model. This comparison illustrates the
fact that α-quartz has become the most well-studied material
in the multimegabar regime and the standard of choice for
multimegabar experiments.
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APPENDIX: α-QUARTZ HUGONIOT DATA

Table X lists the Us − up Hugoniot data for α-quartz
used to perform the weighted, least-squares cubic fit, the
results of which are listed in Tables III and IV. These data
are from Ref. 19 and more recent experiments performed
using the same method as that described in Ref. 19. The

linear Us − up relations for the aluminum6,9–12,14,15,51–55 and
copper6,12,51,53,55–58 impactors used to perform the IM analysis
of these direct impact experiments are listed in Table XI along
with the covariance matrix elements. Note that the Hugoniot
for the impactors is described by piecewise linear fits due to
different slopes corresponding to the solid and liquid branches
of the Hugoniot.

For comparison with Ref. 19, Tables XII and XIII lists
the best-fit values and the covariance matrix elements for a
weighted fit of the data listed in Table X to the functional
form:

Us = a + bup − cupe−dup . (A1)

TABLE X. Us − up Hugoniot data for α-quartz from Ref. 19 and more recent data obtained using the same method. The impactor material
is listed in the flyer column, with “Al” and “Cu” designating aluminum and copper, respectively. vf and U quartz

s are the measured flyer plate
and quartz shock velocity, respectively. uquartz

p , P , and ρ are the inferred quartz particle velocity, pressure, and density in the shocked state,
respectively. σ 2

Us
, σ 2

up
, and σUs

σup
are the covariance matrix elements that describe the correlation between the uncertainties in Us and up .

Expt. Flyer vf (km/s) U quartz
s (km/s) uquartz

p (km/s) σ 2
Us

(×10−3) σ 2
up

(×10−3) σUs
σup

(×10−4) P (GPa) ρ (g/cc)

