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We have investigated the structural phase transitions of crystalline Si (insulator-metal), SiO2 (insulator-
insulator), and Zr (metal-metal) under pressure, as a test of several density functionals for the exchange-
correlation energy. While meta-generalized gradient approximations (meta-GGAs) such as revTPSS (revised
Tao-Perdew-Staroverov-Scuseria) are more sophisticated than GGAs such as PBE (Perdew-Burke-Ernzerhof),
and are more accurate without empiricism for atomization energies of molecules, lattice constants of solids, and
surface energies, we confirm that these meta-GGAs tend to give smaller and less realistic transition pressures
than the PBE GGA does. But we also show that the recent functionals of the meta-GGA made simple family
(MGGA_MS) behave differently, predicting larger and often more realistic transition pressures. We suggest that
further refinement of the meta-GGA can lead to a functional that is more accurate for properties of molecules and
solids at equilibrium or under compression. We also show that, contrary to recent suggestions but in line with older
ones, an accurate fundamental gap in the noninteracting band structure is not necessary for an accurate prediction
of the transition pressure. Unlike the semilocal GGAs and meta-GGAs, and unlike the local density approximation
also tested here, the screened hybrid functional HSE06 (Heyd-Scuseria-Ernzerhof) is fully nonlocal and predicts
more realistic fundamental gaps. HSE06 is better than the semilocal functionals for the transition pressures of Si
and SiO2, but seriously overestimates the transition pressure in Zr. Besides the transition pressures, we report the
transition energies and volumes, binding energy curves, and structural parameters at zero and transition pressure.
Finally, we discuss how the performance of a functional can reflect its plottable exchange enhancement factor,
and why the structural phase transitions are especially challenging for approximate density functionals.
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I. INTRODUCTION: OLD AND NEW FUNCTIONALS AND
THEIR PERFORMANCE

A. Density functional theory

In density functional theory (DFT),1–5 the approximate
exchange-correlation energy functionals are often sorted onto
the five rungs of Jacob’s ladder.6,7 The lowest rung is the local
spin-density approximation (LSDA), in which the exchange-
correlation energy density is constructed from the local spin
densities alone:1–3

ELSDA
xc [n↑,n↓] =

∫
n(−→r )εunif

xc (n↑(−→r ),n↓(−→r ))d3r, (1)

where n(−→r ) = n↑(−→r ) + n↓(−→r ) is the total electron density
and εunif

xc (n↑,n↓) is the exchange-correlation energy per particle
of a uniform electron gas. Note that in the spin-unpolarized
case we have the local density approximation (LDA). Since
LSDA starts from the spin-resolved uniform electron density,
it is more accurate for compact crystal structures with slowly
varying densities than it is for atoms and loosely bonded
crystals where the electron density distribution is less uniform.
As a result, LSDA overestimates the atomization energy
for molecules and solids. The exchange-correlation hole of
local spin density is not localized enough for atoms, placing
their energies too high relative to those of molecules and
solids.8 For the same reason, the LSDA adsorption energy
is too big, but the LSDA surface energy of a metal is fairly
good.

All GGA-level functionals stand on the second rung of
Jacob’s ladder.6,7 The GGA exchange-correlation energy is

EGGA
xc [n↑,n↓] =

∫
nεGGA

xc (n↑,n↓,∇n↑,∇n↓)d3r. (2)

In this equation, ∇n↑ and ∇n↓ are the local spin-density
gradients. The improvement of GGA over LSDA is significant,
as reported in the literature.9 GGA-level functionals correct
the overbinding problem of LSDA: The GGA atomization
energy is closer to experiment than that of LSDA, because
the GGA correction to LSDA lowers the energy more for
atoms than for molecules or solids. However, the GGA
lattice constants are usually overestimated for solids, and thus
the mechanical moduli are underestimated. Moreover, GGA
functionals are unable to predict the correct absorption energy
and surface energy simultaneously; they usually overestimate
the adsorption energy but underestimate the surface energy.
Some GGA functionals such as revPBE10 and RPBE11 are
specifically modified from PBE9 for adsorption problems.
Other GGA functionals such as AM05,12,13 Wu and Cohen
(WC),14 PBEsol,15 and SOGGA16 are especially designed for
solid structural calculations. The exchange part of a “GGA for
solids” has a weakened dependence on the reduced density
gradient

s = |∇n| /[2(3π2)1/3n4/3] (3)

in comparison with PBE, revPBE, etc.
AM05, WC, PBEsol, and SOGGA significantly improve the

accuracy of lattice constants and bulk moduli, but they are less

184103-11098-0121/2013/88(18)/184103(17) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.184103


BING XIAO et al. PHYSICAL REVIEW B 88, 184103 (2013)

accurate than PBE for energetics (energy barrier and cohesive
energy). These results illustrate the well-known dilemma
that for GGAs the geometry and energetics cannot be much
improved at the same time. Good geometry requires recovering
the gradient expansion for exchange at small s, while good
energetics requires an exchange gradient coefficient almost
twice as big.15,17,18

B. Meta-generalized gradient approximations

The third rung of Jacob’s ladder is the meta-GGA. Besides
the electron density and its gradient, one more ingredient is
included in the construction, namely, the orbital kinetic energy
density τσ (r) = 1

2

∑
i |∇φσ

i (r)|2, where φσ
i (r) is the occupied

Kohn-Sham spin orbital from a self-consistent one-particle
Schrödinger equation. Now one may write the exchange-
correlation energy of the system as

Emeta-GGA
xc [n↑,n↓]

=
∫

nεmeta-GGA
xc (n↑,n↓,∇n↑,∇n↓,τ↓,τ↑)d3r. (4)

Meta-GGA is almost as computationally efficient as GGA,
because both require only a single integration over three-
dimensional space.

