
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 88, 180503(R) (2013)

Two-dimensional p-wave superconducting states with magnetic moments
on a conventional s-wave superconductor
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Unconventional superconductivity induced by the magnetic moments in a conventional spin-singlet s-wave
superconductor is theoretically studied. By choosing the spin directions of these moments, one can design spinless
pairing states appearing within the s-wave superconducting energy gap. It is found that the helix spins produce
a px + py-wave state while the skyrmion crystal configuration a px + ipy-wave-like state. Nodes in the energy
gap and the zero-energy flat band of Majorana edge states exist in the former case, while the chiral Majorana
channels along edges of the sample and the zero-energy Majorana bound state at the core of the vortex appear in
the latter case.
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Introduction. Unconventional superconducting states are
one of the most important issues in current condensed matter
physics.1–3 Although most of the superconductors show the
conventional spin-singlet s-wave pairing, strongly correlated
materials sometimes show unconventional pairing since the
on-site pairing is suppressed by the repulsive interaction.
However, the discovery of the unconventional pairings relies
on serendipity to some degree, and their theoretical designs
and artificial fabrications are highly desired. Especially, recent
intensive interest in the topological superconductivity and
consequent Majorana fermions enhance the importance of this
topic since Majorana fermions are the leading candidate for
the platform of quantum computation.4–9

A promising proposal for realization of a topological
superconducting state is the combined system of a semicon-
ducting nanowire with an s-wave superconductor under an
external magnetic field. The spin-orbit interaction and the
magnetic field reduce the degrees of freedom of electrons
concerning superconducting states, and effectively generate a
spinless p-wave superconductor.10–14 As for one-dimensional
systems, signals suggesting Majorana fermions at the ends
of the nanowire have been observed in some experimental
setups.15–18 There are other routes for creating topological
superconductors: a spin-singlet superconductor deposited on
the topological insulator,19,20 a superfluid of cold atoms
with laser-generated effective spin-orbit interaction,21 aligned
quantum dots connected by s-wave superconductors,22 and
magnetic moments in s-wave superconductors23–26 or nodal
superconductors.27 The last ones are significantly distinct in
that they do not explicitly require spin-orbit interaction in the
system. With respect to the cooperation between magnetic
moment and superconductivity, it has been known that the
bound states are created around the impurities with the energy
inside the bulk superconducting gap (not necessarily zero
energy).28–30 The modulation of the local density of states by a
single magnetic impurity has been observed in experiment.31

The authors of Refs. 24 and 26 considered a one-dimensional
array of magnetic impurities, and studied the possibility of the
Kitaev state with the Majorana bound states at the ends of the
array. The influence of magnetic moments on a superconductor

by the proximity effect has been intensively studied albeit
in different interests.32–34 On the other hand, it has been
recognized that the spin-orbit interaction at the interface
results in Rashba-type interaction and hence noncollinear spin
configuration is organized.35 Especially, the skyrmion crystal
state is observed at the interface of Fe and Ir.36 Therefore,
the magnetic proximity effect of noncollinear moments to a
superconductor becomes a realistic and important issue.

In this Rapid Communication, we propose a generic
principle to design unconventional superconductivity in terms
of noncollinear/noncoplanar configurations of magnetic mo-
ments on the surface of an s-wave superconductor. We derive
an effective model constituted from the bound states around
magnetic moments. The effective pair potentials as well
as transfer integrals in the effective model depend on the
directions of two neighboring moments. We show that a
px + py-wave pairing state with nodes in the energy gap is
generated by a noncollinear helical spin configuration, and
moreover, we design a topological px + ipy-wave-like state
by means of a noncoplanar skyrmion crystal configuration of
moments, as evidenced by chiral Majorana channels along the
edges of the system and zero-energy Majorana bound states at
the cores of vortices.

Model. Figure 1(a) shows a schematic illustration of
the present model. We analyze the following tight-binding
Hamiltonian describing a double-exchange model with the
superconducting order parameter defined on a square lattice:

H = −
∑
〈ij〉σ

tc
†
iσ cjσ −

∑
i

μc
†
iσ ciσ

+
∑

i

�0(c†i↑c
†
i↓ + H.c.) −

∑
i

J Si · σ αβc
†
iαciβ . (1)