Z1707 Al 7.44 ± 0.05 8.65 4.02 1.600 1.065 −2.807 92.1 ± 0.8 4.95 ± 0.04
Z1707 Al 7.46 ± 0.05 8.71 4.02 1.600 1.054 −2.747 92.8 ± 0.8 4.93 ± 0.04
Z1707 Al 7.48 ± 0.05 8.75 4.03 1.600 1.057 −2.756 93.4 ± 0.8 4.91 ± 0.04
Z2378 Cu 6.08 ± 0.05 9.25 4.30 1.600 1.508 −1.722 105.3 ± 1.0 4.95 ± 0.05
Z1707 Al 8.60 ± 0.05 9.69 4.57 1.600 1.063 −2.832 117.4 ± 0.9 5.02 ± 0.04
Z1707 Al 8.65 ± 0.05 9.72 4.60 1.600 1.069 −2.809 118.4 ± 0.9 5.03 ± 0.04
Z2379 Cu 6.75 ± 0.05 9.92 4.74 1.600 1.534 −1.753 124.6 ± 1.1 5.08 ± 0.04
Z1685 Al 10.88 ± 0.05 11.41 5.70 1.600 1.112 −2.899 172.4 ± 1.1 5.30 ± 0.04
Z1685 Al 11.01 ± 0.05 11.46 5.77 1.600 1.122 −2.948 175.4 ± 1.1 5.34 ± 0.04
Z1685 Al 10.92 ± 0.05 11.47 5.72 1.600 1.114 −2.942 173.8 ± 1.1 5.28 ± 0.04
Z2055 Cu 8.53 ± 0.05 11.65 5.92 1.600 1.555 −1.889 182.7 ± 1.3 5.39 ± 0.04
Z2193 Cu 8.65 ± 0.05 11.76 6.00 1.600 1.567 −1.872 187.0 ± 1.3 5.41 ± 0.04
Z1685 Al 12.16 ± 0.05 12.37 6.33 1.600 1.142 −2.991 207.7 ± 1.2 5.43 ± 0.04
Z1685 Al 12.21 ± 0.05 12.40 6.36 1.600 1.145 −3.009 209.0 ± 1.2 5.44 ± 0.04
Z1657 Cu 9.56 ± 0.08 12.77 6.58 2.500 3.902 −2.901 222.8 ± 2.2 5.47 ± 0.06
Z1657 Cu 9.58 ± 0.08 12.82 6.59 2.500 3.937 −2.987 224.0 ± 2.2 5.45 ± 0.06
Z1681 Cu 9.71 ± 0.08 12.92 6.68 2.500 3.919 −2.768 228.6 ± 2.3 5.49 ± 0.06
Z1681 Cu 9.81 ± 0.08 12.98 6.75 2.500 3.937 −3.121 232.1 ± 2.3 5.52 ± 0.06
Z2193 Cu 9.85 ± 0.05 13.05 6.77 1.600 1.598 −1.928 234.1 ± 1.5 5.51 ± 0.04
Z2096 Cu 9.98 ± 0.05 13.16 6.86 1.600 1.615 −1.945 239.2 ± 1.5 5.54 ± 0.04
Z2262 Cu 10.00 ± 0.05 13.18 6.87 1.600 1.606 −1.949 240.0 ± 1.5 5.54 ± 0.04
Z1657 Cu 10.72 ± 0.08 13.91 7.34 2.500 3.990 −2.883 270.5 ± 2.5 5.61 ± 0.06
Z1708 Cu 10.78 ± 0.05 13.92 7.39 1.600 1.626 −1.913 272.4 ± 1.6 5.65 ± 0.04
Z1708 Cu 10.78 ± 0.05 13.95 7.38 1.600 1.616 −1.884 272.9 ± 1.6 5.63 ± 0.04
Z1681 Cu 10.89 ± 0.08 14.00 7.46 2.500 3.992 −3.031 276.8 ± 2.5 5.68 ± 0.06
Z1657 Cu 10.77 ± 0.08 14.01 7.37 2.500 3.976 −2.939 273.5 ± 2.5 5.59 ± 0.06
Z1681 Cu 11.04 ± 0.08 14.15 7.56 2.500 4.000 −3.211 283.4 ± 2.5 5.69 ± 0.06
Z1624 Cu 11.32 ± 0.08 14.37 7.74 2.500 4.004 −2.876 294.8 ± 2.6 5.75 ± 0.06
Z1624 Cu 11.31 ± 0.08 14.37 7.75 2.500 4.013 −3.014 295.0 ± 2.6 5.75 ± 0.06
Z2186 Cu 11.35 ± 0.05 14.38 7.77 1.600 1.658 −1.990 296.1 ± 1.7 5.77 ± 0.04
Z2186 Cu 11.48 ± 0.05 14.55 7.85 1.600 1.654 −1.910 302.7 ± 1.7 5.76 ± 0.04
Z1602 Cu 11.98 ± 0.08 14.96 8.19 2.500 4.023 −3.039 324.5 ± 2.7 5.85 ± 0.06
Z2093 Al 15.90 ± 0.05 14.98 8.17 1.600 1.355 −3.264 324.2 ± 1.5 5.83 ± 0.04
Z1602 Cu 12.04 ± 0.08 15.08 8.22 2.500 4.078 −3.145 328.4 ± 2.7 5.82 ± 0.06
Z1708 Cu 11.94 ± 0.05 15.10 8.14 1.600 1.706 −1.924 325.6 ± 1.8 5.75 ± 0.04
Z1708 Cu 12.02 ± 0.05 15.15 8.19 1.600 1.691 −2.071 329.0 ± 1.8 5.77 ± 0.04
Z2093 Al 16.37 ± 0.05 15.26 8.41 1.600 1.352 −3.250 339.9 ± 1.6 5.90 ± 0.04
Z2186 Cu 12.42 ± 0.05 15.45 8.47 1.600 1.734 −2.017 346.6 ± 1.9 5.86 ± 0.04
Z2186 Cu 12.54 ± 0.05 15.48 8.56 1.600 1.722 −1.959 351.0 ± 1.9 5.92 ± 0.04
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TABLE X. (Continued.)

Expt. Flyer vf (km/s) U quartz
s (km/s) uquartz

p (km/s) σ 2
Us

(×10−3) σ 2
up

(×10−3) σUs
σup

(×10−4) P (GPa) ρ (g/cc)