Some meta-GGAs employ the Laplacian of the electron
density along with or in place of the kinetic energy density.
Many different forms are available, including Perdew,19 Ghosh
and Parr,20 Becke and Roussel,21 Van Voorhis and Scuseria,22

Schmider and Becke,23 Perdew, Kurth, Zupan, and Blaha,24

Tao, Perdew, Staroverov, and Scuseria (TPSS),25 revised
Tao, Perdew, Staroverov and Scuseria (revTPSS),26 Zhao and
Truhlar (M06-L),27 the regularized revTPSS (regTPSS),28

and the meta-GGA made simple (MGGA_MS) family of
density functionals.29,30 In this paper, we will test only a
few meta-GGA functionals, those designed for solids and
surfaces as well as for molecules (TPSS, revTPSS, regTPSS,
and MGGA_MS). The exchange energy of these meta-GGAs
can be written as

Emeta-GGA
x [n] =

∫
nεunif

x (n)Fx(s,α)d3r (5)

for a spin-unpolarized electron density n (n↑ = n↓ = n/2).
Here εunif

x (n) = − 3
4π

(3π2n)1/3 is the exchange energy per
electron of the uniform electron gas. GGA exchange can be
written similarly, but without the α dependence. α is another
dimensionless quantity defined by

α = (τ − τW )/τ unif = (5s2/3)(z−1 − 1), (6)

where z = τW/τ . Here τ = ∑
σ τσ is the orbital kinetic energy

density, τW = |∇n|2/8n is its von Weizsäcker approximation
(exact for one- and two-electron densities), and τunif =
3

10 (3π2)2/3n5/3 is its Thomas-Fermi approximation (exact for
uniform densities). For the general spin-polarized case, the
total exchange energy is calculated from the spin-scaling
relationship.31

Ex[n↑,n↓] = 1
2 (Ex[2n↑] + Ex[2n↓]). (7)

α is employed to recognize and give different GGA treatments
to different kinds of density regions. In one- and two-electron
regions (including covalent-single bonds), α = 0. For a region

of slowly varying density (as in a metal), α = 1. Additionally,
in the region where two closed shells overlap, α � 1.

TPSS25 was constructed nonempirically to satisfy many ex-
act constraints on the exchange-correlation energy. revTPSS26

revised the TPSS form to incorporate insights from the PBEsol
GGA for solids. Both of these meta-GGAs, however, have a
spurious order-of-limits problem: The exchange enhancement
factor Fx(s = 0,α = 0) depends upon whether s or α tends
to zero first. regTPSS28 regularized the revTPSS form by
removing this problem.

The s and α dependencies of Fx are tangled in most
meta-GGAs. MGGA_MS is the first meta-GGA functional
that separates them.29 The enhancement factor is taken to be

F MGGA MS
x (s,α) = F 1

x (s) + f (α)
[
F 0

x (s) − F 1
x (s)

]
. (8)

The function f (α) interpolates between α = 0 and 1, then
extrapolates to α � 1. The latter situation arises when two
closed-shell atoms overlap, and in fact MGGA_MS gives a
much more reliable description of the intermediate range of
the van der Waals interaction than do TPSS, revTPSS, and
regTPSS. We have argued32 that the meta-GGA ingredient
α can recognize covalent, metallic, and weak bonds. In
MGGA_MS, the order-of-limits problem is naturally avoided.

Two other variants of the MGGA_MS functional have also
been constructed recently.30 For convenience, we refer to all
three variants as the meta-GGA made simple family of density
functionals. While the original MGGA_MS0 was not fitted
to data sets, the MGGA_MS1 has one fit parameter and the
MGGA_MS2 has two. The additional freedom allows tuning
the exchange enhancement factor in the large-α region. Fits
were made to the molecular test sets G2/97 (Refs. 33 and
34) and BH42,35 including atomization energies and barrier
heights to chemical reactions. Some preliminary tests29,30,32

on the MGGA_MS family of density functionals suggest that
they are more accurate for a variety of ground state properties
of molecules and solids than previous semilocal meta-GGA,
GGA, and LSDA functionals, especially where van der Waals
(vdW) interaction is important.

The meta-GGA functionals TPSS, revTPSS, and
MGGA_MS have been tested for the equilibrium geometries
and energetics of molecules and solid structures, and their
performances compared with those of GGA and LSDA
functionals.29,30,32,36–38 These previous calculations showed
that meta-GGA can predict good lattice constants, surface
energies, and cohesive energies at the same time. The meta-
GGA seems to be able to step out of the geometry-energy
dilemma encountered in GGA functionals.39,40

C. Phase transitions of solids under pressure

Phase transitions are important in solid-state physics and
materials science, and also relevant to the geometry-energy
dilemma. Indeed, it was early work by Hamann41 on the SiO2

phase transition under pressure that motivated many solid-state
physicists to switch from LSDA to the PBE GGA. Can a meta-
GGA predict good results for the equilibrium lattice properties
of two polymorphs of a solid, as well as the phase transition
parameters such as energy difference and transition pressure,
simultaneously? To address this question, we considered three
different types of phase transition induced by pressure. The
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first example is the diamond-structure Si (D-Si) to β-tin Si
transition, an insulator-to-metal transformation. The second
one is a normal insulator-to-insulator phase transition in SiO2,
the α-quartz to stishovite transition. The phase transition
parameters and equilibrium lattice properties of the first
two examples have been calculated via the random phase
approximation (RPA) in our previous work.42 In the third
example, we have considered the metal-to-metal structural
transition from ω-Zr to β-Zr. Our calculations will show that
these transitions are very sensitive tests of approximate density
functionals, and that earlier meta-GGAs can fail badly for
the transition pressure. This failure was first pointed out by
Wilkins and collaborators.43,44 We confirm and extend their
results here, but we also find that the MGGA_MS functionals
are promising for phase transitions.

