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Stochastic Bloch-Redfield theory: Quantum jumps in a solid-state environment
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We discuss mapping the Bloch-Redfield master equation to Lindblad form and then unraveling the resulting
evolution into a stochastic Schrödinger equation according to the quantum-jump method. We give two
approximations under which this mapping is valid. This approach enables us to study solid-state systems of much
larger sizes than is possible with the standard Bloch-Redfield master equation, while still providing a systematic
method for obtaining the jump operators and corresponding rates. We also show how the stochastic unraveling
of the Bloch-Redfield equations becomes the kinetic Monte Carlo algorithm in the secular approximation when
the system-bath-coupling operators are given by tunneling operators between system eigenstates. The stochastic
unraveling is compared to the conventional Bloch-Redfield approach with the superconducting single-electron
transistor (SSET) as an example.
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I. INTRODUCTION

In almost all experimentally accessible few-state quantum
systems (atoms in optical cavities, qubits in superconducting
circuits, quantum dots, Rydberg atoms, and many other
systems), the quantum system is in contact with a large
environmental bath. The interaction with the bath leads to
a loss of phase coherence between the quantum states and to
relaxation. The time evolution of an open quantum system
given by the master equation for the density matrix is much
more complex than the time evolution of a closed quantum
system of the same size N . In particular in solid-state physics,
the nature of the bath and the coupling between system and
bath can be very complicated.1,2 In that case, it is not sufficient
to use a phenomenological master equation of Lindblad form.3

With the Bloch-Redfield equation,4,5 a powerful tool has been
developed to obtain the master equation from the microscopic
parameters of the model in a unified way.

In the last 20 years a rich theory has been developed,
especially in quantum optics, to unravel the differential
N × N matrix master equation in Lindblad form6–12 or in
the non-Markovian case13–15 into a stochastic Schrödinger
equation (SSE) for a state vector of size N . The time evolution
of the density matrix can be obtained from the unraveling
by averaging over many stochastic realizations of the time
evolution of the system (called trajectories) given by the SSE.
In measurement theory16 where the bath is (partially) given
by a measurement device, the stochastic unraveling is used to
treat the interaction with the constantly measured environment
as a succession of stochastic events which depend on the
previous trajectory. In general, the unraveling can be used to
gain a numerical advantage over the standard master equation
for large systems. Calculating each trajectory scales with the
system size as O(N2), solving the master equation as O(N4).

Stochastic unravelings have been considered in solid-state
systems,17–25 mostly in the context of measurement theory,
either by obtaining the parameters of a Lindblad master
equation for the specific microscopic bath model or by
assuming a phenomenological Lindblad master equation. In
the first part of this paper (Secs. II and III), we discuss the

general unraveling of the generic Bloch-Redfield equation
into the form of a stochastic Schrödinger equation. This
stochastic Bloch-Redfield approach is general in the sense
that it defines an algorithm to obtain a valid stochastic
unraveling from the same parameters of the microscopic model
that enter the Bloch-Redfield master equation. In the second
part (Sec. V), we compare the stochastic Bloch-Redfield
algorithm with the Bloch-Redfield master equation with the
example of a superconducting single-electron transistor26,27

(SSET) and demonstrate that the stochastic Bloch-Redfield
approach is able to handle much larger system sizes than the
master-equation approach.

II. QUANTUM JUMPS IN THE LINDBLAD EQUATION

The density matrix of a physical system always has the form
ρ(t) = ∑

φ pφ|φ〉〈φ|. The most general time-independent
master equation that conserves this form for a physical initial
density matrix ρ0 is given by the Lindblad equation3

ρ̇ = i[ρ,HS] +
∑

α

�α

(
LαρL†

α − 1

2
{L†

αLα,ρ}
)

, (1)

where the Lindblad operators Lα and the rates �α determine
the decoherence properties of the system. The Lindblad
operators and rates are at the level of the Lindblad equation
free parameters of the system model: they either have to
be introduced as phenomenological variables from physical
insight or obtained from a microscopic model of the bath by
other means. The Lindblad equation itself does not contain
a way to obtain these parameters from a microscopic model.
In many cases, for example, in most quantum optics models
where the bath is the quantized light field the form of the
possible Lindblad operators arises naturally from the coupling
between the open quantum system and the environment.

The Lindblad master equation can be rewritten as a
differential vector equation

�̇ρ = L �ρ, (2)
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where L is the Lindblad superoperator, for an N -dimensional
open quantum system an N2 × N2 matrix. The computational
complexity of the Lindblad master equation therefore scales
as O(N4) with the system size, making it impossible to
numerically solve the master equation of open quantum system
with a somewhat larger Hilbert space.

To overcome this problem, stochastic unravelings of the
Lindblad master equation have been developed.6,9,10,28 Instead
of calculating the time evolution of the density matrix ρ(t), a
stochastic trajectory of a system state |ψ(t)〉 is calculated from
a stochastic Schrödinger equation (SSE). The density matrix
is obtained by averaging over the pure-state density matrices
of the states from many stochastic trajectories

ρ(t) = 1

m

∑
|ψ(t)〉〈ψ(t)|, (3)

where m is the number of stochastic trajectories. A single state
|ψ(t)〉 is an N -element vector and the SSE has computational
complexity O(N2) and the stochastic unraveling has a total
numerical complexity of O(mN2). The stochastic unraveling
scales much better with the size of the Hilbert space than the
standard Lindblad master equation and it becomes possible to
study larger open quantum systems which are not accessible
to the density-matrix method.

The stochastic unraveling of the master equation (1) is not
unique. There are unravelings based on continuous stochastic
time evolution such as quantum state diffusion28 as well as un-
ravelings which rely on deterministic time evolution between
stochastic events such as the quantum jump method.6,9,10 Here,
we briefly introduce the quantum-jump algorithm on which
the stochastic Bloch-Redfield method introduced later on in
this paper is based. Extensive discussion of the quantum-jump
method can be found in Refs. 9 and 29.