Z2436 Al 16.80 ± 0.05 15.55 8.62 1.600 1.323 −3.267 355.1 ± 1.6 5.94 ± 0.04
Z1624 Cu 12.66 ± 0.08 15.57 8.64 2.500 4.090 −3.102 356.4 ± 2.8 5.95 ± 0.06
Z1624 Cu 12.67 ± 0.08 15.71 8.63 2.500 4.101 −3.166 359.2 ± 2.8 5.88 ± 0.06
Z1602 Cu 12.90 ± 0.08 15.80 8.79 2.500 4.109 −3.212 368.2 ± 2.8 5.98 ± 0.06
Z1741 Cu 12.91 ± 0.05 15.80 8.80 1.600 1.764 −2.067 368.5 ± 1.9 5.98 ± 0.04
Z1602 Cu 12.96 ± 0.08 15.94 8.82 2.500 4.070 −3.132 372.7 ± 2.9 5.94 ± 0.06
Z2476 Al 17.64 ± 0.05 16.08 9.04 1.600 1.305 −3.391 385.0 ± 1.6 6.05 ± 0.04
Z2476 Al 17.70 ± 0.05 16.16 9.06 1.600 1.305 −3.315 387.8 ± 1.7 6.03 ± 0.04
Z1741 Cu 13.30 ± 0.05 16.20 9.05 1.600 1.761 −2.054 388.7 ± 2.0 6.01 ± 0.04
Z1738 Cu 13.78 ± 0.05 16.58 9.42 1.600 1.278 −3.300 414.0 ± 1.7 6.14 ± 0.04
Z2093 Al 18.42 ± 0.05 16.58 9.37 1.600 1.597 −2.091 411.9 ± 2.0 6.10 ± 0.04
Z2114 Al 18.32 ± 0.05 16.67 9.34 1.600 1.281 −3.282 412.6 ± 1.7 6.03 ± 0.04
Z1741 Cu 13.80 ± 0.05 16.68 9.38 1.600 1.582 −1.929 414.6 ± 2.0 6.05 ± 0.04
Z1738 Cu 13.84 ± 0.05 16.73 9.29 1.600 1.590 −2.053 412.1 ± 2.0 5.96 ± 0.04
Z1918 Cu 13.70 ± 0.05 16.73 9.40 1.600 1.586 −2.036 416.9 ± 2.0 6.05 ± 0.04
Z1918 Cu 13.80 ± 0.05 16.78 9.36 1.600 1.590 −2.074 416.5 ± 2.0 6.00 ± 0.04
Z1741 Cu 13.94 ± 0.05 16.86 9.46 1.600 1.277 −3.276 422.6 ± 1.7 6.03 ± 0.04
Z2024 Al 18.57 ± 0.05 16.86 9.46 1.600 1.588 −2.099 422.8 ± 2.0 6.04 ± 0.04
Z2187 Cu 14.45 ± 0.05 17.26 9.80 1.600 1.597 −2.129 448.5 ± 2.0 6.13 ± 0.04
Z2187 Cu 14.52 ± 0.05 17.27 9.86 1.600 1.584 −2.054 451.1 ± 2.0 6.17 ± 0.04
Z1987 Al 19.27 ± 0.05 17.28 9.81 1.600 1.283 −3.356 449.3 ± 1.8 6.13 ± 0.04
Z2386 Al 19.46 ± 0.05 17.35 9.91 1.600 1.284 −3.376 455.9 ± 1.8 6.18 ± 0.04
Z2386 Al 19.50 ± 0.05 17.38 9.93 1.600 1.268 −3.398 457.6 ± 1.8 6.18 ± 0.04
Z1971 Al 19.55 ± 0.05 17.47 9.95 1.600 1.266 −3.490 460.6 ± 1.8 6.15 ± 0.04
Z2476 Al 19.58 ± 0.05 17.48 9.96 1.600 1.267 −3.336 461.6 ± 1.8 6.16 ± 0.04
Z1971 Al 19.64 ± 0.05 17.49 10.00 1.600 1.275 −3.367 463.5 ± 1.8 6.19 ± 0.04
Z1738 Cu 14.74 ± 0.05 17.58 9.98 1.600 1.592 −2.108 465.3 ± 2.1 6.13 ± 0.04
Z1738 Cu 14.98 ± 0.05 17.80 10.14 1.600 1.594 −2.059 478.4 ± 2.1 6.16 ± 0.04
Z1955 Al 20.38 ± 0.06 17.98 10.36 1.600 1.701 −3.326 493.8 ± 2.1 6.25 ± 0.04
Z1956 Al 20.40 ± 0.05 18.00 10.37 1.600 1.263 −3.428 494.8 ± 1.8 6.25 ± 0.04
