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Superconducting gap in LiFeAs from three-dimensional spin-fluctuation pairing calculations
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1Department of Physics, University of Florida, Gainesville, Florida 32611, USA
2Leibniz-Institute for Solid State Research, IFW-Dresden, D-01171 Dresden, Germany

3Physikalisches Institut, EP IV, Universität Würzburg, D-97074 Würzburg, Germany
4Institut für Festkörperphysik, Technische Universität Dresden, D-01171 Dresden, Germany

5Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831-6494, USA

6Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
(Received 12 October 2013; revised manuscript received 1 November 2013; published 25 November 2013)

The lack of nesting of the electron and hole Fermi-surface sheets in the Fe-based superconductor LiFeAs,
with a critical temperature of 18 K, has led to questions as to whether the origin of superconductivity in
this material might be different from other Fe-based superconductors. Both angle-resolved photoemission
and quasiparticle interference experiments have reported fully gapped superconducting order parameters with
significant anisotropy. The system is also of interest because relatively strong correlations seem to be responsible
for significant renormalization of the hole bands. Here we present calculations of the superconducting gap and
pairing in the random-phase approximation using Fermi surfaces derived from measured photoemission spectra.
The qualitative features of the gaps obtained in these calculations are shown to be different from previous
two-dimensional theoretical works and in good agreement with experiment on the main Fermi-surface pockets.
We analyze the contributions to the pairing vertex thus obtained and show that the scattering processes between
electron and hole pockets that are believed to dominate the pairing in other Fe-based superconductors continue
to do so in LiFeAs despite the lack of nesting, leading to gaps with anisotropic s± structure. Some interesting
differences relating to the enhanced dxy orbital content of the LiFeAs Fermi surface are noted.
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I. INTRODUCTION

The compound LiFeAs is an 18 K superconductor that
presents several novel features relative to the other families
of Fe pnictides.1 High-quality crystals with atomically flat
nonpolar surfaces are now straightforward to prepare, and
the surface electronic structure has been shown to be the
same as in the bulk,2 suggesting that this system and related
111 materials are ideal ones to apply surface spectroscopies
like angle-resolved photoemission (ARPES) and scanning
tunneling microscopy (STM).3 ARPES experiments4–6 and
electronic structure calculations within density functional
theory (DFT)2,6,7 reported early on a Fermi surface very
different from the conventional set of hole and electron pockets
predicted by DFT for the other Fe-based superconductors
[Figs. 1 and 2]. In particular, less clear nesting of hole and
electron pockets was observed, leading to the suggestion that
this was the reason for the absence of magnetism in this parent
compound.4 More recently, de Haas–van Alphen (dHvA)
measurements8 showed reasonable agreement with bulk DFT
for orbits on the electron pockets.

One continuing puzzle has been the small to negligible
size of the inner (α1, α2) hole pockets observed by ARPES
compared to the relatively large sizes found in DFT. Recently,
local-density approximation (LDA) + dynamical mean-field
theory (DMFT) calculations have presented a picture which
suggests that the 111 are considerably more correlated than,
e.g., the well-studied 122 materials and have argued that
stronger interactions lead to a shrinkage of the inner hole pock-
ets but maintenance of the electron pocket size and shape.9–11

This picture would then account for both ARPES and dHvA
results, including very recent dHvA measurements, which

detected very small holelike orbits.12 However, the extent of
the agreement of LDA + DMFT theory and experiment for the
hole pockets is obscured somewhat by disagreements among
the various calculations as to the size of the inner pockets,
as well as by the challenges of resolving the near-grazing
�-centered hole bands in ARPES.

Within the spin-fluctuation model for pairing in the Fe-
based materials, the structure of the Fermi surface is crucial
for superconductivity as well as magnetism. Since the usual
arguments leading to s± pairing13 invoke interband pair
scattering between electron and hole pockets enhanced by
nesting, the absence of nesting in this material would seem
to undercut the case for an s± superconducting state. A
second aspect of this discussion relates to the spin symmetry
of the order parameter. While early NMR work reported a
strongly temperature-dependent Knight shift and 1/T1 below
Tc, consistent with s-wave pairing,14 Baek et al.15 reported
a Knight shift in some magnetic field directions with no T

dependence, suggestive of equal spin-triplet pairing, which
would then be consistent with theoretical analysis proposing
triplet pairing for this system.16 Neutron experiments have
thus far not provided conclusive evidence one way or another.
A weak incommensurate spin resonance was observed in
inelastic neutron scattering experiments17 and associated with
a probable s± state, but it should be noted that the existence
of a spin resonance does not definitively exclude triplet
pairing.18

More recently, some authors19 reported detailed ARPES
measurements of the superconducting gap in LiFeAs. These
measurements were remarkable in the sense that while they
showed that the system has a full gap, consistent with other

174516-11098-0121/2013/88(17)/174516(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.174516


Y. WANG et al. PHYSICAL REVIEW B 88, 174516 (2013)

kx(1/Å) 

B
in

di
ng

 e
ne

rg
y 

(e
V

) 

0.0 

0.2 

0.0 2.0 1.5 1.0 0.5 

k y
(1

/Å
) 

0.0 

0.5 

-1.0 

-0.5 

-2.0 

-1.5 

Momentum, k 

(a) (b) 

(c) 

(d) (e) (f) 

b 

c 
d 

e 
f 

FIG. 1. (Color online) Comparison of the tight-binding bands
and ARPES data both (a) at the Fermi surface and (b)–(e) in
energy-momentum cuts for kz = π/2. The black arrows in (a)
denote the positions of several representative energy momentum cuts.
For demonstration purposes here we use one of our high-quality
Fermi-surface maps from Ref. 19, although to recover additional
information on kz dispersion more data with various hν were used.
For further details see Appendix C.

low-temperature probes,3,4,20–22 they also exhibited substantial
gap anisotropy around both electron and hole Fermi surfaces.
Similar but not quantitatively identical results for anisotropic
gaps were reported by Umezawa et al.5 The reports of
strongly angle-dependent gaps are relatively rare among the
many ARPES measurements on Fe-based superconductors
(for exceptions see Refs. 23 and 24), where isotropic gaps
are often reported even for those systems where it is believed
from low-temperature transport measurements that gap nodes
exist (for a discussion of this so-called “ARPES paradox,”
see Ref. 25). The existence of anisotropy around some of the
Fermi-surface pockets of LiFeAs was also reported by Allan
et al.,26 who performed high-resolution, low-temperature STM
measurements together with a quasiparticle interference (QPI)
analysis which found a small gap nearly identical to ARPES
on the large outer hole (γ ) pocket, with gap minima along
the Fe-Fe bond direction (as suggested in Ref. 27). A second,
larger gap, also with moderate anisotropy, was reported and
attributed to an inner α1,2 hole pocket.