In the quantum-jump approach, a system with nα Lindblad
operators in a state |ψ(t)〉 can over the infinitesimal time dt

evolve into nα + 1 states |ψ(t + dt)〉0 and |ψ(t + dt)〉α:

|ψ(t + dt)〉0 = 1√
p0

(1 − iHcodt)|ψ(t)〉, (4)

Hco = H + i
1

2

∑
α

�αL†
αLα, (5)

p0 = 〈ψ(t)||1 − iHcodt |2|ψ(t)〉, (6)

|ψ(t + dt)〉α = 1√
pα

√
�αdtLα|ψ(t)〉

= 1

|Lα|ψ(t)〉|Lα|ψ(t)〉, (7)

pα = 〈ψ(t)|�αL†
αLα|ψ(t)〉dt. (8)

The time evolution to state |ψ(t + dt)〉0 corresponds to the
part of the Lindblad equation which describes purely coherent
evolution. The state |ψ(t + dt)〉0 is determined by the complex
Hamiltonian Hco which combines the coherent time evolution
of the system Hamiltonian HS with the decoherence part of the
Lindblad equation (1) where the Lindblad operators only act on
the density matrix from one side {L†

αLα,ρ}. This combination
of Lindblad operators does not take a pure-state density matrix
out of the pure-state subset of the set of density matrices.

The time evolution to one of the states |ψ(t + dt)〉α is called
a quantum jump. In a single trajectory it corresponds to the
transition from one pure quantum state to another; however,
after averaging over many trajectories, these jumps lead to the
decay of the density matrix ρ from a pure quantum state to a
classical mixture of quantum states.

The probabilities p0 and pα of the state |ψ(t)〉 evolving into
|ψ(t + dt)〉0 or |ψ(t + dt)〉α are given by the normalization
factors in |ψ(t + dt)〉0 and |ψ(t + dt)〉α . The density matrix
at time t + dt after averaging is given by

ρ(t + dt) = p0ρ
0(t + dt) + pαρα(t + dt), (9)

where ρ0(t + dt) and ρα(t + dt) are the density matrices
corresponding to the states |ψ(t + dt)〉0 and |ψ(t + dt)〉α .
The probability weights p0 and pα exactly compensate the
normalization factors of the stochastic states and one obtains
the same time-evolved density matrix as from the Lindblad
equation (1).

Solving the nonlinear differential equations (4) to (8) and
creating a random number at each time step to decide whether
a quantum jump occurs is numerically expensive. A common
variation29 of the quantum-jump algorithm makes use of the
close connection between the normalization in Eq. (4) and the
probability p0. The probability that no quantum jump occurs
between t0 = 0 and time t follows the same exponential decay
as the quadratic state norm of the state |ψu.n.(t)〉 that evolves
according to Eq. (4) without the normalization:

P0(0,t) ∝ exp

[
ln(p0)

t

�t

]
, (10)

||ψu.n.(t)〉|2 ∝ exp

[
−2 ln

(
1√
p0

)
+ ln

(
t

�t

)]

= exp

[
ln(p0)

t

�t

]
. (11)

The time evolution in Eq. (4) is linearized so that the state
norm decays over time, once the norm decreases below the
value of a random number r1 ∈ (0,1) at t1 the time evolution is
stopped, |ψ(t1)〉 normalized, and it is decided with the help of
a second random number r2 ∈ (0,1) and the probabilities pα

which quantum jump occurs. All states are normalized after
the full time evolution has been calculated.

III. STOCHASTIC BLOCH-REDFIELD EQUATIONS

In solid-state physics it is often necessary to derive the mas-
ter equation of an open quantum system from the microscopic
properties of the environment and the coupling between the
environment and the system. In contrast to quantum optical
systems, the form of the decoherence part of the master
equation can not easily be guessed when the environment is
complicated1,2,30,31 and may strongly depend on time-varying
parameters of the system.32 The Bloch-Redfield equation4,5 is
a master equation for an open quantum system that directly
incorporates the properties of the microscopic model.

The Bloch-Redfield approach starts with a world Hamilto-
nian HW consisting of system (HS), bath (HB), and coupling
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(HSB) Hamiltonian

HW = HS + HB + HSB, (12)

HSB =
∑

i

giXizi . (13)

The coupling Hamiltonian is a linear combination of products
of system coupling operators zi operating on the open system
and bath coupling operators Xi with the coupling strengths
gi . Note that the coupling operators themselves need not be
Hermitian as long as the full coupling Hamiltonian is.

Assuming that the system-bath-coupling strength is a small
parameter compared to the other parameters of the system,
the von Neuman equation for the time evolution of the world
density matrix ρ̇W (t) = i[HW,ρW (t)] in the interaction picture
is expanded into an integrodifferential equation in second order
of the coupling Hamiltonian. Assuming that the world density
matrix is always a tensor product of a time-dependent system
density matrix and a constant bath density matrix ρW (t) =
ρS(t) ⊗ ρB , the environmental degrees of freedom are traced
out to obtain a equation of motion for the system density
matrix. A detailed derivation can be found in Ref. 33:

ρ̇S(t) = i[ρS(t),HS] −
∫ ∞

0
dτ

∑
ij

C̃ij (−τ )Zij (t,τ )

− C̃ji(τ )Z̄ij (t,τ ) (14)

with

Zij (t,τ ) = ρS(t)zie
iHSτ zj e

−iHSτ − ziρS(t)eiHSτ zj e
−iHSτ ,

Z̄ij (t,τ ) = eHSτ zj e
−iHSτ ρS(t)zi − eiHSτ zj e

−iHSτ ziρS(t),

and the bath operator correlation function

C̃ij (t,t ′) = C̃ij (t − t ′) = Tr[Xi(t − t ′)Xj (0)ρB]. (15)

In the time-integral form of the Bloch-Redfield equation (14),
the Markov approximation in the interaction picture was
used. In this approximation, it is assumed that the correlation
functions (15) decay on a much shorter time scale than the time
scale of relaxation T1 and dephasing T2 of the open quantum
system and the time scale of the coherent evolution due to the
coupling Hamiltonian HSB . From here on we also assume that
the correlation function C̃ij (τ ) is only nonzero if the ith and j th
coupling operators are Hermitian conjugates zi = z

†
j . This is

no limitation in practice as in most physical cases the coupling
operators are either observables and themselves Hermitian
operators or are of Jaynes-Cummings type (σ+a + σ−a†) for
which the assumption also holds.