Z1918 Cu 15.20 ± 0.05 18.04 10.28 1.600 1.603 −2.057 491.3 ± 2.1 6.16 ± 0.04
Z1911 Al 20.58 ± 0.05 18.20 10.45 1.600 1.258 −3.395 503.8 ± 1.8 6.22 ± 0.04
Z1911 Al 20.61 ± 0.05 18.20 10.46 1.600 1.258 −3.399 504.4 ± 1.8 6.23 ± 0.04
Z1911 Al 20.59 ± 0.05 18.20 10.44 1.600 1.251 −3.378 503.5 ± 1.8 6.22 ± 0.04
Z1909 Al 20.70 ± 0.05 18.29 10.50 1.600 1.253 −3.348 508.7 ± 1.9 6.22 ± 0.04
Z1918 Cu 15.45 ± 0.05 18.29 10.44 1.600 1.610 −2.081 505.9 ± 2.2 6.18 ± 0.04
Z1909 Al 20.80 ± 0.05 18.32 10.56 1.600 1.258 −3.398 512.3 ± 1.9 6.26 ± 0.04
Z1909 Al 20.80 ± 0.05 18.32 10.56 1.600 1.255 −3.299 512.3 ± 1.9 6.26 ± 0.04
Z2025 Al 20.84 ± 0.05 18.35 10.57 1.600 1.257 −3.398 514.1 ± 1.9 6.26 ± 0.04
Z2045 Al 20.94 ± 0.05 18.38 10.63 1.600 1.255 −3.445 517.7 ± 1.9 6.29 ± 0.04
Z2045 Al 20.93 ± 0.05 18.41 10.62 1.600 1.252 −3.440 517.9 ± 1.9 6.26 ± 0.04
Z2187 Cu 15.73 ± 0.05 18.56 10.62 1.600 1.603 −2.081 522.2 ± 2.2 6.20 ± 0.04
Z1972 Al 21.38 ± 0.06 18.62 10.86 2.500 1.724 −5.351 535.6 ± 2.2 6.36 ± 0.05
Z2125 Al 21.27 ± 0.05 18.63 10.79 1.600 1.246 −3.415 532.4 ± 1.9 6.30 ± 0.04
Z1742 Cu 15.83 ± 0.05 18.64 10.69 1.600 1.600 −2.106 527.8 ± 2.2 6.21 ± 0.04
Z1972 Al 21.52 ± 0.06 18.76 10.92 2.500 1.729 −5.434 542.6 ± 2.2 6.34 ± 0.05
Z1988 Al 21.63 ± 0.05 18.83 10.97 1.600 1.248 −3.445 547.3 ± 1.9 6.35 ± 0.04
Z1742 Cu 16.27 ± 0.05 18.86 11.00 1.600 1.623 −2.025 549.5 ± 2.3 6.36 ± 0.04
Z2112 Cu 16.12 ± 0.05 18.88 10.88 1.600 1.625 −2.112 544.2 ± 2.3 6.26 ± 0.04
Z1955 Al 21.84 ± 0.06 18.98 11.07 1.600 1.703 −3.366 556.7 ± 2.2 6.36 ± 0.04
Z1917 Cu 16.34 ± 0.05 18.99 11.03 1.600 1.622 −2.163 555.2 ± 2.3 6.33 ± 0.04
Z1406 Al 21.80 ± 0.15 19.01 11.04 36.000 10.743 −77.820 556.0 ± 5.9 6.33 ± 0.14
Z1917 Cu 16.30 ± 0.05 19.04 11.00 1.600 1.635 −2.059 554.8 ± 2.3 6.27 ± 0.04
Z1406 Al 22.30 ± 0.15 19.17 11.32 36.600 10.987 −79.525 575.0 ± 6.1 6.48 ± 0.15
Z1956 Al 22.25 ± 0.05 19.23 11.28 1.600 1.264 −3.362 574.5 ± 2.0 6.41 ± 0.04
Z1911 Al 22.20 ± 0.05 19.30 11.23 1.600 1.257 −3.415 574.3 ± 2.0 6.34 ± 0.04
Z1911 Al 22.20 ± 0.05 19.32 11.23 1.600 1.266 −3.534 574.6 ± 2.0 6.33 ± 0.04
Z1911 Al 22.20 ± 0.05 19.32 11.23 1.600 1.263 −3.374 574.6 ± 2.0 6.33 ± 0.04
Z1909 Al 22.30 ± 0.05 19.34 11.28 1.600 1.261 −3.522 578.2 ± 2.0 6.36 ± 0.04
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TABLE X. (Continued.)