To illustrate the types of gaps found by the ARPES
experiments, we present in Fig. 2 a schematic representation
of these data to familiarize the reader with the qualitative
features reported. One can see that several aspects stand out:
(a) oscillatory gaps on the outer hole (γ ) and electron (β)
pockets, (b) smallest gap on the γ pocket, and (c) large gaps of
roughly equal average size on inner hole (α) and electron (β)
pockets. The relative phases of the gap oscillations on the two
β pockets are also striking. We note here that the measurement
of the gap on the α pocket is particularly delicate since this
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FIG. 2. (Color online) (a) The cut of the Fermi surface of the
ARPES-derived tight-binding model (filling n = 6.00) at kz = π

to show the definition of the various pockets and the angle θ that
parametrizes the surface points. Sketch of the results of the gap |	(θ )|
as seen in recent ARPES experiments compiled from the fits provided
in (b) Ref. 5 and (c) Ref. 19.

band barely crosses the Fermi level near the Z point and may
not cross near � at all.

It is essential to the understanding of superconductivity in
Fe-based superconductors to decide whether LiFeAs fits into
the usual framework, with pairing driven by spin fluctuations,
or represents different physics. Testing to see if the various
qualitative and quantitative features of the gaps reported
in experiment can be reproduced is therefore an important
challenge to theory. In this paper we calculate the effective
pairing vertex within the fluctuation exchange approximation
for the full three-dimensional (3D) Fermi surface of LiFeAs
and compare our results for the superconducting states which
become stable at the transition to previous theory and to
experiment. To understand how robust these results are, we
perform the calculation for a band structure fit to the ARPES
results, which differ primarily from DFT due to the much larger
size of the inner hole pocket in the latter, as discussed above,
as well as large shifts in the orbital character of the Fermi
surfaces. In addition, we compare our results to a slightly
hole-doped system to simulate the effect of missing Li at the
LiFeAs surface and to calculations with a “standard” DFT band
structure. We find that most aspects of the superconducting
gap are remarkably well reproduced by the theory using the
ARPES-derived electronic structure model. Our conclusion is
that the superconductivity in LiFeAs is very likely to be of the
“conventional” s± type, with significant anisotropy on both
hole and electron pockets.

II. TEN-ORBITAL TIGHT-BINDING FITS
AND FERMI SURFACES

Our approach here to the pairing calculation differs some-
what from those performed for materials where DFT and
ARPES were in qualitatively good agreement. Since the
spin-fluctuation pairing theory involves states very close to
the Fermi surface, the disagreement between DFT and ARPES
suggests that strong electronic correlations must be accounted
for at some level. The simplest modification of the usual
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(a) ARPES-derived Fermi surface, n = 6.00 (e) ARPES-derived Fermi surface, n = 5.90

(b) n = 6.00, g(k): λ1 = 1.04, U = 0.75 eV, J = 0.37U (f) n = 5.90, g(k): λ2 = 0.62, U = 0.75 eV, J = 0.37U

(c) (g)

(d) n = 6.00, g(k): λ1 = 1.04, U = 0.75 eV, J = 0.37U (h) n = 5.90, g(k): λ2 = 0.62, U = 0.75 eV, J = 0.37U

FIG. 3. (Color online) Fermi surface of LiFeAs from ten-orbital H ARPES
0 at (a) filling n = 6.00 and (e) n = 5.90 plotted in the coordinates

of the one-Fe Brillouin zone as two sets, outer (left) and inner (right) pockets. Majority orbital weights are labeled by colors, as shown. Note
the small innermost, hole pocket α1 with rotation axis �-Z (M-A) has been artificially displaced from its position along the kx axis for better
viewing in (a) and (e). (b) and (f) are the gap symmetry functions g(k) corresponding to the leading eigenvalues (s± wave) and interaction
parameters shown in the figure. (c) and (g) are the corresponding noninteracting spin susceptibility [χs(q,ω = 0) for U = 0, J = 0] and RPA
spin susceptibility [χs(q,ω = 0) for the same U, J as in (b) and (f)] at qz = 0,π . In the RPA susceptibility plot, a thin white line is plotted
along the path (π,qy,qz = 0) or (π,qy,qz = π ), its projection on the qy-χs plane is plotted as a thick orange line, and the red triangle indicates
the peak position. (d) and (h) are the angle dependence of g(k) on the pockets indicated at kz = 0,0.5π,π . In (d) the gap value on α pockets at
the pole is plotted since these pockets do not extend to kz = 0.5π .
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approach is to adopt a band structure which fits experiment
well, a procedure which is not uniquely defined due to the
multiband nature of the system. We have chosen to begin
with a ten-Fe orbital tight-binding Hamiltonian H ARPES

0 , fit to
measured ARPES data on a high-quality LiFeAs sample19

using the method of Ref. 28, which we refer to as the
ARPES-derived band structure. The hopping parameters and
the dispersions are given in Appendix C, and the comparison
of the tight-binding bands and Fermi-surface cuts are shown
in Fig. 1. The full Fermi surface from this model is shown
in Figs. 3(a) and 3(e) for two different dopings, n = 6.00
and n = 5.90. The latter results are presented to mimic the
possible effects of Li deficiency which are known to be
present in the sample and because the Fermi-surface topology
changes abruptly near n = 6.00. We find that these changes
are potentially quite important for the superconductivity, as
discussed below.

It is interesting to first compare the ARPES-derived Fermi
surface in Fig. 3(a) to the DFT Fermi surface discussed in
Appendix A since the DFT results are essentially those used in
earlier [two-dimensional (2D)] spin-fluctuation calculations.29

Both the DFT- and the ARPES-derived Fermi surfaces include
similar large hole pockets (γ ) and inner and outer electron
pockets (βin, βout). The γ pockets are of comparable size and
are similar in shape. In the DFT-derived model, the inner
and outer β pockets cross each other along high-symmetry
directions equivalent to X-Y in the one-Fe zone. They also
approach each other closely at nonzero kz values away from
the high-symmetry directions due to the hybridization of the
DFT electron bands, and this leads to some kz distortions
and abrupt changes in their orbital characters with kz. By
contrast, the kz dispersions of the ARPES-derived electron
pockets are weak. The pockets only approach each other at the
high-symmetry directions (where they cross in the absence of
spin-orbit coupling), and they retain their orbital characters
along kz, as measured by the ARPES experiment.30 The
main difference beyond these shifts of orbital characters and
shape of the outer β Fermi sheets is the much smaller α1,2

hole pockets and the closing of the α2 hole pocket in the
ARPES-derived inner-hole Fermi sheets. The density of states
(DOS) at the Fermi level is shown in Table I in Appendix A.
Within a scaling factor r = 0.5, the total densities of states and
partial density of states are quite consistent between these two
models.