The first three terms describe a conventional spin-singlet
s-wave superconductor with the transfer integral t , the chem-
ical potential μ, and the pairing potential �0. In addition,
electrons couple with magnetic moments located at sites i

with the strength J through the double-exchange mechanism.
This model can describe the interface between a bulk s-wave
superconductor and a magnetic material. We assume that
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FIG. 1. (Color online) (a) Schematic illustration for the formation
of an effective lattice model from the bound states localized around
magnetic moments on the surface of an s-wave superconductor [see
Eq. (3)]. (b) Energy levels of quasiparticles obtained by a tight binding
model calculation with a single moment with �0/t = 0.7 in Eq. (1).
J is the coupling constant between electrons and magnetic moment
and S is the magnitude of the spin moment. The solid (blue) curve
shows the analytical solution E0 for the continuum model (see the
main text).

the pairing potential is not affected by magnetic moments,
which are supposed to be solidly ordered. Below we construct
unconventional superconducting states with some particular
structures of magnetic moments. We derive an effective model
in the aim of choosing appropriate magnetic order for intended
unconventional states before directly solving Eq. (1). First, we
start with the case of a single moment in a superconductor.
The Bogoliubov–de Gennes equations are given by

(ξk − E)uk↑ − JS

V

∑
l

ul↑ + �0vk↓ = 0,

(2)

(ξk + E)vk↓ + JS

V

∑
l

vl↓ − �0uk↑ = 0,

where we set the origin at the site of moment, h̄ = 1,
and ξ (k) = −2t(cos kx + cos ky) − μ is the tight-binding
dispersion. The numerical result of the energy level is
shown in Fig. 1(b). The dispersion can be approximated
in the continuum limit as ξ (k) = k2

2m
− μ − 4t with m =

(2t)−1. We can find solutions with energy ±E0 = ±�0[1 −
(πJSN0/2)2]/[1 + (πJSN0/2)2], where N0 is the density of
states in the normal phase28–30,38 [solid line in Fig. 1(b)].
With increasing the magnitude of JS, E0 changes from �0

to −�0 within the bulk superconducting energy gap. The
corresponding wave functions are real and asymptotically
given for r → ∞ as

u↑(r) ∼ sin(pFr − δ+)

pFr
exp

[
− r

ξ0
| sin(δ+ − δ−)|

]
,

(3)

v↓(r) ∼ sin(pFr − δ−)

pFr
exp

[
− r

ξ0
| sin(δ+ − δ−)|

]
,

where we define some quantities: tan δ± = ±πJSN0/2, pF is
the Fermi momentum, vF = pF/m is the Fermi velocity, and
ξ0 = vF/(π�). When the moments are aligned in a lattice, we
expect that the bound state around each moment has overlap
with neighboring bound states. The overlap causes effective
transfer integrals and pair potentials among the bound states.
The low-energy properties, i.e., in the bulk superconducting
gap, can be described by an effective BdG lattice model
constructed from these bound states. One can find similar
arguments in Refs. 24–26.

Design of p-wave superconducting states. We propose
a principle to design the superconducting states appearing
within the gap of the host spin-singlet s-wave superconductor.
It will be shown that configurations of magnetic moments
play the essential role for the emergence of unconventional
superconducting states. In the previous section, we assumed
the magnetic moment parallel to the +sz direction. Here,
we introduce a unitary transformation for the description
of general directions of moments. The coupling term with
magnetic moments in Eq. (1) can be transformed as

ψ†
α S · σ αβψβ = (Uψ)†U S · σU †Uψ = ψ̃†Sσzψ̃ (4)

by the unitary matrix

U † =
(

cos θ
2 −e−iφ sin θ

2

eiφ sin θ
2 cos θ

2

)
, (5)

where θ and φ are the polar coordinates such that S =
S(sin θ cos φ, sin θ sin φ, cos θ ). The wave functions for arbi-
trary spin directions are obtained by operating U † on Eqs. (3).
Then, the electron operators are expressed for the low-energy
sector as

ψ↑ =
∑

i

[
cos

θi

2
u↑(r − r i)αi − e−iφi sin

θi

2
v∗

↓(r − r i)α
†
i

]
,

ψ↓ =
∑

i

[
eiφi sin

θi

2
u↑(r − r i)αi + cos

θi

2
v∗

↓(r − r i)α
†
i

]
,

(6)

where αi is the annihilation operator of the bound state around
the moment located at site i. By substituting Eqs. (6) into the
original Hamiltonian Eq. (1), we obtain

Heff =
∑

i

E0α
†
i αi +

∑
〈ij〉

[t̄ij α
†
i αj + (�̄ijα

†
i α

†
j + H.c.)], (7)

where t̄ij and �̄ij are effective transfer integrals and pair
potentials for the nearest neighbor sites 〈i,j 〉 in the present
low-energy Hamiltonian. We keep them up to the nearest
neighboring sites. Here, we define