Expt. Flyer vf (km/s) U quartz
s (km/s) uquartz

p (km/s) σ 2
Us

(×10−3) σ 2
up

(×10−3) σUs
σup

(×10−4) P (GPa) ρ (g/cc)

Z1201 Al 22.60 ± 0.15 19.42 11.46 37.600 10.956 −81.353 589.5 ± 6.2 6.47 ± 0.15
Z1909 Al 22.40 ± 0.05 19.44 11.33 1.600 1.259 −3.448 583.4 ± 2.0 6.35 ± 0.04
Z1909 Al 22.40 ± 0.05 19.44 11.33 1.600 1.268 −3.487 583.4 ± 2.0 6.35 ± 0.04
Z2037 Al 22.60 ± 0.05 19.49 11.44 1.600 1.258 −3.429 590.9 ± 2.0 6.42 ± 0.04
Z2037 Al 22.69 ± 0.05 19.52 11.49 1.600 1.266 −3.515 594.4 ± 2.0 6.44 ± 0.04
Z1740 Cu 17.16 ± 0.05 19.69 11.65 3.600 4.387 −7.957 607.9 ± 3.6 6.49 ± 0.07
Z1807 Al 23.00 ± 0.10 19.69 11.57 1.600 1.639 −2.104 603.8 ± 2.4 6.43 ± 0.04
Z2148 Al 23.00 ± 0.05 19.75 11.64 1.600 1.264 −3.330 609.1 ± 2.0 6.45 ± 0.04
Z2147 Al 23.05 ± 0.05 19.77 11.67 1.600 1.277 −3.514 611.1 ± 2.0 6.47 ± 0.04
Z1742 Cu 17.07 ± 0.05 19.81 11.49 1.600 1.643 −2.111 603.0 ± 2.4 6.31 ± 0.04
Z1806 Al 23.40 ± 0.15 19.89 11.86 10.000 9.738 −22.197 625.1 ± 5.5 6.57 ± 0.10
Z1742 Cu 17.50 ± 0.05 20.14 11.96 1.600 1.283 −3.469 638.5 ± 2.1 6.53 ± 0.04
Z2125 Al 23.65 ± 0.05 20.14 11.78 1.600 1.645 −2.165 628.5 ± 2.5 6.38 ± 0.04
Z1743 Cu 17.75 ± 0.05 20.16 11.97 1.600 1.677 −2.202 639.3 ± 2.5 6.52 ± 0.04
Z1988 Al 23.69 ± 0.05 20.17 11.98 1.600 1.292 −3.510 640.5 ± 2.1 6.53 ± 0.04
Z1740 Cu 17.60 ± 0.05 20.19 11.85 1.600 1.654 −2.158 633.8 ± 2.5 6.41 ± 0.04
Z1917 Cu 17.60 ± 0.05 20.24 11.84 1.600 1.674 −2.217 635.0 ± 2.5 6.39 ± 0.04
Z1917 Cu 17.60 ± 0.05 20.24 11.84 1.600 1.654 −2.102 635.0 ± 2.5 6.39 ± 0.04
Z1988 Al 23.77 ± 0.05 20.27 12.01 1.600 1.297 −3.581 645.2 ± 2.1 6.51 ± 0.04
Z1881 Al 23.85 ± 0.10 20.31 12.05 3.600 4.421 −7.987 648.7 ± 3.7 6.52 ± 0.06
Z1452 Al 23.85 ± 0.14 20.34 12.05 10.000 8.544 −22.222 649.4 ± 5.3 6.50 ± 0.10
Z1912 Al 24.12 ± 0.05 20.52 12.18 1.600 1.295 −3.449 662.3 ± 2.1 6.52 ± 0.04
Z1912 Al 24.28 ± 0.05 20.56 12.30 1.600 1.299 −3.541 670.0 ± 2.1 6.59 ± 0.04
Z2044 Al 24.32 ± 0.05 20.56 12.27 1.600 1.306 −3.559 668.6 ± 2.1 6.57 ± 0.04
Z1743 Cu 18.07 ± 0.05 20.57 12.16 1.600 1.688 −2.167 662.7 ± 2.5 6.48 ± 0.04
Z2044 Al 24.35 ± 0.05 20.61 12.31 1.600 1.309 −3.649 672.1 ± 2.1 6.58 ± 0.04
Z1910 Al 24.40 ± 0.05 20.69 12.29 1.600 1.298 −3.495 673.7 ± 2.1 6.53 ± 0.04
Z1910 Al 24.40 ± 0.05 20.69 12.32 1.600 1.302 −3.492 675.4 ± 2.2 6.55 ± 0.04
Z1910 Al 24.35 ± 0.05 20.69 12.32 1.600 1.307 −3.517 675.5 ± 2.2 6.55 ± 0.04