The calculated carrier concentration in the compensated
(n = 6.00) case (number of electrons/Fe = number of holes/Fe)
from H ARPES

0 is roughly consistent with 0.18 electrons/Fe
and 0.2 holes/Fe from the ARPES experiment by Umezawa
et al.5 It is interesting to note that the difference in hole and
electron carriers in Ref. 5 is already a hint that the surface of
the sample may contain some Li vacancies and therefore be
slightly hole doped. For the n = 5.90 case we have chosen
here for illustration’s sake corresponding electron and hole
densities that are 0.16 and 0.26, respectively.

In general, the ARPES-derived tight-binding model is a
close fit to the ARPES data in Ref. 19 and reproduces
the orbital characters on all pockets. One apparently minor
discrepancy (which may play a more important role than
expected at first sight; see below) is that due to the crystal
symmetry, the two hole bands dispersing near Z in the
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FIG. 4. (Color online) The band structures along the M-�-Z-A
path in the one-Fe Brillouin zone for (top) the ARPES-derived
model and (bottom) the same model with the approximate spin-orbit
coupling term31 λ3d

Fe

∑
i L

z
i S

z
i , with λ3d

Fe = 0.025 eV. The color
encodes the major orbital characters, as indicated by the horizontal
color bar. The dashed lines mark the corresponding Fermi energy at
filling n = 6.00, 5.95, and 5.90.

tight-binding Hamiltonian H ARPES
0 are degenerate at the Z

point and therefore in a nonrelativistic calculation must both
cross or neither cross the Fermi surface, as shown in Fig. 4
(top panel). Apart from the large γ pocket, ARPES observes
only a single holelike band (α2) crossing the Fermi surface
near Z, while a second holelike band (α1) is pushed below.
This suggests that spin-orbit coupling, which will split the two
hole bands as shown in Fig. 4 (bottom panel), may be relevant
here. For the moment we neglect this distinction and focus on
the nonrelativistic band structure, but we will return to it in the
discussion below.

III. FLUCTUATION EXCHANGE PAIRING MODEL

With the tight-binding Hamiltonian H0 in the previous
section, we include the local interaction via the ten-orbital
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Hubbard-Hund Hamiltonian

H = H0 + Ū
∑
i,

ni↑ni↓ + Ū ′ ∑
i,′<

nini′

+ J̄
∑
i,′<

∑
σ,σ ′

c
†
iσ c

†
i′σ ′ciσ ′ci′σ

+ J̄ ′ ∑
i,′ �=

c
†
i↑c

†
i↓ci′↓ci′↑, (1)

where the interaction parameters Ū , Ū ′, J̄ , J̄ ′ are given in
the notation of Kuroki et al.32 Here  is the orbital index
corresponding to Fe 3d orbitals, and i is the Fe atom site. The
spectral representation of the one-particle Green’s function is
given as

G12 (k,iωn) =
∑

μ

a1
μ (k)a2,∗

μ (k)

iωn − Eμ(k)
, (2)

where the matrix elements a
μ(k) = 〈|μk〉 are spectral

weights of the Bloch state |μk〉 with band index μ and wave
vector k in the orbital basis and ωn are the fermionic Matsubara
frequencies. In terms of the Green’s function, the orbitally
resolved noninteracting susceptibility is

χ0
1234

(q,iωm)

= − 1

Nβ

∑
k,iωn

G42 (k,iωn)G13 (k + q,iωn + iωm), (3)

where N is the number of Fe atom sites, β = 1/T is the inverse
temperature, and ωm are the bosonic Matsubara frequencies.
After summing the fermionic Matsubara frequencies following
the analytic continuation to the real axis of bosonic Matsubara
frequencies, we obtain the retarded susceptibility

χ0
1234

(q,ω)

= − 1

N

∑
k,μν

a4
μ (k)a2,∗

μ (k)a1
ν (k + q)a3,∗

ν (k + q)

ω + Eμ(k) − Eν(k + q) + i0+

× {f [Eμ(k)] − f [Eν(k + q)]}. (4)

For the 3D k sum we use a 47 × 47 × 31 k-mesh for the
ARPES-derived model in the one-Fe Brillouin zone (1Fe-
BZ); we interpolate the static noninteracting susceptibility
χ0

1234
(q,ω = 0) from directly calculated susceptibility val-

ues on a (20 × 20 × 8)-point q mesh in the 1Fe-BZ to perform
the expensive numerical calculation with a fine patched Fermi
surface in solving the pairing eigenvalue problem. Within
the random-phase approximation (RPA) we define the spin-
fluctuation (χRPA

1 ) and orbital-fluctuation (χRPA
0 ) parts of the

RPA susceptibility as

χRPA
1,1234

(q,ω) = {χ0(q,ω)[1 − Ū sχ0(q,ω)]−1}1234 , (5a)

χRPA
0,1234

(q,ω) = {χ0(q,ω)[1 + Ū cχ0(q,ω)]−1}1234 , (5b)

such that the RPA-enhanced spin susceptibility is then given
by the sum

χs(q,ω) = 1

2

∑
12

χRPA
1,1122

(q,ω). (6)

The interaction matrices Ū s and Ū c in orbital space have
matrix elements consisting of linear combinations of the

interaction parameters, and their explicit forms are given, e.g.,
in Ref. 33.

Next, we define the singlet pairing vertex in band space,

�ij (k,k′) = Re
∑

1234

a1,∗
νi

(k)a4,∗
νi

(−k)

× [
�1234 (k,k′,ω = 0)

]
a2

νj
(k′)a3

νj
(−k′), (7)

where k ∈ Ci and k′ ∈ Cj are quasiparticle momenta restricted
to the electron or hole Fermi-surface sheets Ci and Cj and νi

and νj are the band indices of these Fermi-surface sheets. The
vertex function in orbital space �1234 describes the particle
scattering of electrons in orbitals 2,3 into 1,4 which is
given by RPA in the fluctuation exchange formalism as

�1234 (k,k′,ω) = [
3
2 Ū sχRPA

1 (k − k′,ω)Ū s + 1
2 Ū s

− 1
2 Ū cχRPA

0 (k − k′,ω)Ū c + 1
2 Ū c

]
1234

.