ẑi =
(

cos θi

2

eiφi sin θi

2

)
, (8)

which represents the spin as Si = Sẑ
†
i σ ẑi . The effective

transfer integrals and pair potentials are represented by

t̄ij = ẑi
†ẑj t̄0, (9)

�̄ij = ẑi
†iσy ẑj

∗�̄0, (10)

with t̄0 = ∫
d r{[uiξ (r)uj − viξ (r)vj ] + �0(uiuj + vivj )},

�̄0 = ∫
d r{[uiξ (r)vj + viξ (r)uj ] + �0(uiuj − vivj )}, ui =

u↑(r − r i), and vi = v↓(r − r i). Based on these equations,
we can design various kinds of superconducting states. Note
that t̄ij and �̄ij are invariant for the common rotation of both
moments at sites i and j . Namely, these quantities depend
only on the relative direction of the two moments. The
electron spin of the bound state is uniquely determined by the
magnetic moment, and hence we have a spinless lattice model
with controllable parameters depending on the configuration
of moments.
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FIG. 2. (Color online) (a) Configuration of moments producing
effective px + py-wave pairing. All spins lie in the sxsz-plane rotating
by 2π/3 along both x and y directions; therefore a 3 × 3 block
constitutes a unit cell. (b) Energy spectrum of quasiparticles with the
configuration in (a) calculated by the tight-binding model [Eq. (1)]
with t = 1.0 and �0 = 0.7. The spectrum has two point nodes as
expected. (c) Energy spectrum with open boundaries. One can see
dispersionless Andreev bound states connecting two nodal points.

Numerical studies. We design two-dimensional super-
conducting states by choosing appropriate configurations
of moments designed from Eqs. (9) and (10) (see part A of
the Supplemental Material37). We investigate properties of
the system by directly solving the original tight-binding
Hamiltonian [Eq. (1)]. The calculations are performed with
transfer integral t = 1.0 and on-site superconducting order
parameter of the host conventional superconductor �0 = 0.7.
The magnetic moment is attached to each site. We consider
both periodic and open boundary conditions to see bulk
properties and edge states of the system, respectively. Hereafter
when we calculate the dispersion of Andreev bound states,
we use a cylindrical configuration with open boundaries
along the y direction. We consider the following two cases:
px + py-wave pairing and px + ipy-wave-like pairing.

(1) Nodal superconductor. We can see from Eqs. (9) and
(10) that �̄ij vanishes when the two neighboring moments
point in the same direction (θi = θj , φi = φj ), while t̄ij van-
ishes for the opposite direction (θi = π − θj , φi = φj + π ).
Therefore, noncollinear spin configurations are required to
obtain the nontrivial states. We know that a one-dimensional
helical or spiral spin structure generates p-wave superconduct-
ing states.26 We can generalize this to two dimensions. We
choose the spinor ẑi’s so that spins rotate by 2π/3 around the
sy axis along both the x and y directions as shown in Fig. 2(a)
and Fig. S1 in the Supplemental Material;37 all the moments lie
in the sxsz plane. The resulting state is expected to have a real
order parameter with p-wave pairing for the x and y directions.
This can be named as the px + py-wave pairing state. The
present superconducting state is not stabilized as a bulk phase
because it is energetically disadvantageous compared with
chiral p-wave pairing without nodal structures. However, in
the model considered here, induced p-wave pairing is localized
in the vicinity of the surface of the bulk superconductor and
is controlled by the configuration of moments. As a result,
the px + py-wave pairing state is realized by a single spiral
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FIG. 3. (Color online) (a) Configuration of skyrmion lattice
producing an effective fully gapped superconducting phase [see
also Fig. S6 in the Supplemental Material (Ref. 37)]. (b) Energy
spectrum of quasiparticles with the configuration in (a) calculated by
the tight-binding model [Eq. (1)] with t = 1.0 and �0 = 0.7 with
open boundary conditions along the y direction. One can see linearly
dispersing bands at kx = ±π which are localized at the boundaries
of the system. (c) Current density calculated with the configuration
given in (a) with 20 unit cells along the y direction. One can see
finite current density at the edges of the system, which is crucial
evidence for a topologically nontrivial phase. (d) Energy levels of
quasiparticles obtained by a tight binding model calculation with
vortices. The horizontal axis shows the indices of energy eigenvalues.
The system size is set 16 × 16 with periodic boundary conditions, and
t = �0 = 1.0. The zero-energy states are fourfold degenerate.

structure of moments. We have tested our expectation by
numerical calculations solving Eq. (1). Figure 2(b) shows the
dispersion of the quasiparticles, where the induced energy gap
has nodes on the line of kx = −ky . We also calculate Andreev
bound states at the boundary of the system. The resulting
dispersions have flat bands, which are believed to be a hallmark
of unconventional superconductors.39–42 It is noted that flat
bands of zero-energy bound states are realized starting from
conventional s-wave superconducting pairing. One can find in
Ref. 43 a related work.