II. METHODS AND DETAILS

A. Density functional calculations

All first-principles calculations with periodic boundary
conditions employed the VASP program (Vienna ab initio
simulation program), which uses the projector augmented
wave (PAW) method.45 In the PAW method, the frozen-core
approximation is used, and the pseudoatom is described by
PAW pseudopotentials. For the plane-wave expansions, the
kinetic energy cutoff was set to 500 eV for all calculations.
The GW-type PAW potentials for Si, O, and Zr were employed
in this work: Si3s3p3d , O2s2p, and Zr4s4p4d5s . These special
PAW potentials were constructed by Kresse and co-workers in
their RPA calculations,46 with accurate scattering properties
up to ∼10 Ry above the vacuum level. The core radii for
Si, O, and Zr pseudoatoms were 0.840, 0.672, and 1.06 Å,
respectively. The energy integrations were performed in the
first irreducible Brillouin zone, and the methods used for
generating the k mesh depended on the space group of the
crystal structures. For cubic (D-Si and β-Zr) and tetragonal
(β-tin Si and stishovite) phases, we used the Monkhorst-
Pack method to generate 16 × 16 × 16 and 12 × 12 × 14 k

meshes for optimizing the crystal structures, respectively.47

The k grids used for α-quartz (trigonal) and ω-Zr (hexagonal)
were 14 × 14 × 10 and 15 × 15 × 19, respectively, and were
generated by the 
-centered method. Similar k grids were also
used to calculate the energy-volume curve for each phase.
Using the present settings, the total energy was converged to
1 meV.

The exchange-correlation energy was approximated using
functionals on the first three rungs of Jacob’s ladder, including
the Perdew-Zunger LDA,48 the PBE GGA,9 PBE modified
for solids (PBEsol),15 the Tao-Perdew-Staroverov-Scuseria
meta-GGA (TPSS),25 the revised TPSS (revTPSS),26 the regu-
larized revTPSS (regTPSS),28 and the meta-GGA made simple
(MGGA_MS0)29 and its other two variants (MGGA_MS1
and MGGA_MS2).30 The self-consistent implementation of
regTPSS and the MGGA_MS family of density functionals in
the VASP code can be found in our recent works.28–30

For some structures, the transition pressures were also
estimated from other exchange-correlation functionals, includ-
ing the Heyd-Scuseria-Ernzerhof screened hybrid functional
(HSE06, which mixes the nonlocal Hartree-Fock-type ex-

change in the short-range portion of the electron-electron inter-
action with PBE exchange),49–52 and various GGAs: Perdew-
Wang 91 (PW91, a parent of PBE),53 Armiento-Mattsson
(AM05, an early GGA for solids),12,13 WC,14 and RPBE.11

For the screened hybrid functional HSE06, we employed
different k meshes for all six phases, i.e., D-Si (10 × 10 × 10),
β-tin Si (8 × 8 × 10), α-quartz SiO2 (8 × 8 × 6), stishovite
(8 × 8 × 10), ω-Zr (8 × 8 × 10), and β-Zr (10 × 10 × 10).
Employing the downsampling method reduces the comput-
ing time significantly. The total energy was converged to
5 meV/atom. In the VASP code, the default range separation
parameter μ is 0.20 Å−1 for the semilocal and nonlocal parts
of the exchange functional. The same value was used in our
current work.

The calculations using the PW91 and WC functionals were
carried out in the CASTEP code.54 The crystal structures were
reoptimized by ultrasoft pseudopotentials (USPPs) for Si, O,
and Zr atoms. The plane-wave cutoff was set to 500 eV, and k

grids similar to those presented previously were employed.

B. Phonon calculations

The zero-point energy and finite-temperature correction
to the transition pressure can be obtained from the phonon
spectrum. In this work, we have calculated the phonon spectra
of SiO2 structures using density functional perturbation theory
in the CASTEP code.54 For Si and Zr systems, the phonon effects
on the transition pressures were taken from the literature.
In our phonon calculations, the plane-wave basis set was
expanded in reciprocal space with a kinetic energy cutoff
of 550 eV. USPPs were used to represent the pseudoatoms
of Si and O, i.e., Si (3s23p2) and O (2s22p4). For the
energy integrations in the first irreducible Brillouin zone, the
Monkhorst-Pack method was used to generate 6 × 6 × 8 and
4 × 4 × 4 k meshes for stishovite and α-quartz, respectively.
The convergence tests with respect to k points were carefully
conducted. For the exchange-correlation energy, only the
PBE GGA was employed, because previous studies showed
that different density functionals usually give quite similar
results for the zero-point energy (ZPE) and thermal correction
to the phase transition pressure.55 The obtained ZPE and
finite-temperature correction at each cell volume were added
to the energy-volume curves. The change of the transition
pressure induced by these two factors can be calculated from
the change of the common tangent line of the energy-volume
curves for the two phases.

The predicted lattice constants tabulated in this paper do
not include the small phonon effects. This makes them more
comparable to results in the earlier literature.

C. Equation of state

In order to evaluate the transition pressure and other
structural parameters (cell volume, bulk modulus, and its
pressure derivative), the obtained energy-volume curves of
the six phases were fitted to the analytic third-order Birch-
Murnaghan56,57 equation of state (EOS) for E(V ), the total
energy of the unit cell of volume V , which may include the ZPE
and finite-temperature correction. Parameters in this equation
include E0 (the equilibrium energy) and V0 (the equilibrium
cell volume), as well as B0 and B ′

0 (the bulk modulus and its
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   (a): D-Si               (b): β-tin Si 

  (c): α-quartz          (d):  Stishovite  

   (e): ω-Zr                (f ): β-Zr 

FIG. 1. (Color online) The crystal structures of Si, SiO2, and Zr
polymorphs: (a) D-Si (LP), (b) β-tin Si (HP), (c) α-quartz (LP),
(d) stishovite (HP), (e) ω-Zr (LP), and (f) β-Zr (HP). Note that, for
the SiO2 structures, the red balls are oxygen atoms and the yellow
ones are silicon atoms.

pressure derivative dB/dP ). The pressure of a single phase
at volume V is − dE/dV. The common tangent line to the
high-pressure (HP) and low-pressure (LP) curves (per formula

unit) can be calculated analytically from the Birch-Murnaghan
expressions for the two phases. Minus the slope of this tangent
line is the theoretical transition pressure, at which both phases
can coexist for all possible volume fractions.