(8)

The superconducting gap can be factorized into an ampli-
tude 	(T ) and a normalized symmetry function g(k). Near
Tc, the pairing symmetry function g(k) is the stable solution
maximizing the dimensionless pairing strength functional34

λ[g(k)], which determines Tc. Via the variational method, this
is equivalent to solving an eigenvalue problem of the form

− 1

VG

∑
j

∮
Cj

dS ′∣∣vFj
(k′)

∣∣�ij (k,k′)gμ(k′) = λμgμ(k), (9)

where VG is the volume of 1Fe-BZ, vFj
(k) = ∇kEj (k) is

the Fermi velocity on a given Fermi sheet, and dS is the
area element of the Fermi sheet. The eigenfunction gμ(k)
corresponds to the μth eigenvalue λμ and gives the structure
of the gap at the transition. Defining k⊥ = (k⊥,φ,0) in
the cylindrical coordinates k = (k⊥,φ,kz) and using dS

|vF(k)| =
k2
⊥

|k⊥·vF(k)|dφdkz is convenient for discretizing the Fermi sheet in

parameter form k⊥ = k⊥(φ,kz) into small patches.35 A dense
(24 × 12)-point mesh in parameter space {φ} ⊗ {kz} is used
for each Fermi pocket in numerical calculations, implying
altogether nk ∼ 2500 k points distributed on all Fermi pockets.
After choosing the lattice constant a as the length unit, eV as
the energy unit, and aeV/h̄ as the velocity unit, the eigenvalue
problem Eq. (9) reads

− 1

16π3

∑
j

∮
Cj

�ij (k,k′)
k

′2
⊥dφ′dk′

z

|k′⊥ · vF(k′)|gμ(k′) = λμgμ(k),

(10)

where the normalized36 eigenfunctions gμ(k) are solved
numerically by transforming the integration kernel (for all
Fermi sheets Ci) into an nk × nk matrix. Here, we have used the
symmetric pairing vertex �ij ≡ 1

2 [�ij (k,k′) + �ij (k, − k′)]
for a spin-singlet pairing state since we want to first examine
whether the unconventional superconducting state of the
LiFeAs compound and other Fe-based superconductors is
universal and can be explained in the same antiferromagnetic
spin-fluctuation theory before any consideration of triplet
pairing or other approaches.
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(a)

(b)

FIG. 5. (Color online) Comparison of the gap function between
the results of the present paper (solid lines) at kz = π and the
experimental findings of |	(θ )| from Ref. 19 (dashed lines). Result
of the ARPES-derived model (a) at filling n = 6.00 and (b) at filling
n = 5.90.

IV. RESULTS FOR THE PAIRING STATE

A. Results for the ARPES-derived Fermi surface

We now present our solutions to Eq. (10) for the leading
pairing eigenvectors (gap functions). For this work we fix
Hubbard-Hund parameters U = 0.75 eV and J = 0.37U and
assume spin-rotational invariance to determine U ′ and J ′.
These parameters are relatively standard in the literature
making use of the RPA approach to the pairing vertex, and
we found that changing them within a limited range does not
change the qualitative aspects of our results for the supercon-
ducting state. The RPA susceptibility then shows an enhanced
incommensurate peak around q = π (1,0.075,qz) [Fig. 3(c)]
or q = π (1,0.175,qz) [Fig. 3(g)],37 and the peak decreases
weakly from qz = 0 to qz = π . The most important result as
shown in Figs. 3(b) and 3(f) and in another representation
in Figs. 3(d) and 3(h) is that, using the ARPES-based band
structure for both fillings considered, we find an s±-wave state
with anisotropic but full gaps on the electron (negative gap)
and hole (positive gap) pockets. The other leading eigenvalue
corresponds in both cases to a dxy-wave state which is closely
competing34 but is inconsistent with experiments, such that we
do not investigate it further here.

If we now consider the gap functions found on the various
pockets in detail, we notice a number of striking similarities to
the experimental results sketched in Fig. 2. The full details of
the s± gap functions obtained are shown in Figs. 3(b) and 3(f)
and 3(d) and 3(h), but for the reader wishing a more concise
summary, we have shown in Fig. 5 a schematic comparison
of the calculated gaps of the s± states found at kz = π versus
the experimental data, using the angle convention defined in
Fig. 2. Taking first the large β and γ pockets, we see from Fig. 5
that the average gap magnitude is larger on the β pockets by
a factor of 2 or so compared to γ , and the average gap on
the inner β pocket is about 20% larger than that on the outer
β pocket, as in experiment. The gaps on γ and β pockets
exhibit significant anisotropy. The minima and maxima on the
γ pocket are at the same angular positions as in experiment
and are similar to those from the DFT-based model discussed

in Appendix A. These gap minima are particularly important
as they will determine the momenta of the quasiparticles
which dominate low-temperature measurements if , as seen
in ARPES, the gap on γ is the smallest for this system. Their
location along the Fe-Fe bond direction (or the equivalent plane
in k space) is consistent with ARPES measurements5,19 as well
as with the quasiparticle interference26 and scanning tunneling
microscopy experiments,3 according to the interpretation of
the latter provided in Ref. 27. The gap oscillations on the
β pockets are in good agreement with experiment on the
dxy-orbital-dominated inner sheets but are apparently 180◦ out
of phase with experimental results on the outer electron sheets.
We comment on the origin of this discrepancy below.

We now discuss the gaps on the α hole pockets. ARPES19,30

sees only one band crossing the Fermi level very close to Z,
with a large gap of order 6 meV, which we assign to α2. In our
current tight-binding band, which obeys the symmetries of the
nonrelativistic DFT approach, we have always two α pockets
or none, as mentioned above. It may therefore be roughly
appropriate to speak of an average gap on the α1,2 pockets
in the first analysis. Within our calculation with the ARPES-
derived band structure, the largest discrepancy with experiment
is seen for our n = 6.00 calculation, where the α gap
is found to be the smallest of all the gaps in the problem. In the
hole-doped case n = 5.90, the size of the gap on α1 increases
significantly, becoming comparable to experiment, but the gap
on α2 remains small. It is interesting to note that the DFT
calculation (Appendix B), while disagreeing with ARPES on
the existence of a �-centered hole pocket, produces a large gap
on both α1 and α2.

B. Analysis of gap sizes in terms of pairing vertex

To analyze the origin of the remaining discrepancies with
experiment, we investigate the structure of the effective pair
vertex by presenting in Fig. 6 a graphical representation of
the pairing vertex �ij (k,k′) matrix. Each block (i,j ) in the
image represents a matrix (k,k′) consisting of entries which
correspond to the vertex �ij (k,k′), with k ∈ Ci and k′ ∈ Cj .
The majority orbital characters along the Fermi surfaces Ci

are also indicated in Fig. 6. In the tables below the plots, the
densities of states summed over 3D pockets and scattering
vertex components averaged over (k,k′) on the kz cut are also
shown.