Z2148 Al 24.59 ± 0.05 20.72 12.43 1.600 1.311 −3.519 682.7 ± 2.2 6.63 ± 0.04
Z1957 Al 24.66 ± 0.06 20.75 12.47 1.600 1.760 −3.545 685.8 ± 2.5 6.64 ± 0.04
Z2094 Al 24.60 ± 0.05 20.75 12.43 1.600 1.316 −3.565 683.7 ± 2.2 6.61 ± 0.04
Z1806 Al 24.85 ± 0.15 20.99 12.54 10.000 9.726 −21.725 697.5 ± 5.8 6.58 ± 0.10
Z1881 Al 25.10 ± 0.10 21.24 12.64 3.600 4.410 −7.613 711.6 ± 3.9 6.55 ± 0.06
Z1881 Al 25.25 ± 0.10 21.29 12.73 3.600 4.438 −7.867 718.1 ± 3.9 6.59 ± 0.06
Z1136 Al 25.40 ± 0.25 21.34 12.81 45.400 28.438 −98.803 724.5 ± 10.3 6.64 ± 0.19
Z1912 Al 25.60 ± 0.05 21.54 12.94 1.600 1.370 −3.468 738.6 ± 2.3 6.64 ± 0.04
Z1912 Al 25.67 ± 0.05 21.54 12.89 1.600 1.352 −3.554 736.0 ± 2.3 6.60 ± 0.04
Z1912 Al 25.66 ± 0.05 21.59 12.92 1.600 1.355 −3.480 739.3 ± 2.3 6.60 ± 0.04
Z2345 Al 26.02 ± 0.05 21.65 13.14 1.600 1.380 −3.589 753.7 ± 2.3 6.74 ± 0.04
Z1910 Al 25.90 ± 0.05 21.69 13.19 1.600 1.824 −3.499 758.2 ± 2.6 6.76 ± 0.04
Z1957 Al 26.12 ± 0.06 21.69 13.05 1.600 1.370 −3.487 750.2 ± 2.3 6.65 ± 0.04
Z2333 Al 26.00 ± 0.05 21.69 13.11 1.600 1.370 −3.571 753.8 ± 2.3 6.70 ± 0.04
Z1472 Al 26.08 ± 0.14 21.70 13.16 10.000 8.704 −21.970 757.0 ± 5.7 6.74 ± 0.10
Z1910 Al 25.95 ± 0.05 21.74 13.07 1.600 1.361 −3.488 753.1 ± 2.3 6.65 ± 0.04
Z1910 Al 26.01 ± 0.05 21.79 13.10 1.600 1.368 −3.420 756.4 ± 2.3 6.64 ± 0.04
Z2165 Al 26.20 ± 0.05 21.84 13.21 1.600 1.385 −3.606 764.5 ± 2.3 6.70 ± 0.04
Z1889 Al 26.24 ± 0.10 21.86 13.23 3.600 4.496 −7.868 766.4 ± 4.1 6.71 ± 0.06
Z1474 Al 26.30 ± 0.14 21.90 13.26 10.000 8.771 −22.881 769.5 ± 5.7 6.72 ± 0.10
Z1991 Al 26.52 ± 0.05 21.98 13.38 1.600 1.406 −3.455 779.4 ± 2.4 6.77 ± 0.04
Z1474 Al 26.60 ± 0.14 22.01 13.42 10.000 8.728 −22.059 783.1 ± 5.8 6.79 ± 0.10
Z2094 Al 26.75 ± 0.05 22.09 13.50 1.600 1.422 −3.543 790.4 ± 2.4 6.81 ± 0.04
Z1882 Al 26.70 ± 0.10 22.14 13.46 3.600 4.541 −8.149 789.8 ± 4.2 6.76 ± 0.06
Z1989 Al 26.78 ± 0.05 22.17 13.50 1.600 1.421 −3.654 793.4 ± 2.4 6.78 ± 0.04
Z1472 Al 26.92 ± 0.14 22.19 13.59 10.000 8.736 −22.703 799.1 ± 5.8 6.84 ± 0.10
Z1239 Al 26.80 ± 0.27 22.28 13.49 49.500 31.620 −111.118 796.7 ± 11.3 6.73 ± 0.19
Z2043 Al 27.12 ± 0.05 22.30 13.69 1.600 1.442 −3.588 809.1 ± 2.5 6.86 ± 0.04
Z2043 Al 27.12 ± 0.05 22.33 13.68 1.600 1.434 −3.521 809.8 ± 2.5 6.84 ± 0.04
Z1882 Al 27.00 ± 0.10 22.34 13.60 3.600 4.555 −7.788 805.6 ± 4.2 6.78 ± 0.06
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TABLE X. (Continued.)