In this paper, we have also evaluated the transition volume
(Vt ) for each phase, which is given by the solution of

P (Vt ) = 3

2
B0

[(
V0

Vt

)7/3

−
(

V0

Vt

)5/3]

×
{

1 + 3

4
(B ′

0 − 4)

[(
V0

Vt

)2/3

− 1

]}
. (9)

Here P (Vt ) is the pressure, which we set to the experimental
transition pressure before the corresponding transition volume
Vt is computed43 for comparison with experiment. The
theoretical transition pressures are sometimes inaccurate, due
mainly to errors in E0 and not to errors in the other parameters
of the equation of state. In other words, the largest error in the
theoretical transition pressure arises because the EOS of one
phase displays an erroneous rigid vertical shift with respect to
that of the other.

D. Crystal structures

The crystal structures of Si, SiO2, and Zr studied in this
work are shown in Fig. 1. The most stable phase of Si has a
crystal structure similar to diamond (diamond-Si or D-Si) with
a fcc cell with space group Fd3m (227). There are eight atoms
in the conventional cell. Experimentally, when the pressure
is raised above 10 GPa, the D-Si phase transforms into the
β-tin Si phase. The latter structure has four atoms in a body-
centered-tetragonal conventional cell [space group I41/amd
(141)].58,59

The conventional cell of α-quartz has trigonal symmetry
with space group P 3221(152), and each cell has three SiO2

FIG. 2. (Color online) The total energies of D-Si (LP) and β-tin Si (HP) phases are calculated as a function of cell volume by four different
MGGA exchange-correlation functionals. The total energies are given relative to the cell energy of the D-Si phase at the equilibrium volume
for each MGGA functional. The dotted and solid lines are obtained from the third-order Birch-Murnaghan equation of state.
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units. Stishovite (density: 4.29 g/cm3) has a more compact
structure than α-quartz (2.65 g/cm3), and is crystallized in a
centered-tetragonal cell with space group P 42/mnm (136). In
addition, there are two SiO2 units in each conventional cell of
stishovite. The α-quartz phase is stabilized over the stishovite
phase below 7 GPa.41,60 The transformation of α-quartz into
stishovite also displays changes of coordination numbers of
both Si and O atoms.

Finally, for the two polymorphs of Zr, the space groups
are Im3m(229) and P 6/mmm (191) for β-Zr and ω-Zr,
respectively.61–63 The conventional cell of ω-Zr has three atoms
and that of β-Zr has two. The ω-Zr to β-Zr transition occurs
at 30 ± 2 GPa, and has been studied by energy-dispersive
x-ray diffraction.64 Ostanin et al.61 reported that the transition
pressure was 35 ± 5 GPa at 300 K in another experiment.
These high transition pressures arise by combining unusually
small structural energy and volume differences, and thus are
especially challenging to approximate calculations.

III. RESULTS

A. D-Si-to-β-tin Si phase transition

Figure 2 shows the calculated energy-volume curves of
D-Si and β-tin Si phases using the meta-GGA functionals
TPSS, revTPSS, regTPSS, and MGGA_MS0. The results for
other functionals are not given in the figure for simplicity. The
figure shows that the functional errors are reflected mainly in
erroneous vertical displacements of the curve for one phase
with respect to that for the other.

In Table I, the optimized lattice properties and phase
transition parameters of the D-Si and β-tin Si phases from
different exchange-correlation functionals are compared with
available experimental results. The equilibrium lattice constant
of D-Si shows typical trends: too small in LDA, too large in
PBE, about right in PBEsol, too large but improved over PBE
in TPSS, and about right in the other meta-GGAs.

For the β-tin Si phase, the MGGA_MS family behaves
differently from the other density functionals, giving a larger
c/a ratio and thus apparently favoring cubic symmetry too
much. The lattice constants of the β-tin Si phase measured at
the transition pressure (11.3 GPa) are a = 4.6900 Å, and c =
2.5780 Å, with c/a = 0.5496.65

Experimentally, the bulk modulus of D-Si is 99.2 GPa.43

Hu et al.65 found 97.88 GPa using the measured elastic
constants. Most functionals underestimate the bulk modulus of
D-Si, but the screened hybrid functional HSE06 gives 101.49
and 99.1 GPa in this paper and in Ref. 43, respectively,
with both values in good agreement with experiment. The
MGGA_MS family of density functionals and regTPSS give
the bulk modulus in better agreement with experiment than
other semilocal functionals. For the β-tin Si phase in HSE06,
we find a bulk modulus of 119.0 GPa, in good agreement with a
previous reference.43 Finally, for the calculated B ′, our results
are slightly different from other references.43,66 However, the
agreement among reference values is also poor, indicating that
B ′ is sensitive to the parametric fitting.

Hennig et al.43 have calculated the energy difference
between the two polymorphs using various methods, and
their results are also shown in Table I. In their calculations,

184103-6



TESTING DENSITY FUNCTIONALS FOR STRUCTURAL . . . PHYSICAL REVIEW B 88, 184103 (2013)

FIG. 3. (Color online) The calculated energy-volume curves of the α-quartz (LP) and stishovite (HP) phases. The total energies obtained
by the meta-GGA functionals are given relative to the cell energy of the α-quartz phase at the equilibrium volume for each functional.

the quantum diffusion Monte Carlo method gives the most
accurate values, which were found to be 0.480 eV/atom
in Ref. 43 and 0.424 eV/atom in Ref. 44, respectively.
LDA, the PBEsol GGA, and all of the meta-GGAs outside
the MGGA_MS family seriously underestimate this energy
difference, while the screened hybrid HSE06 performs well
for it. Interestingly, regTPSS gives 0.285 eV/atom, which
strongly improves the poor performance of revTPSS, sug-
gesting that the order-of-limits error in revTPSS is significant
here.