For both dopings shown, the brightest set of blocks is
that representing scattering processes among the three largest
pockets, γ,βin,out. On average, it is clear visually in Fig. 6 and
also from the integrated intensities that the dominant scattering
processes within this set of pockets occur for γ -βin and γ -γ
and, to a lesser extent, γ -βout.

There are several interesting conclusions to be drawn from
this simple observation. First, one of the crucial differences
between LiFeAs and the “canonical” 1111 systems which were
originally used to deduce general principles about pairing in
the Fe-based superconductors is the existence of a pocket (γ )
with very large density of states (Fig. 6) of dominant dxy

character. This pocket nests very poorly with the β pockets, as
pointed out in Ref. 4, but nevertheless produces the primary
pairing interaction leading to superconductivity, in part due
to the unusually large dxy content of the β pockets in the
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(a) n = 6.00, kz = 0 (b) n = 6.00, kz = π (c) n = 5.90, kz = 0 (d) n = 5.90, kz = π

ARPES-based model, filling n = 6.00

band DOS model gap pairing vertex Γν μ

ν Nν (0) gν α1 α2 γ βout βin

α1 0.01 0.19 0.45 0.44 0.32 0.62 0.76

α2 0.15 0.16 0.44 0.46 0.19 0.60 0.38

γ 0.70 0.32 0.32 0.19 2.14 1.81 3.11

βout 0.34 −0.46 0.62 0.60 1.81 0.55 0.77

β in 0.15 −0.79 0.76 0.38 3.11 0.77 1.38

ARPES-based model, filling n = 5.90

band DOS model gap pairing vertex Γν μ

ν Nν (0) gν α1 α2 γ βout βin

α1 0.02 0.52 0.43 0.37 0.49 0.82 1.52

α2 0.24 0.20 0.37 0.41 0.20 0.65 0.30

γ 0.61 0.26 0.49 0.20 1.99 1.29 2.44

βout 0.36 −0.37 0.82 0.65 1.29 0.50 0.67

β in 0.14 −0.69 1.52 0.30 2.44 0.67 1.21

out out out

out out out

FIG. 6. (Color online) Components of the pairing vertex �ij (k,k′) matrix resulting in the pairing function plotted in Fig. 3 from ARPES-based
model at (a) and (b) filling n = 6.00 and (c) and (d) filling n = 5.90, where the value is proportional to the brightness of the color. The rows
and columns of the tiles of (a)–(d) correspond to Fermi points k ∈ Ci and k′ ∈ Cj , where Ci,j are the kz cuts of Fermi sheets α1,2, γ at �

and βout, βin at the X point. Here kz = k′
z = 0 for (a) and (c) and kz = k′

z = π for (b) and (d). The angular dependence of the major orbital
characters of these Fermi points are labeled by color as dxz (red), dyz (green), and dxy (blue), as shown in the horizontal and vertical color
bars attached to each panel. The tables show the density of states summed over three dimensions (3D DOS), the angular averaged pairing
vertex �νμ ≡ ∑

k,k′ �(k,k′)/nk/nk′ at kz = π (where nk is the number of k points in the sum), and the approximated model gap solved from
linearized gap equations using the 3D DOS and angular averaged pairing vertex at kz = π .

ARPES-derived band structure. This is entirely consistent
with the suggestion that while long-range magnetism is
suppressed by the lack of nesting (although this effect need
not rely exclusively on states exactly at the Fermi level),
strong magnetic fluctuations remain and are available for
pairing, which is of s± character because the γ -β interactions
are repulsive. It is interesting to note that while the pair-
scattering processes connecting the γ pockets to the rest of
the Fermi surface are large, the gap on the γ pocket itself
is not. This is a consequence, within the theory of multiband
superconductivity, of the large density of states on the γ pocket,
as discussed in Sec. IV C.

Second, we note that the intraband scattering γ -γ is also
quite strong. These are small-q processes which may be
responsible for the tendency to ferromagnetism seen in these
systems.38 Although we do not see enhancement of the total
magnetic susceptibility near q = 0 (Fig. 3), there are evidently
intraorbital susceptibilities, including χxy,xy,xy,xy , which are
large at small q, and the partial density of states Nγ (0) is the
largest among all pockets.

Finally, we note that the strong angular dependence of the
vertex is induced by the variation of the orbital content in
general and the dxz/dyz content in particular. As discussed in
Refs. 39 and 33, there is a strong tendency for pair scattering
between like orbitals to be enhanced, other effects being
equal, accounting for the large γ -βin scattering. But even in
this case subdominant xz/yz orbitals are present on the βin

sheets, which leads to the observed modulation via the matrix
elements which occur in Eq. (7).

To understand the angular oscillations within a phe-
nomenological picture, Maiti et al.40 fitted the gaps on the
electron pockets measured by Umezawa et al. with the angle
dependence

	inner(θ ) = 	0(1 + r2| cos 2θ | + r4 cos 4θ ), (11a)

	outer(θ ) = 	0(1 − r2| cos 2θ | + r4 cos 4θ ), (11b)

where θ is defined in the caption of Fig. 2 (measured
from dashed-line direction), and they found (i) r2 > 0 and
(ii) r4 > 1

4 r2. Point (i) is equivalent to 	inner > 	outer, which
is measured by both ARPES experiments, and our results from
both tight-binding models also agree with point (i). Point (ii)
is related to the in-phase feature and the orientation of gap
maxima on both pockets because, first, at θ = 0, d	inner/dθ =
0 and d	outer/dθ = 0 and, second, d2	inner/dθ2 = −4(r2 +
4r4) and d2	outer/dθ2 = 4(r2 − 4r4). r4 > 1

4 r2 means both
inner and outer pockets have maxima at θ = 0, and hence
they are in phase. Considering r2 > 0 and the gap on the
outer pocket oscillates stronger than the inner pocket (larger
curvature at θ = 0) in our results, a reasonable range for r4

at all kz is r4 ∼ − 1
4 r2. The sign of r2 is determined by the

angle dependence of the pairing interaction and is positive
in the case where the interaction between electron and hole
pockets is dominant.40 Our numerical results suggest the same
conclusion as the ARPES experiments. The discrepancy in the
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phase of the oscillations on the outer β pocket is attributable to
the “wrong” sign of the more sensitive parameter40 r4 obtained
within our calculations.