Expt. Flyer vf (km/s) U quartz
s (km/s) uquartz

p (km/s) σ 2
Us

(×10−3) σ 2
up

(×10−3) σUs
σup

(×10−4) P (GPa) ρ (g/cc)

Z1238 Al 27.20 ± 0.27 22.38 13.72 49.900 32.858 −108.655 814.0 ± 11.6 6.86 ± 0.20
Z1958 Al 27.15 ± 0.05 22.39 13.69 1.600 1.433 −3.475 812.3 ± 2.5 6.82 ± 0.04
Z1350 Al 27.80 ± 0.15 22.57 14.06 50.800 12.189 −114.753 841.2 ± 8.0 7.04 ± 0.18
Z1985 Cu 20.35 ± 0.20 22.58 13.65 10.000 24.456 −13.496 816.8 ± 9.8 6.70 ± 0.13
Z2333 Al 27.70 ± 0.05 22.75 13.96 1.600 1.471 −3.561 841.7 ± 2.5 6.86 ± 0.04
Z1473 Al 27.90 ± 0.14 22.84 14.07 10.000 8.857 −22.742 851.5 ± 6.1 6.90 ± 0.10
Z2165 Al 27.93 ± 0.05 22.87 14.08 1.600 1.500 −3.621 853.4 ± 2.6 6.89 ± 0.04
Z1989 Al 28.25 ± 0.05 23.02 14.25 1.600 1.527 −3.556 869.3 ± 2.6 6.95 ± 0.04
Z1424 Al 28.40 ± 0.14 23.04 14.08 10.000 8.829 −22.945 860.1 ± 6.1 6.82 ± 0.09
Z1473 Al 28.00 ± 0.14 23.04 14.34 10.000 8.902 −22.280 875.7 ± 6.1 7.02 ± 0.10
Z1985 Cu 21.00 ± 0.20 23.07 14.08 10.000 24.552 −13.558 861.2 ± 10.0 6.80 ± 0.13
Z1424 Al 28.80 ± 0.14 23.14 14.57 10.000 8.953 −23.174 893.7 ± 6.2 7.16 ± 0.10
Z1989 Al 28.50 ± 0.05 23.15 14.38 1.600 1.550 −3.649 882.2 ± 2.6 6.99 ± 0.04
Z1882 Al 28.40 ± 0.10 23.19 14.31 3.600 4.673 −8.175 879.3 ± 4.4 6.92 ± 0.07
Z1350 Al 28.80 ± 0.15 23.29 14.54 54.000 12.458 −122.840 897.2 ± 8.4 7.06 ± 0.18
Z1958 Al 28.70 ± 0.05 23.40 14.45 1.600 1.550 −3.513 895.9 ± 2.7 6.93 ± 0.04
Z1949 Al 29.05 ± 0.10 23.47 14.66 4.900 4.814 −11.292 911.5 ± 4.6 7.06 ± 0.07
Z2018 Al 28.95 ± 0.07 23.50 14.59 1.600 2.552 −3.517 908.3 ± 3.3 6.99 ± 0.05
Z1959 Al 29.27 ± 0.06 23.51 14.79 1.600 2.041 −3.661 921.3 ± 3.0 7.15 ± 0.05
Z2166 Al 28.89 ± 0.05 23.51 14.55 1.600 1.589 −3.646 906.2 ± 2.7 6.95 ± 0.04
Z2018 Al 29.05 ± 0.07 23.53 14.65 1.600 2.573 −3.649 913.0 ± 3.3 7.02 ± 0.05
Z2371 Al 29.56 ± 0.05 23.93 14.88 1.600 1.636 −3.655 943.4 ± 2.8 7.01 ± 0.04
Z2166 Al 30.45 ± 0.05 24.42 15.34 1.600 1.719 −3.675 992.3 ± 2.9 7.13 ± 0.04
Z1810 Al 30.47 ± 0.05 24.45 15.28 1.600 1.828 −8.328 990.2 ± 3.1 7.07 ± 0.05
Z1928 Al 30.38 ± 0.05 24.45 15.34 3.600 1.719 −3.654 994.0 ± 2.9 7.12 ± 0.04
Z1959 Al 30.68 ± 0.05 24.47 15.47 1.600 1.739 −3.633 1003.2 ± 2.9 7.21 ± 0.04
Z2015 Al 31.33 ± 0.05 24.90 15.79 1.600 1.812 −3.641 1041.7 ± 3.1 7.24 ± 0.04
Z2375 Al 31.24 ± 0.05 24.95 15.72 1.600 1.816 −3.625 1039.3 ± 3.1 7.16 ± 0.04
Z2375 Al 31.25 ± 0.05 25.05 15.70 1.600 1.809 −3.717 1042.4 ± 3.1 7.10 ± 0.04
Z1948 Al 31.95 ± 0.10 25.25 16.11 4.900 5.117 −11.062 1077.6 ± 5.1 7.32 ± 0.07
Z2016 Al 32.50 ± 0.05 25.60 16.38 1.600 1.955 −3.728 1111.0 ± 3.2 7.36 ± 0.04
Z2332 Al 32.50 ± 0.05 25.60 16.38 1.600 1.955 −3.616 1111.0 ± 3.3 7.36 ± 0.04
Z1367 Al 33.00 ± 0.20 26.05 16.59 67.600 20.818 −153.608 1145.4 ± 11.7 7.31 ± 0.20
Z1929 Al 33.50 ± 0.05 26.18 16.88 2.500 2.161 −5.926 1171.3 ± 3.5 7.46 ± 0.05
Z1929 Al 33.50 ± 0.05 26.25 16.87 2.500 2.149 −5.693 1173.3 ± 3.6 7.41 ± 0.05
Z1419 Al 33.80 ± 0.14 26.35 17.04 10.000 9.728 −23.432 1189.6 ± 7.3 7.50 ± 0.10
Z1929 Al 33.80 ± 0.05 26.35 17.04 1.600 2.160 −3.703 1189.6 ± 3.5 7.50 ± 0.05
Z1490 Al 33.85 ± 0.14 26.49 17.04 10.000 9.657 −23.378 1196.0 ± 7.4 7.43 ± 0.10
Z1929 Al 34.00 ± 0.05 26.55 17.12 10.000 2.619 −22.924 1204.4 ± 4.5 7.46 ± 0.08
Z1932 Al 34.45 ± 0.05 26.95 17.35 2.500 2.730 −23.336 1238.8 ± 4.6 7.44 ± 0.08
Z1929 Al 34.50 ± 0.05 26.95 17.31 10.000 2.302 −5.806 1236.6 ± 3.8 7.41 ± 0.05
Z1932 Al 34.80 ± 0.05 27.15 17.49 2.500 2.350 −5.746 1258.6 ± 3.8 7.45 ± 0.05
Z1932 Al 35.40 ± 0.05 27.55 17.78 2.500 2.455 −5.895 1298.4 ± 4.0 7.47 ± 0.05
Z1933 Al 38.20 ± 0.08 29.36 19.16 4.900 4.764 −11.134 1490.5 ± 5.8 7.63 ± 0.07
Z1933 Al 39.50 ± 0.08 29.96 19.85 4.900 5.009 −11.171 1576.2 ± 6.1 7.86 ± 0.07