The errors of the various functionals for the transition
energy are reflected in the transition pressure, which is
seriously too low in LDA, PBEsol, and the meta-GGAs outside
the MGGA_MS family. The phase transition pressure from
D-Si to β-tin Si was found to be in the range of 10–15 GPa
from quantum Monte Carlo (QMC).43,55 Without including
the ZPE and finite-T effect, the value obtained by HSE06
in this paper is 14.6 GPa. The finite-T and ZPE corrections
further reduce the transition pressure from D-Si to β-tin Si
by 1.3 GPa in Ref. 67 and 1.0 GPa in a recent calculation.55

With these thermal corrections, HSE06 gives 13.3 GPa, which
is larger than the 12.4 GPa reported in Ref. 42. The transition
pressure predicted by RPA is also realistic, 12.2 GPa.42 The
transition volumes, calculated as described around Eq. (9), are
reasonably good for all tested functionals.

B. α-quartz-to-stishovite SiO2 phase transition

Figure 3 illustrates the energy-volume curves of the two
SiO2 phases using the meta-GGA functionals. We show the
calculated structural and phase transition properties of the SiO2

phases in Table II. As can be seen from Table II, the lattice
constants of α-quartz are overestimated by most exchange-
correlation functionals other than LDA, suggesting that a long-
range vdW correction might be needed to shrink the lattice
constants. In earlier work by Hamann,41 the lattice constants

of α-quartz were found to be a = 4.84 Å and c = 5.41 Å by
LDA, but our calculation using LDA gives a = 4.9041 Å and
c = 5.3790 Å. The large differences between the two results are
probably associated with the different pseudopotentials used in
Ref. 41 and in our paper. Below the meta-GGA level, PBEsol
gives better lattice constants and equilibrium cell volume than
other semilocal functionals. The lattice constants of α-quartz
from the MGGA_MS functionals are only slightly worse than
those of PBEsol and AM05. The MGGA_MS functionals are
the only ones in Table II to include a reliable estimate of
intermediate-range vdW effects;30,32 none of these functionals
includes the long-range effects.69

In Fig. 4, we show the equilibrium cell volumes of α-
quartz obtained by different density functionals. The results
of semilocal functionals are compared with the RPA.42 RPA is
able to capture the long-range vdW interactions in molecules
and solids.69 MGGA_MS0, MGGA_MS2, and HSE06 are
better than other tested functionals for the equilibrium volume
of α-quartz. In Sec. III D, we will employ pairwise corrections
pioneered by Grimme70 for the PBE and TPSS functionals to
investigate the effect of long-range vdW interaction. The most
accurate structural parameters of α-quartz are found from the
screened hybrid HSE06. This is surprising, because HSE06
includes no long-range vdW interaction, although it is believed
to give a good description of covalent bonds.71

The lattice constants of stishovite are rather accurate from
all tested functionals. For the bulk modulus of α-quartz,
Zupan et al.66 found a PBE bulk modulus of 44 GPa, which
is close to Hamann’s value41 but not to ours. For the bulk
modulus of stishovite, both regTPSS and the MGGA_MS
family of density functionals give results in agreement with
experiment.41,72,73 More recently, Driver and co-workers74

have employed the QMC method, finding the bulk moduli
of α-quartz and stishovite to be 32 and 305 GPa, respectively,
with the former value somewhat different from experiment.
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FIG. 4. (Color online) The equilibrium volumes of α-quartz
calculated by different density functionals on Jacob’s ladder. The
results are compared with the experimental value. The dashed
horizontal line is given to guide the eye.

The calculated energy difference between α-quartz and
stishovite is also given in Table II. LDA fails to predict that
α-quartz is the ground state of SiO2, so its �E0 is negative
( − 0.031 eV/SiO2). In experiment, this energy difference is
found to be 0.51–0.54 eV per SiO2, and the corresponding
transition pressure from α-quartz to stishovite is 7.46 GPa.41

Our PBE results are in good agreement with experiment
and with previous PBE calculations. However, as for Si,
the meta-GGAs other than those of the MGGA_MS family
predict transition energies and pressures that are far too
low. The phase transition parameters calculated from RPA
(�E0 = 0.39 eV/SiO2 and Pt = 5.6 GPa)42 are less accurate
than those from PBE, MGGA_MS0, and MGGA_MS1. As
discussed in Ref. 42, RPA is less accurate for more molecular
solids such as SiO2 than it is for Si or metals. Note that the
increase of transition pressure in SiO2 system after including
the thermal corrections is mainly due the entropy effects.75

C. ω-Zr-to-β-Zr phase transition

Both ω-Zr and β-Zr are normal metals, so their electron
density distributions should be more uniform than those of
the SiO2 and Si systems. Since the approximate exchange-
correlation functionals are usually constructed to be exact for
the uniform electron gas, we would expect that the semilocal
functionals can give better results for Zr than for the previous
cases. As we shall see, that tends to be true, although the
LDA and HSE06 transition pressures are rather unrealistic. A
contravening effect is that the changes of energy and volume
at the transition are much smaller in Zr than in the previous
cases, so an accurate transition pressure requires them to have
very small absolute errors.

Figure 5 shows the dependencies of the total energies of
the two Zr phases on cell volume per atom using the regTPSS
functional. The results for the other meta-GGA functionals are
not shown for clarity, because the computed equilibrium cell
volumes and energies of the ω-Zr and β-Zr structures are too
close to the transition pressure. The common tangent line is
also given in Fig. 5 for the two Zr phases.

FIG. 5. (Color online) The volume dependencies of the total
energies of the ω-Zr (LP) and β-Zr (HP) phases calculated using
regTPSS. The solid lines are obtained by fitting the energy-volume
data to the third-order Birch-Murnaghan equation of state, and the
dashed line is the common tangent of the two energy-volume curves.