Usually, the time-integral form of the Bloch-Redfield
equation is rewritten with the help of the spectral function
Cij (ω), the eigenenergy differences of the system ωβγ , and
the system coupling operators in the eigenbasis of the system
ξi = V †ziV , where V diagonalizes the system Hamiltonian
V †HSV = diag(E1,E2, . . .). The states |β〉, |γ 〉, |δ〉, and |η〉
always refer to eigenstates of the open quantum system HS :

Cij (ω) =
∫ ∞

−∞
C̃ij (τ )e−iωτ dτ, ωβγ = Eγ − Eβ,

(16)
ξ

βγ

i = 〈β|ξi |γ 〉.
Introducing an infinitesimal real element into the time-
dependent exponential of Eq. (14), the time integral can be

evaluated and the Bloch-Redfield equation takes the form
Eq. (17) where an imaginary contribution due to a Cauchy
principal value has been ignored since it only introduces a
slight Lamb-shift effect in the system:

ρ̇S(t) = i[ρS(t),HS] − 1

2

∑
i,j

∑
β,γ,δ,η

ξ
β,γ

j ξ
η,δ

i

×{Cij (−ωβγ )Dβγδη(t) − Cji(ωβγ )D̄βγ δη(t)},
Dβγ δη(t) = ρS(t)|η〉〈δ||β〉〈γ | − |η〉〈δ|ρS(t)|β〉〈γ |,
D̄βγ δη(t) = |β〉〈γ |ρS(t)|η〉〈δ| − |β〉〈γ ||η〉〈δ|ρS(t). (17)

The Bloch-Redfield equation can be simplified further by
applying the secular approximation. In the secular approx-
imation, combinations of transitions |β〉〈γ | and |η〉〈δ| in
the coupling operators ξi and ξj in Eq. (17) are suppressed
when the associated eigenenergy differences ωβγ and ωηδ do
not cancel each other. Mathematically, a Kronecker delta is
introduced in the sum over the eigenstates in Eq. (17):∑

β,γ,δ,η

→
∑

β,γ,δ,η

δ(ωβγ − ωδη). (18)

The physical justification for this approximation is the oc-
currence of an oscillating phase exp[i(ωβγ − ωδη)t] in the
Bloch-Redfield equation in the interaction picture. As long
as ωβγ − ωδη is large compared to the decoherence rates and
coherent frequencies in the interaction picture the contribution
of the corresponding terms in the Bloch-Redfield equation
averages to zero due to the fast oscillations of the terms.
This also means that the secular approximation should not be
applied to terms where ωβγ and ωδη only differ by a small
amount. However, for the moment we will understand by
secular approximation the strict version of Eq. (18).

We now proceed to discuss stochastic unravelings of master
equations in a structured environment such as described
by the Bloch-Redfield equation (17). On a general note,
we point out that stochastic unravelings on non-Markovian
master equations have already been introduced using either
a quantum state diffusion method34,35 or additional degrees
of freedom coupled to the system.36 As the Bloch-Redfield
equation with the structured environment given by the spectral
function Cij (ω) is just a special case of a non-Markovian
master equation, these unravelings are in principle able to
handle the microscopic details required in solid-state master
equations. However, since these methods are designed to
handle non-Markovian problems, they are computationally
much more expansive, requiring time integrals at each time
step or expanding the Hilbert space of the system. Therefore,
in this work we will focus on a systematic way to unravel
a specifically Markovian master equation of a structured
environment.

The general Bloch-Redfield equation can produce unphys-
ical density matrices under adverse circumstances and can not
be rewritten in Lindblad form.37 It is thus not generally possible
to unravel the Bloch-Redfield equation without further ap-
proximations (or additional computational complexity). Fun-
damentally, this is because the density matrices constructed
by averaging over many SSE state trajectories always have
the form of physical density matrices ρ = ∑

m
1
m

|ψm〉〈ψm|
as they are by construction a statistical mixture of pure-state
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density matrices |ψm〉〈ψm|. As the Lindblad equation is the
most general equation that produces density matrices of this
form, we rewrite the master equation in Lindblad form to find
a valid stochastic unraveling.

We now present two approximations which let us recast the
Bloch-Redfield equation in Lindblad form. First, we discuss
the stochastic unraveling in the secular approximation for
which it is well known33,38 that the Bloch-Redfield equation
can be rewritten in Lindblad form. Thereafter, we discuss the
piecewise flat spectral-function (PWFS) approximation which
also leads to a Lindblad form and is less strict than the secular
approximation. Furthermore, in the PWFS approximation the
number of Lindblad operators in the rewritten master equation
does not scale as O(N2) with the system size as in the
secular approximation which can be important in practical
numerical applications. It is important to note here that
although the resulting quantum jump equations derive from
a Lindblad form equation, the rates and jump operators are not
phenomenological parameters but are derived in a systematic
way from the microscopic properties of the model in the same
fashion as for the Bloch-Redfield master equation.