We now turn to the more delicate issue of the pairing-
vertex components connecting the α pockets to the rest of
the Fermi surface. It is clear from both the plots and table
corresponding to Figs. 6(a) and 6(b) that these are negligible
in the compensated case n = 6.00, in Fig. 6(a) simply because
H ARPES

0 contains no α pockets at kz = 0 and in Fig. 6(b)
because the densities of states on these closed 3D pockets
are extremely small. In 2D models, where densities of states
tend to be weakly dependent on pocket size, these effects are
suppressed. We discuss the connection of the small gap on the α

pockets to the corresponding components of the vertex below.
For the moment, we note simply that the effect of hole doping
to n = 5.90 shown in Figs. 6(c) and 6(d) clearly enhances
the scattering of pairs on the α pockets to the β pockets,
particularly to βin. As seen in Figs. 3(a) and 3(e), hole doping
by a small amount (5% Fe) transforms the small Z-centered
α pockets into two narrow concentric tubes and thereby
enhances the DOS on the α pockets. While the n = 5.90 case
is nominally inconsistent with the ARPES observation of no α-
type Fermi surfaces at kz = 0, it is clear that the determination
of the hole dispersion near �-Z becomes quite challenging
when the bands are grazing the Fermi level. It is significant
that the results for the DFT analysis given in Appendix B also
give large gaps on the α pockets, although the Fermi surface
of the hole pockets disagrees qualitatively with ARPES. Taken
together, these results suggest that the α-β interaction is
enhanced and the gap on the α pocket is large only if states
near � of xz/yz character contribute strongly to pairing. This
occurs when the Fermi surface includes an open (cylindrical)
α1 pocket and also when the range of pairing is expanded to
include states away from the Fermi level, as discussed below.

C. Discussion: Toy model for gap sizes

To understand the relative sizes of the gaps on the various
Fermi-surface sheets, one needs to combine knowledge of the
pairing-vertex function discussed above with the densities of
states on each sheet. Here, a simplified picture can help us
understand why certain gaps are large and others are small.
We neglect for this discussion the momentum dependence of
the gap eigenfunctions, densities of states, and vertices over the
individual Fermi-surface sheets. If we are primarily interested
in gap sizes, a good approximation to the gap equation (10) is
then given by

λgi ≈
∑

j

−gjNj�ij , (12)

where gi now denotes the gap on the ith band and so on.
We begin by discussing the question of how the gap on tiny
Z-centered (or �-centered) hole pockets can become large,
as seen by ARPES.19 Were intraband scattering processes
dominant, the tiny DOS on the α pockets would generically
create an extremely small gap. Since interband scattering is
more important, in the situation where the DOS on the α

pockets is small, the gap on α will be determined by scattering
from the other major bands, in particular γ and βin,out, as seen
in Fig. 6.

In such a situation, we have approximately

λgα ≈ −gγ Nγ �αγ −
∑

ν

gβν
Nβν

�αβν
, (13)

where ν sums over both inner and outer β pockets. Since the
state is an s± state driven by repulsive interband interactions,
the first and second terms tend to cancel each other. Large gaps
can then be obtained if parameters are chosen such that the
contribution from the γ pocket is minimized. As we have seen
above, however, in the current ARPES-derived model, while
the scattering of α states to the β pockets is much stronger,
the γ density of states is significantly larger, such that the two
terms in Eq. (13) are comparable and therefore mostly cancel
each other. As can be seen by comparing the hole-doped case
with the compensated case with the tables for �μν in Fig. 6, the
main effect of the hole doping on the balance of the two terms
in Eq. (13) is due to the enhancement of �α,βin by a factor of 2.

V. CONCLUSIONS

We have performed 3D calculations of the superconducting
pair state in the LiFeAs compound, one of the few materials
where ARPES experiments indicate significant gap anisotropy,
possibly due to reduced diffuse scattering from the very clean,
nonpolar surface. Since the inner hole pockets of the Fermi
surface of this material are thought to be strongly renormalized
by interactions, we used as the input a tight-binding model
fit to ARPES data reproducing both the band structure and
orbital polarization measurements at the Fermi surface. Our
calculations find a gap structure which changes sign between
the hole and electron pockets and reproduce semiquantitatively
the relative gap sizes on the three largest pockets, along with
the oscillatory behavior seen. We performed a careful analysis
of the structure of the pair-scattering vertex to understand the
structure of these pair states. The gap function observed by
ARPES on the main pockets can then be understood entirely
in terms of the repulsive interband interactions within the spin-
fluctuation approach. On the outer electron pocket, a difference
in the sign of the oscillations with respect to experiment can
be traced to a term in the phenomenology of Maiti et al.40

which depends very sensitively on the balance between intra-
and interpocket interactions.

Our results differ from experiment in one important respect,
namely, the small size of the gap on the inner hole (α) pockets
we find, in contrast to the large gap observed in Ref. 19. We
discussed here, and in Appendices A and B, various model
Fermi surfaces which tend towards giving significantly larger
α gaps and deduced that inclusion of the xz/yz states in the
pairing near the � point of the Brillouin zone appears to
be essential. While these models do not appear to be fully
consistent with the Fermi surface found by ARPES, they point
the way towards identifying missing ingredients in the theory.
In particular, since the α pockets in this material are tiny and
very close to a Lifschitz transition, it may be necessary in this
system to account for states slightly away from the Fermi level
in order to reproduce the overall gap structure.

Due to the remarkable agreement of the robust part of
the gap structure on the main pockets, we conclude that the
pairing in LiFeAs has essentially the same origin as in other
Fe-based superconductors, despite the fact that there is no
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nesting apparent at the Fermi surface. We point out that the
main difference between LiFeAs and the paradigmatic 1111
systems is the predominance of the scattering between the
hole γ Fermi pocket and the electron β pockets, all of which
have substantial xy orbital character; pure xz/yz scattering is
subdominant. A strong dxy intrapocket interaction may explain
the ferromagnetic correlations observed in experiment, despite
the lack of a q = 0 peak in the total magnetic susceptibility.
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APPENDIX A: ELECTRONIC STRUCTURE OF LIFEAS
FROM DENSITY FUNCTIONAL THEORY

The band structure from DFT for the LiFeAs parent
compound is calculated using the quantum ESPRESSO package.
The experimentally determined lattice parameters used in
the calculation are taken from Table I in Ref. 41, including
lattice constants a = 3.7914 Å, c = 6.3639 Å and the internal
coordinates for the Li atoms zLi = 0.8459 and the As atoms
zAs = 0.2635. Next we obtain the DFT-derived ten-orbital
tight-binding Hamiltonian model H DFT

0 by projecting the
bands near the Fermi energy on the ten 3d orbitals of the
two Fe atoms in the primitive cell of the LiFeAs crystal
using maximally localized Wannier functions computed using
the WANNIER90 package. The Fermi surface from this model
is shown in Fig. 7(a), where the colors encode the orbital
character. The Fermi-surface sheets of the ten-orbital model are
plotted using a repeated-zone scheme of the two-Fe Brillouin
zone (2Fe-BZ) in the coordinates (kx,ky,kz) of the 1Fe-BZ,
and the cube in k space in Fig. 7(a) encloses the volume
of the 1Fe-BZ. This representation is convenient for later
calculation since the susceptibility is only a periodic function
in the 1Fe-BZ. For the convenience of later discussion, we
denote the two hole pockets at the �(0,0,0) [or M(π,π,0)]
point as α1/α2 and two electron pockets at the X (or Y ) point
as βout/βin. The DOS at the Fermi level is shown in Table I, in
comparison with that of ARPES-derived model.