In Table III, we show the structural properties and phase
transition parameters for the two structures of Zr using
different exchange-correlation functionals. The results are also
compared to experiments. The most reliable transition pressure
from ω-Zr to β-Zr was measured by Xia et al.64 using the
energy-dispersive x-ray diffraction method with a synchrotron
light source, and the resulting value is 30 ± 2 GPa. In the same
paper, for ω-Zr, the c/a ratio, bulk modulus, and pressure
derivative of bulk modulus were also reported. However, the
lattice constants and mechanical modulus of β-Zr were not
accurately determined due to the limited pressure range applied
in that experiment. The calculated lattice constants shown
in Table III for the two Zr phases are compared with the
experimental results reported by Hao et al.62 and Greeff et al.79

All tested functionals yield accurate lattice constants for
the Zr phases, with HSE06 the most accurate. The change of
the equilibrium cell volume due to thermal expansion may be
estimated from the zero-point anharmonic expansion for cubic
crystals.80 The Debye temperature (�D) in this method can be
calculated using Eq. (5) in Ref. 61. For the β-Zr phase, we
use �D = 269 K computed using PW91 in a previous paper.82

We applied the zero-point anharmonic expansion to correct
the PBE cell volume. It was found that cell volume is slightly
increased, i.e., 0.066 Å3/atom, indicating that we can safely
use lattice constants obtained at 0 K to draw our conclusion.

The bulk modulus of the ω-Zr phase predicted by different
exchange-correlation functionals falls in the experimental
range. The LDA lattice constants of β-Zr are too small, which
results in the largest bulk modulus for this phase. The AM05
functional gives a rather small bulk modulus for the β-Zr phase,
because this functional fails to show a reasonable minimum in
the calculated energy-volume curve. The bulk moduli of the
ω-Zr and β-Zr phases computed from HSE06 are smaller than
from the semilocal functionals.

Tables II and III suggest that most semilocal functionals
overestimate �V0 somewhat in comparison with experi-
ment. PBE and MGGA_MS2 work better than other tested
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TABLE IV. The equilibrium cell volumes of the Si, SiO2, and Zr structures computed by DFT + D2 and optB86b-vdW methods, which
introduce long-range van der Waals attraction. For the SiO2 system, the unit is Å3/SiO2; for the other two systems it is Å3/atom. The
experimental values are not corrected for thermal effects, and the RPA value is used instead of the experimental value for β-tin Si to calculate
the mean absolute error (MAE) of each functional. LP and HP indicate the low-pressure and high-pressure structures.

Structures PBE + D2 TPSS + D2 optB86b-vdW MGGA_MS0 RPAa Expt.

D-Si (LP) 19.81 19.44 19.98 20.13 20.02 20.00b

β-tin Si (HP) 15.03 14.46 15.21 15.09 15.24
α-quartz (LP) 38.75 37.02 34.56 38.37 37.75 37.73c

Stishovite (HP) 23.83 23.49 23.29 23.42 23.66 23.30c

ω-Zr (LP) 23.17 22.90 21.46 22.66 23.09d

β-Zr (HP) 22.53 22.19 21.13 22.21 22.82d

MAE 0.38 0.51 1.09 0.35

aReference 42.
bReference 43.
cReference 76.
dReference 62.

exchange-correlation functionals for this parameter. The com-
puted �V0 for Zr from HSE06 is almost one order of magnitude
smaller than those from other semilocal functionals. The main
reason is that HSE06 underestimates the cell volume for
ω-Zr, but slightly overestimates it for β-Zr, so that the errors
reinforce each other instead of canceling.

For the phase transition parameter �E0, PBE, TPSS,
revTPSS, and regTPSS values are close to each other. The
MGGA_MS values are slightly bigger. HSE06 seems to
overestimate the energy difference between ω-Zr and β-Zr.

In contrast to Si and SiO2 systems, the phonon corrections
significantly affect the transition pressure from ω-Zr to β-Zr
phases.61 Hereafter, we only discuss the corrected results
for different density functionals. As shown in Table III,
PBE gives 23.2 GPa, which is slightly smaller than the
experimental transition range. Without phonon corrections,
our PBE value is in good agreement with Ref. 64. Using the
same functional, Ostanin et al.61 report 27.0 GPa at 300 K.
The LDA overestimates the stability of the β-Zr phase, and
the transition pressure is too small. In Ref. 61, the transition
pressure calculated by LDA at 300 K is 18.0 GPa, which is
larger than our LDA result (9.17 GPa). Cazorla et al.63 obtained
a value of 22 GPa from the WC functional, smaller than from
PBE. Using a very rough relationship Pt = �E0/�V0 to
estimate ω-Zr to β-Zr transition pressure, we find that the
transition pressure is strongly overestimated by HSE06 (over
200 GPa). MGGA_MS0 yields 35.3 GPa without phonon
effects (ZPE and finite T = 300 K). The transition pressure
from ω-Zr to β-Zr phases is reduced to 31.3 GPa (very close
to experiment) by including the two phonon corrections.

D. The effects of vdW interactions

The long-range vdW attraction is missing in LSDA, GGA,
meta-GGA, and hybrid functionals. Sometimes it can be
estimated by the pairwise-interaction DFT + D2 method of
Grimme70 or by the nonlocal density functional optB86b-
vdW86 method, both available in the VASP code. Table IV
shows the equilibrium volumes predicted by these methods for
our six phases. By comparison with Tables I–III, we see that
the long-range corrections tend to decrease the cell volumes.

OptB86b-vdW gives better cell volumes for stishovite, D-Si,
and β-tin Si than DFT + D2 does. For α-quartz, the cell volume
predicted by optB86b-vdW is too small, and RPA gives the
best value. The nonempirical MGGA_MS0 functionals, which
include some intermediate-range dispersion effects, give the
best overall performance for equilibrium cell volume among
all the tested methods.