To apply the secular approximation in a systematic way,
we must more carefully define which states are considered
(quasi)degenerate and which are not. We define subsets M(ω)
of N × N matrices for each eigenenergy difference ω of the
open quantum system:

M(ω) = {M ∈ CN×N | ∀ β,γ ωβγ = ω ⇒ Mβγ = 0}
(19)

and the corresponding projectors into each subset P(ω). To
apply the secular approximation, we decompose each original
coupling operator ξi into mE coupling operators, where mE is
the number of unique eigenenergy differences ω of the system.
Each of the new coupling operators ξJ

k is an element of one of
the subsets M(ω). In the new decomposition, the correlation
functions can be rewritten as the rate matrix �̃kl that also
contains the Kronecker delta of the secular approximation

ξJ
k = ξJ

[mE (i−1)+n] = P(ωn)ξi, (20)

�̃kl = Ci(k,l)j (k,l)[−ω(k)]δ(ωβγ − ωδη). (21)

The secular approximation simply requires that �̃kl is only
nonzero for all combinations of coupling operators ξJ

k and ξJ
l

from conjugate subsets M[ω(k)] and M[ω(l)] = M[−ω(k)].
From this and the assumption that the correlation function Cij

is only nonzero for Hermitian conjugate operators ξi and ξj ,
it follows that for all nonzero �̃kl we have ξJ

k = (ξJ
l )†. Since

�̃kl can only be nonzero for one combination of k and l, we
can write �k = �̃kl and the Bloch-Redfield equation takes the
form

ρ̇S(t) = i[ρS(t),HS] + 1

2

∑
k

�k

[
2ξJ

k ρS(t)
(
ξJ
k

)†
− ρS(t)

(
ξJ
k

)†
ξJ
k − ξJ

k

(
ξJ
k

)†
ρS(t)

]
. (22)

The Bloch-Redfield equation has become a Lindblad equation
and we can apply the usual quantum-jump algorithm. The new
coupling operators ξJ

k are the jump operators of the quantum-
jump algorithm.

Here, we consider independent (uncorrelated) noise con-
tributions, but a brief comment on the more general case38

is warranted. In this case, the previous assumption that the
correlation function C̃ij (τ ) is only nonzero if zi = z

†
j must

be dropped. However, in the secular approximation, one then
finds that those new coupling operators which are projected
onto opposite frequencies ξJ

k = P(ω)ξi and ξJ
l = P(−ω)ξi

are Hermitian conjugates of each other ξJ
k = (ξJ

l )†. This can
be for two reasons: either the corresponding original coupling
operator is Hermitian ξi = ξ

†
i and therefore

[P(ω)ξi]
† =

∑
ωβγ =ω

(|β〉〈β|ξi |γ 〉〈γ |)†

=
∑

ωβγ =ω

|γ 〉〈γ |ξi |β〉〈β| = P(−ω)ξi

or, as in the case of Jaynes-Cummings–type coupling opera-
tors, the two coupling operators which are already Hermitian
conjugates are each entirely projected into subsets of opposite
frequency. With spatially correlated decoherence, Eq. (22) then
sums over two indices:

ρ̇S(t) = i[ρS(t),HS] + 1

2

∑
k,l

�̃kl

[
2ξJ

k ρS(t)
(
ξJ
l

)†
− ρS(t)

(
ξJ
l

)†
ξJ
k − ξJ

k

(
ξJ
l

)†
ρS(t)

]
. (23)

This can be brought back into the form of Eq. (22) by diago-
nalization of the coefficient matrix u†�̃klu = diag(�1,�2, . . .)
with the unitary matrix u. Equation (22) is then recovered by
replacing the coupling operators ξJ

k → ξ̃ J
k = ∑

l ulkξ
J
l (see

Ref. 38). With this extra step, any form of spatially correlated
decoherence can be evaluated as a stochastic B-R equation.
However, the numerical effort of the diagonalization of �̃kl

depends on the degree of spatial correlation and on mE . In
many systems, the eigenenergy differences can be grouped
such that mE = 3, leading to a maximal numerical scaling of
O(N2), however, the worst case would be mE = N2, leading
to O(N4).

Having rewritten the Bloch-Redfield equation in the form
(22), it would also be possible to use a quantum state diffusion
unraveling28 to obtain a stochastic Schrödinger equation.
However, this unraveling leads to a nonlinear differential
equation with a stochastic component in each time step which
is computationally more expensive than a quantum-jump
unraveling and in most cases the results are equivalent.

The key advantage of a stochastic Bloch-Redfield approach
lies in the following: One need only start with the form
of the system-environment coupling operator and the bath
noise correlation function and then systematically derive all
jump operators and their associated rates. This procedure is
unchanged for arbitrary numbers of components within the
system and is especially suited to solid-state systems with
many states over an extended region of space.

So far, the stochastic unraveling of the Bloch-Redfield
equation relied on the strict secular approximation, which
is problematic when a system has two or more eigenenergy
differences ωβγ and ωδη which are not equal but whose
frequency difference �βγδη = ωβγ − ωδη corresponds to an
oscillation on time scales equal to or larger than the time
scale of the time evolution of the system in the interaction
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picture. These cases are especially likely to occur in systems
with a large Hilbert space for which the stochastic unraveling
is designed where diagonalization can lead to a comparably
dense but not degenerate spectrum. An example is a tight-
binding chain with a thousand sites compared to a model with
only five sites. In both cases, the energy band has the same
width, but in the first case the band contains a much larger
number of eigenenergies.

It is not (always) necessary to use the full strict secular
approximation to rewrite the Bloch-Redfield equation in Lind-
blad form. For the derivation of the Bloch-Redfield equation
to be valid, the correlation function C̃ij (τ ) needs to decay fast
on the time scale of time evolution of the density matrix in
the interaction picture. It follows that the Fourier transformed
spectral function needs to be smooth on the frequency scales
of the coherent time evolution in the interaction picture and
the maximal relaxation �1 and dephasing �2 rates of the
open quantum system. To keep this approximation consistent
with our earlier discussion on the secular approximation, we
must quantify the concept of “smoothness.” Consequently, we
assume we can find a piecewise flat approximation of the
spectral function

Cij (ω) ≈ C
pwf
ij (ω) =

∑
n

Cn
ijBn(ω), (24)

Bn(ω) =
∑

i

�(ω − ω<
n,i)�(ω>

n,i − ω), (25)

so that the width of each bin ω>
n,i − ω<

n,i is larger than �1,
�2 and the frequencies of the coherent time evolution in the
interaction picture. The function Bn(ω) defines the family of
all bins corresponding to the value Cn

ij in the approximated
spectral function. An example of this approximation is shown
in Fig. 2.