TABLE XI. Aluminum (Refs. 6,9–12,14,15,51–55) and copper (Refs. 6,12,51,53,55–58) Us − up coefficients and covariance matrix
elements. Break points between the low- and high-pressure branches of the Hugoniots are up = 6.25 and 4.27 km/s for aluminum and copper,
respectively.

C0 σ 2
C0

σ 2
S σC0σS

(km/s) S (×10−3) (×10−3) (×10−3)

Low-P Al 5.385 1.339 0.3141 0.1097 −0.1576
High-P Al 6.322 1.189 53.581 0.4196 −4.605
Low-P Cu 3.970 1.479 0.2925 0.5002 0.3792
High-P Cu 4.384 1.382 13.44 0.6084 −2.689
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TABLE XII. α-quartz coefficients for the Us − up relation displayed in Eq. (A1).

a d

(km/s) b c (km/s)−1

6.278 1.193 2.505 0.3701

TABLE XIII. α-quartz covariance matrix elements for the Us − up relation displayed in Eq. (A1).

σ 2
a σaσb σaσc σaσd σ 2

b σbσc σbσd σ 2
c σcσd σ 2

d

(×10−2) (×10−3) (×10−3) (×10−3) (×10−4) (×10−4) (×10−4) (×10−3) (×10−4) (×10−4)

4.247 −2.428 4.492 −2.727 1.401 −3.202 1.506 7.594 1.705 2.080
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