The calculated phase transition pressures are illustrated
in Fig. 6. For all three considered systems, the DFT + D2
methods are less accurate for phase transition pressure than
their DFT counterparts. The TPSS + D2 method even predicts
a negative transition pressure in the SiO2 system. The optB86b-
vdW works better for Si and Zr systems than for SiO2. In the
latter case, the transition pressure obtained from optB86b-vdW
is smaller and less realistic than that from PBE and TPSS. In
all three systems, MGGA_MS0 gives the best performance.
Therefore, our calculations indicate that, for solids that are

FIG. 6. (Color online) The computed phase transition pressures
(Pt ) for the Si, SiO2, and Zr systems using DFT + D2 and optB86b-
vdW methods to include long-range van der Waals corrections. Note
that the values are estimated by Pt = �E0/�V0 for all methods, and
thus are slightly different from those given in Tables I–III.
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not primarily van der Waals bound, one should be cautious
about using long-range vdW corrections for phase transition
parameters and equilibrium lattice geometry.

IV. DISCUSSION

A. Structural vs transition properties

The meta-GGAs are generally good for structural prop-
erties. Except in α-quartz, all tested meta-GGAs perform as
well as or better than even the PBEsol and AM05 GGAs for
the equilibrium lattice constants and bulk moduli. Their overall
performance for these two properties is much better than that
of the LDA and PBE functionals.

From the results shown in Tables I–III in the previous
section, we find that the calculated phase transition parameters
are strongly dependent on the exchange-correlation functional
employed, and even on the choice of meta-GGA, for all three
solids, with the MGGA_MS meta-GGAs giving typically
the best results. This intriguing conclusion may always be
true as long as the energy and volume differences between
the high- and low-pressure phases are small. The simplest
explanation is suggested by the estimate Pt = �E0/�V0: A
small change in either energy difference (�E0) or volume
difference (�V0) affects the transition pressure significantly
when the two quantities are very small.

The different behaviors of the screened hybrid functional
HSE06 for insulating and metallic structures have been well
documented and explained in previous works by Scuseria and
co-workers.93–95 They found that HSE functional has the right
screening for semiconductors, but too much for large band gap
insulators and not enough for metals.

B. Effect of the band gap

The calculated fundamental band gaps for D-Si, α-quartz,
and stishovite by LDA, GGAs, meta-GGAs, HSE06, and GW0

are given in Table V. Clearly, the most accurate band gaps are
found by the HSE06 and GW0 methods, in comparison with
experimental values. Similar to LDA and GGAs, all tested
meta-GGA functionals underestimate the band gaps for these
three solids.

The underestimation of the fundamental band gap does not
necessarily result in poor phase transition parameters for Si
and SiO2 systems, contrary to the suggestion of Ref. 43. The
exact Kohn-Sham method should yield the exact transition
parameters, but the band structure from even the exact
Kohn-Sham multiplicative potential would underestimate the
gap.96,97

In our calculations, only LDA and GGA have a multiplica-
tive Kohn-Sham exchange-correlation potential δExc/δn(
r),
and they do indeed underestimate the gap. For computational
convenience, our meta-GGA results employ a nonmultiplica-
tive exchange-correlation potential which tends to underes-
timate the gap even more, and even when the transition
parameters are good. The screened hybrid functional HSE06
includes a fraction of the nonmultiplicative Hartree-Fock
exact exchange potential which increases and improves the
single-particle band gap, in the same general way that the
nonmultiplicative GW0 self-energy does. With some effort,
one could construct a multiplicative exchange-correlation
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FIG. 7. (Color online) The exchange enhancement factors for
various semilocal functionals. For meta-GGAs, α = 1 and s = 0
correspond to uniform electron density.

potential for the meta-GGAs or hybrid functionals, which
might yield GGA-like gaps without greatly changing the
predicted transition parameters for these functionals.

C. Effect of the exchange enhancement factor

In some cases, we can relate a functional’s performance
for the transition parameters to the behavior of its plottable
exchange enhancement factor Fx . Exchange is of course more
important than correlation in the higher-density regions that
contribute more to the total energy. Bonding regions also tend
to have small s.

First consider the LDA and GGA functionals. Figure 7
shows Fx(s) in the physically important range 0 < s < 3. Fx(s)
equals 1 in LDA at all s and in GGA at s = 0. Within GGA, it
increases with s, and the initial strength of this increase grows
from LDA to PBEsol to PBE to RPBE. Tables I–III suggest
that the predicted transition pressures tend to increase in the
same order.

FIG. 8. (Color online) The calculated structural energy differ-
ences of Si (right vertical scale) and SiO2 (left vertical scale)
polymorphs from semilocal functionals on the first three rungs of
Jacob’s ladder. The results imply that an α dependence of Fx separated
from the s dependence can significantly improve the energy difference
between two polymorphs of a solid.

FIG. 9. (Color online) The exchange enhancement factors of
meta-GGA functionals for the α = 0 and α = 1 limits.

For the phase transition parameters, systematic improve-
ment over GGAs and LDA is not seen for most meta-GGAs,
but only for the MGGA_MS variants. The main difference
between the MGGA_MS family of density functionals and
other tested functionals lies in the exchange enhancement
factor Fx(s,α), where the weaker s dependence in MGGA_MS
(Fig. 7) is countered by a stronger α dependence. Our recent
work has revealed the significance of α for identifying different
bonds in molecules and solids.30,98 The covalent-single and
metallic bonds are characterized by α = 0 and 1, respectively.
Weak bonds such as van der Waals are characterized by α

� 1. By carefully manipulating both α and s dependencies
in a meta-GGA exchange functional, one can describe all
different types of chemical bonds more accurately than with
the ordinary GGAs and LDA. The influences of α and s on the
calculated phase transition parameters for Si and SiO2 systems
are illustrated in Fig. 8.

Figure 9 shows the enhancement factors of various meta-
GGAs at α = 0 and 1. The small-s behavior is like that of
GGA (Fx ≈ 1) only for α = 1, with Fx ≈ 1.15 at α = 0.