We now apply what we call the piecewise flat spectral
function (PWFS) approximation and neglect all combinations
of transitions |β〉〈γ | and |η〉〈δ| in the Bloch-Redfield equation
whose transition frequency and negative transition frequency
ωβγ and −ωδη belong to different bins in Eq. (24). For all
transitions from bins that are not next neighbors and the vast
majority of transitions from neighboring bins, this is justified
as ωβγ − ωδη is large and the secular approximation is valid.
The only problematic case arises when ωβγ and −ωδη are
both close to a bin boundary ω<

n,i . We assume that it is either
possible to choose the bin boundaries in such a way that there
are no transition frequencies close to the boundary on at least
one side of the boundary or that, in the case where this is
not possible and the distribution of transition frequencies is
dense, the fraction of pairs for which the PWFS approximation
is not justified is so small compared to the number of all
transitions that the error introduced in the time evolution by
this approximation is negligible. In practice, this assumption
holds for most systems.

We can now use the same type of decomposition of the
coupling operators as we did in the secular approximation,
however, the subsets of the matrix space are now defined by
the rates � corresponding to the amplitude of the piecewise
flat spectral function in one family of bins Bn(ω):

M(�) = {
M ∈ CN×N

∣∣ C
pwf
ij (ωβγ ) = � ⇒ Mβγ = 0

}
.

(26)

We define the projector P(�) and the jump operators ξk in the
same way as before and obtain the Lindblad equation (22).

IV. LINK TO KINETIC MONTE CARLO

In this section, we show that in the limit of quantum jumps
being limited to transitions between eigenstates, stochastic
Bloch-Redfield reduces to the well-known kinetic Monte
Carlo method. The kinetic Monte Carlo (KMC) algorithm
has for a long time been used very successfully in solid-state
physics39,40 and other branches of physics and chemistry41,42

to simulate systems whose time evolution is determined by
incoherent tunneling processes between metastable states. The
KMC method can not deal with the coherent time evolution of
the system as it deals only with incoherent transitions between
a given set of basis states.

The kinetic Monte Carlo algorithm simulates a system of N

states by selecting the state of the system at time t + �t and
the transition time �t from a probability distribution based
on the transition rates from the state at time t to all other states
of the system. Let �s be the vector of the sums over the tunneling
rates from state j to states l:

sk =
k∑

l=1

�jl. (27)

The next state k is chosen with the random number r1 ∈ (0,1)
so that

sk � sNr1 < sk+1. (28)

The probability to tunnel into state k is proportional to the
tunneling rate �jk . The probability of the system leaving state
j by tunneling into any other state after the escape time �t is
given by

pesc(�t) = sNe−sN �t . (29)

Instead of drawing �t from an exponential distribution, the
time that is attributed to the tunneling process can be chosen
with the evenly distributed random number r2 ∈ (0,1), such
that

�t = −sN ln(r2). (30)

Comparing Eqs. (29) and (10) we see that the kinetic Monte
Carlo algorithm and the quantum-jump algorithm differ only
in two points. In the KMC algorithm, the order of the choice
of jump state and jump time is inverted, which is purely a
question of convention. Second, in the KMC algorithm the
jump time can be calculated with the tunneling rates which are
known immediately after the previous tunneling process and
are constant for �t . Contrary to the quantum-jump algorithm,
the time evolution between tunneling processes does not have
to be computed in the KMC method.

To show the equivalence, we start with the strict secular
approximation and we now only consider systems where the
jump operators ξJ

k from Eq. (20) correspond to exactly one
transition between eigenstates:

ξJ
k ∝ |β〉〈γ |. (31)

This is, for example, the case if the system has no degenerate
transition frequencies and from ωβγ = ωηδ follows |β〉 = |η〉
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and |γ 〉 = |δ〉. It is guaranteed that the system after each
quantum jump at time ti is in an eigenstate |βi〉 with the
complex phase φi . The time dependence of the state between
two quantum jumps is then given by

∀ t ∈ [ti ,ti+1] |ψ(t)〉 = eiφi e−Eβi
(t−ti )|βi〉. (32)

The differential equation for the unnormalized system state
|ψu.n.(t)〉 is easily solved analytically and one obtains an
analytic expression for the time of the next quantum jump
ti+1 as a function of the random number ri ∈ (0,1) and the
complex phase φi+1 at ti+1:

d

dt
|ψu.n.(t)〉 = −iEβi

− 1

2

∑
k

�k

(
ξJ
k

)†
ξJ
k |ψu.n.(t)〉, (33)

‖|ψu.n.(t)〉‖2 = exp

(
−

∑
k

�k〈βi |
(
ξJ
k

)†
ξJ
k |βi〉(t − ti)

)
,

(34)

ti+1 = ti + ln

(
1

ri

)(∑
k

�k〈βi |
(
ξJ
k

)†
ξJ
k |βi〉

)−1

, (35)

φi+1 = φi − Eβi
(ti+1 − ti). (36)

It is no longer necessary to solve a complicated differential
equation of complexity O(N2) to obtain the time evolu-
tion between quantum jumps. The quantum-jump algorithm
simplifies to a KMC algorithm where we simply have to
additionally keep track of the phase φi and the energy
Eβi

between KMC steps. A similar approach that relies on
finding a time-dependent basis that diagonalizes the density
matrix at all points in time has been discussed by Teich and
Mahler.7

It is important to note here that this does not mean one
can easily turn every KMC simulation into a stochastic Bloch-
Redfield simulation and obtain information about the coherent
time evolution of the system without additional numerical
cost. The stochastic Bloch-Redfield method always requires
the diagonalization of the system Hamiltonian HS to obtain
the transition frequencies ωβγ and the coupling operators ξj .
This places an upper bound on the system size N although
it is much larger than the upper bound for the direct solution
of the density-matrix master equation. In a KMC simulation
this is not necessary as long as the original basis is a good
approximation of the eigenbasis, in fact, it it not even necessary
to keep track of all basis states, at any one point in time one
only needs the current state and all states connected to this
state by nonzero tunneling rates. It is, for example, possible to
simulate quasiparticle transport through a 50-site array with
KMC.43,44 A system with a Hilbert space size of 250 is far
beyond the scope of the stochastic Bloch-Redfield method.