(2) Chiral p-wave superconductor. Next we attempt to
generate fully gapped superconducting states. For this purpose,
the phase of pair potential along the x and y directions should
be different. The case where the phase difference is equal to
π/2 is well known as a chiral p-wave superconductor. We can
always choose the phases of the pairing order parameter �ij

as real by appropriate gauge transformation once the moments
lie in a plane. Then we need to consider noncoplanar spin
configurations. Here we study the case of the skyrmion crystal
state [Fig. 3(a)] recently observed experimentally.35,36 In this
case, moments obviously have a noncoplanar configuration.
The parameters in the effective model calculated by Eqs. (9)
and (10) are given in the Supplemental Material37 (Fig. S2).
We have confirmed the following properties of the system, and
based on them we conclude that it has the same topological
nature as chiral p-wave superconducting states while the
transfer integrals and pair potentials are not uniform with this
configuration. The characteristic properties of chiral p-wave
superconductors are (i) the full gap nature, (ii) the existence
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of edge modes and currents, and (iii) the emergence of
zero-energy states at the cores of vortices.44 First we have
confirmed that the system has an energy gap in the whole
Brillouin zone by the same calculation as Fig. 2(b), which
indicates the complex value of the pair potential because the
system is essentially spinless. Figure 3(b) shows the energy
dispersion of quasiparticles with the open boundaries. One
can see two linearly dispersing bands crossing at kx = ±π ,
which are localized at the edges of the system.45 Here the
Fermi surface in the normal state is hole-like; then chiral edge
modes cross at kx = ±π , not kx = 0. The fact that these modes
yield edge current is manifested by directly calculating current
density

ji =
∑
kxσ

2t sin kx α
†
iσ (kx)αiσ (kx). (11)

The result is shown in Fig. 3(c). At JS ∼ 2.4 the clear signal
appears indicating the topological quantum phase transition.
We also confirmed that zero-energy Majorana bound states
appear at the cores of vortices [Fig. 3(d)]. We conclude that
the resulting superconducting state is in the same topological
phase as the chiral p-wave superconductor based on these
observations. As another example of the noncoplanar spin
configuration, we study the double-spiral structure in part B
of the Supplemental Material37 and find the similar px + ipy-
wave-like state.

Discussion and conclusions. In this Rapid Communication,
we have proposed a new way of creating effective two-
dimensional unconventional superconductivity by local mo-
ments on the conventional spin-singlet s-wave superconductor.
The noncollinear configurations of moments are essential to
induce p-wave pairing. There is a hierarchical structure in
energy scale, i.e., the original s-wave energy gap and that of
the induced p-wave superconductivity. Andreev bound states
by a topological origin appear within the latter energy gap.
Even the chiral px + ipy-wave-like pairing is realized by the
noncoplanar configuration of moments, which shows the chiral

Majorana edge channel with linear dispersion and zero-energy
Majorana bound states at the vortex cores. Moreover it
indicates that we can create various kinds of superconducting
states by choosing appropriate configurations of moments. For
example, by changing the distance between the moments, one
can tune the magnitudes of effective transfer integrals and pair
potentials. Then, the anisotropy |tx/ty | can be controlled to
obtain the rich topological phases discussed in Ref. 46. Here
we briefly discuss the effect of self-energy correction and spin
fluctuation for legitimizing our approach and results. The self-
energy correction due to the dynamical quantum fluctuation of
spins can be estimated as Re�(ε) ∼ λε and Im�(ε) ∼ λε2/εF,
where λ = J 2S/(IεF) is the dimensionless coupling constant
with I being the exchange coupling between spins in the
magnet, and εF the Fermi energy of the superconductor.
This correction is tiny at small electron energy ε, and does
not change the minigap structure. Also we have confirmed
numerically the robustness of the induced gap structure against
the small (static) spin fluctuation as shown in Fig. S6 in the
Supplemental Material.37 Though our model will simulate
the interface of bulk superconductors and magnetic materials,
we end with an account of another experimental realization
of these proposals. To create intended patterns of magnetic
moments, we can use atomic manipulation techniques using
scanning tunneling microscopy.47,48 The spin structure in
organized magnetic impurities is also observed,49,50 although
it is antiferromagnetic and cannot be utilized for our proposal.
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