Figures 10 and 11 show in detail how Fx(s,α) varies over the
s-α plane, first for revTPSS (which yields unrealistically low
transition pressures for Si and SiO2), and then for MGGA_MS
(which is much more realistic). The α dependence at s≈0
reveals two qualitative differences between these two meta-
GGAs: (1) The MGGA_MS Fx drops gradually from ∼1.15
to ∼1 as α increases from 0 to 1, while the revTPSS Fx drops
abruptly near α = 0 and then remains close to 1. (2) The
MGGA_MS continues to drop well below 1 as α increases
above 1, while the revTPSS does not. Feature (2) is responsible
for the much better description of the intermediate-range van
der Waals interaction by MGGA_MS.

Figures 12 and 13 plot rs = (3/[4πn])1/3, s and α along
a line through a bond in the low-pressure phases of Si and
SiO2. The line for each solid is defined in the Supplemental
Material,99 which also provides more detailed contour plots.
Figures 12 and 13 also show the meta-GGA exchange energy
density nεunif

x Fx (which need not be in the same gauge as the
conventional exact exchange energy density). Note that we use
pseudoatoms instead of real ones, and that the pseudodensity
is low (i.e., rs is large) in the core regions.

First consider the phase transition in Si. The high-pressure
phase β-tin is metallic, with s � 1 and α ≈ 1 in the bonding
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FIG. 10. (Color online) The exchange gradient enhancement
factor Fx(s,α) of revTPSS as a function of s and α, showing the
order-of-limits problem when s ≈ 0 and α ≈ 0. Note that when s =
0 and α goes to infinity, Fx (s,α) ≈1.035.

regions, so all tested functionals have similar exchange energy
density there. But the low-pressure phase D-Si gets a much
more negative exchange energy density in the bonding regions
from MGGA_MS than from PBE or revTPSS, as shown in
Fig. 12. This arises because of feature (1) above, since the
covalent single-bonding regions of D-Si have both small s and
small α. Thus MGGA_MS energetically stabilizes D-Si with
respect to β-tin, increasing the transition energy difference and
the transition pressure.

Next consider the transition in SiO2, where there is strong
electron transfer from Si to O in each phase. Reference 100
indicates that the Si-O bonds in stishovite even show a
stronger ionic character than those of α-quartz. As a result,

FIG. 11. (Color online) The same as Fig. 10, but for
MGGA_MS0. Note that the scales for s are different in Figs. 10
and 11.

FIG. 12. (Color online) (a) The computed rs , s, and α distributions
along a line in the [001] direction, within the (110) plane and passing
through the bond center, for the D-Si (LP) crystal using the LDA
density. (b) The exchange energy densities along the same path by
LDA, GGAs, and meta-GGAs. A and B indicate the interstitial and
single bond regions, respectively.

in stishovite, we have O2− ions weakly overlapped with
Si4+ ions. The overlap of the two ten-electron closed shells
leads to large α in the bond region, just as we would
have for two overlapped Ne atoms. But in this case the
resulting van der Waals interactions are totally overwhelmed
by the electrostatic attraction. Therefore, the tested functionals
yield similar exchange energy densities for the low-pressure
phase α-quartz, as shown in Fig. 13. But the high-pressure
phase stishovite has large values of α in the bonding region
(Fig. SIII of the Supplemental Material99); so feature (2) above
yields a much less negative exchange energy density from
MGGA_MS than from PBE or revTPSS. This MGGA_MS
energetically destabilizes stishovite with respect to α-quartz,
again increasing the transition energy difference and the
transition pressure.

FIG. 13. (Color online) The same as Fig. 12, but for α-quartz
SiO2 (LP). A and B label the interstitial and Si-O bond regions along
a line in the [001] direction on the (100) plane.
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V. CONCLUSIONS

We have tested the performance of LSDA, the PBE GGA,
and several meta-GGA functionals (TPSS, revTPSS, regTPSS,
and MGGA_MS) on the structural properties and phase
transition parameters for three different systems, i.e., Si, SiO2,
and Zr. For the structural properties, all tested meta-GGAs
are better than the PBE GGA, as expected, but for the phase
transition pressures the earlier meta-GGAs are worse than PBE
for Si and SiO2, and only the members of the MGGA_MS
family are able to predict realistic values. The quality of the
results is sensitive to the details of the exchange functional.
At least for the insulator-to-metal transition in Si, the relative
performance of various functionals can be understood simply
in terms of their plottable exchange enhancement factors. We
suggest that further improvements to the meta-GGA will lead
to further improvements in the predicted properties of most
molecules and solids near equilibrium and under pressure,
without sacrificing computational efficiency.

Our results for normal metals (Zr phases) indicate that
all semilocal functionals perform more or less similarly for
equilibrium lattice constants and bulk modulus. Some meta-
GGA functionals (regTPSS and MGGA_MS) can predict
phase transition parameters for Zr in better agreement with
experiment than PBE. For this system, the screened hybrid
functional HSE06 significantly overestimates phase transition
parameters (transition energy and pressure). Although the
tested functionals are all more accurate for the metallic Zr
phases than for Si or SiO2, the exceptionally small structural
energy and volume differences for Zr still make this system
challenging to approximate calculations.

For the transition pressure in general, the approximate
exchange-correlation energy functional must predict a small
energy difference with a small relative error. That is not so hard
when the small energy difference arises from a small change
in the electron density, because then we can expect a great
error cancellation in the energy difference between similar
densities. That explains how even LSDA can predict rather
good lattice constants in some cases: There is a small change
of density associated with a small expansion or compression
of the lattice. But, for the transition pressure, we have to
predict a small energy difference arising from a large change of
density, and less error cancellation can be expected. Therefore,
the calculation of transition pressures for structural phase
transitions remains a challenging test of density functionals.
The challenge is especially great for silicon dioxide, where
the average valence electron density changes so strongly at the
transition.
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S. Lebègue, J. Paier, O. A. Vydrov, and J. G. Ángyán, Phys. Rev.
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