V. NUMERICAL EXAMPLE: THE SSET

The superconducting single electron transistor (SSET)
is a mesoscopic superconducting device consisting of
two superconducting leads connected to a superconducting
island with two Josephson junctions with capacitances CJ and
Josephson energy Ej . The superconducting island is connected
to a ground capacitance Cg which is connected to the ground

by the voltage source Vg . The left and right leads are biased at
voltage V1 and V2, respectively.

The SSET has been studied extensively in the last 25
years.26,27,45,46 The fact that their behavior is well known, that
they are a solid-state system with a structured bath, and that
they can have arbitrary large Hilbert spaces when all tunneled
charge states are treated coherently makes them an ideal test
object for the stochastic Bloch-Redfield method.

The state of an SSET can be given by the number of
charges on the superconducting island N and the number
of elementary charges that have tunneled through the right
Josephson junction N̄ . We limit the Hilbert space to the states
with only one Cooper pair, anti-Cooper pair, quasiparticle, or
antiquasiparticle on the island N = −2 . . . 2. The size of the
Hilbert space is 5mN̄ where mN̄ is the number of tunneled
charge states considered. In terms of N and N̄ , the system
Hamiltonian consisting of the island charging Hc, the voltage
HV , and the tunneling Ht Hamiltonian is given by

HS = Hc + HV + Ht, (37)

Hc = 1

2C
(eN̂ − ng)2, (38)

HV = V2e
ˆ̄N − V1(e ˆ̄N − eN̂ ), (39)

Ht =
∑
N,N̄

(EJ |N + 2〉〈N ||N̄ − 2〉〈N̄ |

+EJ |N + 2〉〈N | + H.c.), (40)

ng = CgVg + CJ (V2 − V1), (41)

C = 2CJ + Cg, (42)

where ng is the offset charge on the island and C is the total
capacitance of the superconducting dot.

A. Josephson quasiparticle cycle

For the first set of simulations we consider transport through
the SSET in the Josephson quasiparticle (JQP) cycle.26,27 The
voltage on the left lead is set to zero V1 = 0 and Vg is chosen so
that the offset charge is ng = 1 and of all states with the same
number of tunneled charges N̄ the state with one quasiparticle
on the island |N = 1,N̄〉 has the lowest energy. The right lead
is biased with the voltage V2 = Ec + 2� where Ec = e2

2C
is

the charging energy of the island and � is the superconducting
gap.

Transport in the JQP cycle is a two-stage process. The states
|N = 0,N̄〉 and |N = 2,N̄〉 are degenerate and the tunneling
Hamiltonian Ht causes coherent oscillations of Cooper pairs
across the left lead. Coherent tunneling across the right lead
is largely suppressed because of the large energy difference
between states |N = 0,N̄〉 and |N = 2,N̄ ± 2〉. From state
|N = 2,N̄〉, the system relaxes to state |N = 0,N̄ = 2〉 via
two quasiparticle tunneling processes and the JQP cycle can
start again.

In this system, the environmental bath is given by the
equilibrium quasiparticles in the leads and on the island that
do no contribute to the charging Hamiltonian HC of the
SSET. The pairs of system coupling operators (zi,zj ) with
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nonzero correlation functions are given by (|N,N̄〉〈N − 1,

N̄ + 1|,|N,N̄〉〈N + 1,N̄ − 1|) for tunneling over the right
lead and (|N,N̄〉〈N − 1,N̄ |,|N,N̄〉〈N + 1,N̄ |) for tunneling
over the left lead. The corresponding spectral functions are
given by27

C(ω) = 1

e2Rt

∫ ∞

−∞
dε

∫ ∞

−∞
dε′N (ε)N (ε′)f (ε)[1 − f (ε′)]

× δ(ε − ε′ − ω), (43)

where Rt is the Josephson junction tunneling resistance, N is
the density of states of the quasiparticles, and f (ε) is the Fermi
distribution. Equation (43) can be calculated numerically, but
here we are more interested in the general comparison of the
stochastic Bloch-Redfield method with the master-equation
solution than in the finer details of SSET physics. We therefore
take the low-temperature limit and approximate the correlation
function

C(ω) = 1

e2Rt

�(ω − 2�)ω. (44)

The superconducting gap � in the density of states of
the quasiparticles manifests itself in the Heaviside function
that suppresses quasitunneling unless the energy difference
between the involved states allows for the breakup of one
Cooper pair into two quasiparticles. Due to this suppression,
no incoherent quasiparticle tunneling processes occur over
the left lead as the energies do not allow the creation of two
quasiparticles. Instead of the inverse tunneling resistance, from
now on we use the parameter � = 2�

e2Rt
to characterize the

strength of the quasiparticle tunneling.
To compare the stochastic Bloch-Redfield method with

the standard Bloch-Redfield master equation, we simulated
a system with N̄ = 0 . . . 10 and 55 basis states with the
Bloch-Redfield equation and a standard ordinary differential
equation (ODE) solver. We compare this to the stochastic
Bloch-Redfield algorithm in the secular approximation and
in the PWFS approximation. In terms of the Josephson
energy, parameters were chosen as Ec = 2.5Ej , � = 0.2Ej ,
and � = 20Ej . Both stochastic Bloch-Redfield algorithms
were averaged over 8000 trajectories. In Fig. 1 we show
that the expectation value of N̄ changes in discrete jumps,
corresponding to the quantum jumps, in a single trajectory.
One can also see how the time dependence of the expectation
value converges to the correct result over several iterations.