APPENDIX B: PAIRING STATE FOR DFT-DERIVED
FERMI SURFACE

Although the Fermi surface predicted by DFT differs in
some essential respects from that found in ARPES, it is
nevertheless useful to calculate the gap functions which arise
within the spin-fluctuation theory for this electronic structure

dxz
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0(qx,qy,qz )
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RPA(qx,qy,qz )
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β
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1.2
−1.2
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kz = π

kz = 0.5π

kz = 0

0 2π 0 2π 0 2π 0 2π 0 2π

(a) DFT-derived Fermi surface, n = 6.00

(b) g(k): λ1 = 0.237, U = 0.88 eV, J = 0.25U

(c)

(d) g(k): λ1 = 0.237, U = 0.88 eV, J = 0.25U

FIG. 7. (Color online) (a) Fermi surface of LiFeAs from ten-
orbital H DFT

0 plotted in the coordinates of the one-Fe Brillouin zone
as two sets, outer (left) and inner (right) pockets. Majority orbital
weights are labeled by colors, as shown. Note the small innermost hole
pocket α1 with the rotation axis �-Z (or M-A) has been artificially
displaced from its position along the kx axis for better viewing.
(b) The gap symmetry functions g(k) corresponding to the leading
eigenvalues (s± wave) with interaction parameters shown in the figure.
(c) The corresponding noninteracting spin susceptibility [χs(q,ω =
0) with U = 0,J = 0] and RPA spin susceptibility [χs(q,ω = 0) with
the same U,J as in (b) and (f)] at qz = 0,π . (d) The angle dependence
of g(k) on the pockets indicated at kz = 0,0.5π,π .

to get a sense of how much the gap varies for small changes
in the electronic structure and to compare with earlier 2D
theoretical calculations using a DFT-derived Fermi surface.29
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TABLE I. LiFeAs density of states (two Fe atoms, two spins) at
the Fermi level from (a) the ten-orbital DFT-based model H DFT

0 and
(b) the ARPES-based model H ARPES

0 along with (c) the density of
states in (b) scaled by a factor r = 0.5.

α1 α2 γ βout βin Total

(a) 0.040 0.554 0.660 0.610 0.377 2.241
(b) 0.038 0.592 2.782 1.377 0.594 5.383
(c) 0.019 0.296 1.391 0.689 0.297 2.692

As shown in Fig. 7, for U = 0.88 eV and J = 0.25U , we find
an s±-wave state (λ1 = 0.237) with anisotropic full gaps on
the electron (negative gap) and hole (positive gap) pockets,
as shown in Figs. 7(b) and 7(d). (The second eigenvalue
λ2 = 0.1006 is a dx2−y2 -wave state.) The s±-wave state is
driven by the enhanced commensurate peak at q = (π,0,qz)
in the RPA susceptibility; see Fig. 7(c). This peak value has
a moderate qz dependence and becomes smaller at qz = π ,
which means the gap structure will not change too much
along kz.

The gaps on the hole pockets α2 and γ exhibit moderate
kz dependence. The gap minima on the γ pocket are in the
kx,ky or Fe-Fe directions. The gap on the closed α1 pocket is
among the largest ones, although the DOS of the α1 pocket
is the smallest, and this gap shows strong kz dependence near
the pole of the pocket. Next, the gaps on the inner βin and
outer βout pockets seem to be intertwined and correlated: near
kz = 0, the gap on the inner pocket is smaller than the gap on
the outer pocket, while near kz = π the order is flipped [see
Fig. 7(a) for gaps at kz = 0,π ], but they coincide at the points
where two Fermi pockets touch each other. Last, while the
gap magnitudes from our full 3D calculation are substantially
similar to those obtained using 2D functional renormalization
group calculations by Platt et al.29 at kz = 0, at kz = π we
find qualitatively different hole pocket gaps, indicating the
importance of 3D pair-scattering processes.

APPENDIX C: FITTING PARAMETERS FOR THE
TEN-ORBITAL TIGHT-BINDING MODEL HARPES

0

In the following, we give the Hamiltonian matrix of the
tight-binding model H ARPES

0 from Ref. 28 (with corrections
and minor changes) and the hopping parameters t rst′ which
are obtained by fitting the ARPES measured band structure
for LiFeAs using that tight-binding model. The hopping
parameters were tuned to optimally reproduce a vast set of
experimental data measured along high-symmetry directions
as well as complete Fermi-surface maps, cutting the band
structure at arbitrary angles to crystallographic axes. One such
map is shown in Fig. 1. To pin down kz dispersions, high-
symmetry cuts measured with different excitation energies
were used. Here ,′ are orbital indices with 1 = dxy , 2 =
dx2−y2 , 3 = idxz, 4 = idyz, 5 = dz2 for the first Fe within the
unit cell and 6 = dxy , 7 = dx2−y2 , 8 = −idxz, 9 = −idyz, 10 =
dz2 for the second Fe. r,s,t are integers denoting a hopping
distance rTx + sTy + tR3, where R1, R2, R3 are lattice basis
vectors and Tx , Ty are basis vectors for the one-Fe unit cell.
Specifically, we have Tx = 1

2 (R1 − R2), Ty = 1
2 (R1 + R2),

and accordingly, in the reciprocal space, we have k1 = kx + ky ,

k2 = −kx + ky , k3 = kz, where the wave-number components
are scaled by choosing the lattice constant a = 1. The entire
calculation is done with k1,2,3 (in 2Fe-BZ) and then plotted
with kx,y,z (in 1Fe-BZ using a repeated-zone scheme), such as,
for example, in Fig. 3(a). H ARPES

0 is given in the block matrix
form as follows:

H ARPES
0 =

(
H++ H+−

H+−∗ H++∗

)
. (C1)

Here an asterisk (∗) means complex conjugate. Each element
of H++,H+− is given in two parts: the 2D part and the 3D
part.