In the JQPC simulations, the secular approximation and the
PWFS approximation lead to the same set of jump operators.
The linear dependence of spectral function (44) leads to very
small bin sizes in Eq. (24) so that each bin corresponds to
only one transition frequency and both approximations are
equivalent (see also Fig. 2). As a consequence, the trajectories
in Fig. 3(a) corresponding to the two approximations are
exactly equal as long as the same seed for the random number
generator is used for both trajectories. In both trajectories, a
quantum jump always projects the system into an eigenstate
and no coherent oscillations appear between quantum jumps.
After averaging, the trajectories of the occupation states of
the SSET island from Fig. 3(a) lead to coherent oscillation
of the population in the |N〉 states of the SSET that are
damped by the interaction with the environment [compare

0 2 4 6 8 10
0

1

2

3

4

5

Γt

N̄

1 iteration

2 iterartions

5 iterations

10 iterations

8000 iterations

master-equation

+−V1

EJ ,CJ

+−Vg

Cg

+−V2

FIG. 1. (Color online) A plot of the convergence of the expecta-
tion value of the time evolution of the tunneled charges 〈N̄〉 in the
JQP cycle when averaged over an increasing number of iterations of
the stochastic Bloch-Redfield algorithm in the PWFS approximation.
After 8000 iterations, the result is almost indistinguishable from the
solution of the master equation (dashed blue line). The expectation
value 〈N̄〉, which corresponds to the transported charge, increases lin-
early over time. Inset: Circuit diagram of the SSET with capacitance
to the ground Cg , the bias voltages V1,V2, the voltage to the ground
Vg , and the Josephson junctions with the Josephson energy EJ and
the capacitance CJ .

Fig. 3(b)]. In contrast to Fig. 1 which only shows the increase
in the number of tunneled charges due to dissipative transport,
Fig. 3 demonstrates how quantum mechanical oscillations

0 500 1000
0

5

10

ω

C
(ω

)

FIG. 2. (Color online) The piecewise flat spectral function
approximation: The spectral function C(ω) (blue) is approximated
by the piecewise-flat function Cpwf(ω) (red) defined by the values of
C(ω) at the transition frequencies ωβγ of the system (black lines). The
transition frequencies in the JQPC example are spaced so far apart
that each transition frequency corresponds to another bin in Cpwf(ω).
In the intervals between the transition frequencies, Cpwf(ω) can take
very different values from C(ω), however, this is not important as
the value of the spectral function at these energies does not enter the
Bloch-Redfield equation.
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FIG. 3. (Color online) (a) The population in the states N = 0 and
N = 1 of the SSET for several single trajectories of the stochastic
Bloch-Redfield algorithm. The population is plotted with an offset for
each trajectory. For the chosen parameter of the JQP cycle, the PWFS
(solid lines) and the secular approximation (circles) are equivalent
as explained in Fig. 2. The PWFS approximation and the secular
trajectories were initialized with the same seed for the random number
generator. As the system was not initialized in an eigenstate, the
quantum-jump trajectories show coherent oscillations of the system
state before the system is projected into an eigenstate by the first
quantum jump. (b) The time evolution of the population of the charge
states of the SSET island N = −2 to 2 in the JQP cycle over a short
time obtained by averaging over 8000 of the trajectories seen in (a)
(circles). The master equation gives the same result (solid line) as
the stochastic Bloch-Redfield algorithm in the PFS approximation.
Population oscillates coherently between states |N = 0〉 and |N = 2〉.
The amplitude of the oscillation decays as dephasing destroys the co-
herent quantum oscillations. Population relaxes from states |N = 0〉
and |N = 2〉 to state |N = 1〉 via dissipative quasiparticle tunneling.

evolve from averaging over many quantum-jump trajectories.
Those trajectories themselves show no further oscillations
after the first quantum jump which projects the system into
an eigenstate.
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Gaussian

QJ
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25

50

Γt

N̄

N
ΔN

FIG. 4. (Color online) The distribution of the population at
�t = 50, 75, and 100 of the |N̄〉 states. The distribution has a peak that
moves to larger N̄ and broadens over time as charge is transported.
The form of the peak can be fitted to the sum of two Gaussians with the
same width and peak position but different amplitudes for odd (dots
and solid line) and even (triangles and dashed line) N̄ states. Although
we consider a slightly different quantity, this shows a similarity to
the behavior of the probability distribution of N charges tunneling
over a time interval τ in an SSET that has completely equilibrated
predicted by Choi et al. (Ref. 46). Inset: Plot of the expectation
value 〈N̄〉 (blue/light) and the standard deviation �N̄ (red/dark) for a
large system (N̄max = 100) and long simulation time �tmax = 100
not accessible with numerical solution to the full density-matrix
master equation. Results of the stochastic Bloch-Redfield algorithm
in the secular (squares) and PFS (circles) approximation after 8000
iterations are shown. The expectation value 〈N̄〉 and �N̄ increase
linearly for the whole simulation as expected (Ref. 46).

To demonstrate the power of the stochastic Bloch-Redfield
methods we also used them to simulate a much larger system of
505 basis states (N̄ = 0 . . . 100) over a time period five times
as long as in the previous simulations (see Figs. 4 and 5).
This system size is beyond the scope of standard numerical

Γt
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o
n

FIG. 5. (Color online) Three-dimensional representation of the
spreading of the population (height) over the |N̄〉 states (x axis) and
time (y axis) in the stochastic Bloch-Redfield JQPC simulation of the
large system. States with population <0.01 have been truncated for
clarity. Starting in a single peak at �t = 0 the population spreads out
over several |N̄〉 states over time while the center of the distribution
moves to higher N̄ .