For the 2D part of the Hamiltonian,

H++
11 = ε1 + 2t11

11 (cos k1 + cos k2) + 2t20
11 (cos 2kx + cos 2ky),

H++
12 = 0,

H++
13 = 2it11

13 (sin k1 − sin k2),

H++
14 = 2it11

13 (sin k1 + sin k2),

H++
15 = 2t11

15 (cos k1 − cos k2),

H++
22 = ε2 + 2t11

22 (cos k1 + cos k2),

H++
23 = 2it11

23 (sin k1 + sin k2),

H++
24 = 2it11

23 (− sin k1 + sin k2),

H++
25 = 0,

H++
33 = ε3 + 2t11

33 (cos k1 + cos k2) + 2t20
33 cos 2kx

+ 2t02
33 cos 2ky + 4t22

33 cos 2kx cos 2ky,

H++
34 = 2t11

34 (cos k1 − cos k2),

H++
35 = 2it11

35 (sin k1 + sin k2),

H++
44 = ε3 + 2t11

33 (cos k1 + cos k2) + 2t02
33 cos 2kx

+ 2t20
33 cos 2ky + 4t22

33 cos 2kx cos 2ky,

H++
45 = 2it11

35 (sin k1 − sin k2),

H++
55 = ε5,

H++
ji = (H++

ij )∗. (C2)

H+−
16 = 2t10

16 (cos kx + cos ky)

+ 2t21
16

[
(cos k1 + cos k2)(cos kx + cos ky)

− sin k1(sin kx + sin ky) + sin k2(sin kx − sin ky)
]
,

H+−
17 = 0,

H+−
18 = 2it10

18 sin kx,

H+−
19 = 2it10

18 sin ky,

H+−
1,10 = 0,

H+−
27 = 2t10

27 (cos kx + cos ky),

H+−
28 = −2it10

29 sin ky,

H+−
29 = 2it10

29 sin kx,

H+−
2,10 = 2t10

2,10(cos kx − cos ky),

H+−
38 =2t10

38 cos kx + 2t10
49 cos ky + 2t21

38 [(cos k1 + cos k2)

× cos kx − (sin k1 − sin k2) sin kx]

+ 2t21
49 [(cos k1 + cos k2) cos ky

− (sin k1 + sin k2) sin ky],
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H+−
39 = 0,

H+−
3,10 = 2it10

4,10 sin ky,

H+−
49 = 2t10

49 cos kx + 2t10
38 cos ky + 2t21

49 [(cos k1 + cos k2)

× cos kx − (sin k1 − sin k2) sin kx]

+ 2t21
38 [(cos k1 + cos k2) cos ky

− (sin k1 + sin k2) sin ky],

H+−
4,10 = 2it10

4,10 sin kx,

H+−
5,10 = 0. (C3)

For the 3D part of the Hamiltonian,

H++
11 = H++

11 + [
2t001

11 + 4t111
11 (cos k1 + cos k2)

+ 4t201
11 (cos 2kx + cos 2ky)

]
cos kz,

H++
13 = H++

13 − 4t201
14 sin 2ky sin kz,

H++
14 = H++

14 − 4t201
14 sin 2kx sin kz,

H++
33 = H++

33 + [
2t001

33 + 4t201
33 cos 2kx + 4t021

33 cos 2ky

]
cos kz,

H++
44 = H++

44 + [
2t001

33 + 4t021
33 cos 2kx + 4t201

33 cos 2ky

]
cos kz,

H+−
16 = H+−

16 + 4t101
16 (cos kx + cos ky) cos kz

+ 2t121
16 {[cos(k1 + ky) + cos(k1 + kx)] exp(ikz)

+ [cos(k2 + ky) + cos(k2 − kx)] exp(−ikz)},
H+−

18 = H+−
18 + 4it101

18 sin kx cos kz − 4t101
19 sin ky sin kz

+ 2it211
19 [sin(k1 + ky) exp(ikz)

− sin(k2 + ky) exp(−ikz)],

H+−
19 = H+−

19 + 4it101
18 sin ky cos kz − 4t101

19 sin kx sin kz

+ 2it211
19 [sin(k1 + kx) exp(ikz)

+ sin(k2 − kx) exp(−ikz)],

H+−
38 = H+−

38 + 4
(
t101
38 cos kx + t101

49 cos ky

)
cos kz

+ 2t121
38 [cos(k1 + kx) exp(ikz)

+ cos(k2 − kx) exp(−ikz)]

+ 2t121
49 [cos(k1 + ky) exp(ikz)

+ cos(k2 + ky) exp(−ikz)],

H+−
39 = H+−

39 + 4it101
39 (cos kx + cos ky) sin kz,

H+−
49 = H+−

49 + 4
(
t101
49 cos kx + t101

38 cos ky

)
cos kz

+ 2t121
49 [cos(k1 + kx) exp(ikz)

+ cos(k2 − kx) exp(−ikz)]

+ 2t121
38 [cos(k1 + ky) exp(ikz)

+ cos(k2 + ky) exp(−ikz)]. (C4)

The numerical values for hopping parameters in units of eV
are as follows. For the 2D part,

ε1 = 0.020, ε2 = −0.2605, ε3 = −0.0075,

ε5 = −0.3045, t11
11 = 0.030, t10

16 = −0.0185,

t20
11 = −0.010, t21

16 = 0.0035, t11
13 = −0.0635i,

t10
18 = 0.155i, t11

15 = −0.090, t10
27 = −0.2225,

t11
22 = 0.070, t10

29 = −0.1925i, t11
23 = −0.010i, (C5)

t10
2,10 = 0.1615, t11

33 = 0.152, t10
38 = 0.050,

t20
33 = −0.004, t21

38 = 0.040, t02
33 = −0.051,

t10
49 = 0.210, t22

33 = −0.005, t21
49 = −0.053,

t11
34 = 0.090, t10

4,10 = 0.0995i, t11
35 = 0.1005i.

For the 3D part,

t101
16 = −0.004, t001

11 = 0.0105, t111
11 = 0,

t201
11 = 0, t201

14 = 0, t001
33 = −0.003,

t201
33 = 0, t021

33 = 0.0105, t121
16 = 0,

(C6)
t101
18 = 0, t101

19 = 0, t211
19 = 0,

t101
38 = 0.0115, t121

38 = 0, t101
39 = 0,

t101
49 = 0, t121

49 = 0.

Some hopping parameters t rst′ are purely imaginary num-
bers because the dxz and dyz orbitals are multiplied by the
imaginary unit factor to get the real Hamiltonian matrix. How-
ever, if one were interested in orbital-resolved susceptibility or
pairing-vertex function, real orbitals are more meaningful,33

so we can introduce a gauge transformation to transform
to real orbitals by the matrix S = diag(1,1,i,i,1,1,1, −
i, − i,1), and the transformed Hamiltonian is H̃ ARPES

0 =
S−1H ARPES
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