174514-8



STOCHASTIC BLOCH-REDFIELD THEORY: QUANTUM . . . PHYSICAL REVIEW B 88, 174514 (2013)

master-equation solutions. The inset of Fig. 4 shows how
charge is transported through the SSET as the expectation
value 〈N̄〉 increases and how the population is distributed over
more N̄ states over time. One advantage of the large system
size and simulation times is that it is possible to see how the
distribution of N̄ states approaches a double Gaussian shape
for odd and even N̄ states and how the standard deviation of
the Gaussians increases linearly with time as shown in Fig. 4.
A similar structure has been analytically obtained by Choi
et al.46 for the number of charges tunneling through an SSET
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FIG. 6. (Color online) The stochastic trajectories of the ICPT
system in the PWFS (b) and the secular (a) approximations. The
trajectories were initialized with different random number seeds. The
time evolution in the secular approximation is limited to quantum
jump between eigenstates, whereas in the PWFS approximation
the system shows strong coherent time evolution between quantum
jumps. After averaging over several thousand trajectories we obtain
the same time evolution for the density matrix as for the standard
master equation from both approximations. Both approximations are
valid as the stricter secular approximation holds for the system we
consider.

over time τ in the limit of an SSET that has been equilibrated
for an infinite time.

B. Incoherent Cooper-pair tunneling

A major advantage of the Bloch-Redfield equation is that
it can correctly describe the relaxation processes caused by
purely longitudinal environmental noise via the diagonaliza-
tion of the coupling operators zi . When using the Lindblad
equation or the KMC algorithm, calculating the correct
relaxation rates usually requires a polaron transformation and
the use of P (E) theory.47

To demonstrate that we retain this feature in the stochastic
Bloch-Redfield methods, we consider the incoherent Cooper-
pair tunneling (ICPT) in the SSET. For simplicity, we set all
incoherent quasiparticle tunneling rates to zero. We couple to
the environmental noise with only one longitudinal coupling
operator zi = N and use a flat spectral function for ω > 0 with
the values for ω < 0 given by detailed balance

C(ω) =
{

�2, ω � 0

�2e
−βω, ω < 0

(45)

β = 1

kBT
. (46)

Due to the coherent Cooper-pair tunneling terms in the system
Hamiltonian, this longitudinal coupling leads to incoherent
dissipative Cooper-pair tunneling which drives charge trans-
port through the SSET. We chose the parameters � = 20Ej ,
ng = 1, Ec = 2.5Ej , β = 100, V1 = 0, V2 = 12.5Ej , and
�2 = 0.2Ej .

In the secular approximation, each quantum-jump projects
the system into an eigenstate as in the JQPC simulation.
Here, however, the PWFS approximation is not equivalent
to the secular approximation as the spectral function is already
flat and Cpwf(ω) consists of only one bin for ω > 0. In
the PWFS approximation, the system state shows coherent
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FIG. 7. (Color online) The three-dimensional representation of
the population for a long simulation �tmax = 500 of a large ICPT
system N̄max = 100. The main difference between the ICPT case and
the JQPC case Fig. 5 is that incoherent Cooper-pair tunneling only
connects states which differ by N̄ = 2 and therefore only odd |N̄〉
states are occupied in this case.
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oscillations between two quantum jumps in one stochastic
trajectory, as shown in Fig. 6. Averaged over several thousand
trajectories one still obtains the same time evolution of the
density matrix from the stochastic Bloch-Redfield algorithm
with both approximations and the master equation. The secular
approximation holds in the considered system.

Again, we also show the results of a large system simulation
(N̄ = 0 . . . 100) in Fig. 7. As in the JQPC case, the population
spreads out over the N̄ states over time, however, only odd
N̄ states are occupied. Incoherent Cooper-pair tunneling can
only change N and N̄ by two electron charges and the initial
state is chosen to be |N = 0,N̄ = 1〉.

VI. CONCLUSION

The Bloch-Redfield master equation is widely used in
solid-state physics to model decoherence. In this work, we
have discussed two approximations in which it is possible
to unravel the Bloch-Redfield equation into a stochastic
Schrödinger equation, the well-known secular approximation,
and the piecewise flat spectral function approximation. This
unraveling combines the connection to the microscopic models

of the environment of the Bloch-Redfield equation with the
numerical efficiency of the quantum-jump unraveling of the
Lindblad equation. In the secular approximation, the stochastic
Bloch-Redfield method can be transformed into a kinetic
Monte Carlo simulation when the coupling operators to the
bath are given by (or can be approximated by) single transitions
between eigenstates of the open quantum system.

We have shown with the example of an SSET that
the numerical solutions of the Bloch-Redfield equation and
the results of the stochastic Bloch-Redfield method in the
secular and piecewise flat spectral-function approximation
agree with high accuracy. We also demonstrated the simulation
of large systems with our method (over 500 basis states) that
are not acessible to numerical solutions of standard master
equations.
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11L. Diósi, Phys. Lett. A 112, 288 (1985).
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35L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 58, 1699

(1998).
36A. Imamoglu, Phys. Rev. A 50, 3650 (1994).
37R. S. Whitney, J. Phys. A: Math. Theor. 41, 175304 (2008).
38J. Jeske and J. H. Cole, Phys. Rev. A 87, 052138 (2013).
39N. Bakhvalov, G. Kazacha, K. K. Likharev, and S. I. Serdyukova,

JETP 68, 581 (1989).
40C. Wasshuber, Computational Single-Electronics, Computational

Microelectronics (Springer, Berlin, 2001), p. 278.
41A. Voter, Radiat. Effects Solids 235, 1 (2007).
42K. Reuter, in Modeling and Simulation of Heterogeneous Cat-

alytic Reactions: From the Molecular Process to the Technical
System, edited by O. Deutschmann (Wiley-VCH, Weinheim, 2011),
pp. 71–111.

174514-10

http://dx.doi.org/10.1016/j.chemphys.2003.09.025
http://dx.doi.org/10.1016/j.chemphys.2003.09.025
http://dx.doi.org/10.1103/PhysRevLett.94.127002
http://dx.doi.org/10.1103/PhysRevLett.94.127002
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1103/PhysRev.105.1206
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevA.45.3300
http://dx.doi.org/10.1103/PhysRevA.47.1652
http://dx.doi.org/10.1119/1.1475328
http://dx.doi.org/10.1088/1464-4266/7/10/008
http://dx.doi.org/10.1088/1464-4266/7/10/008
http://dx.doi.org/10.1016/0375-9601(85)90342-1
http://dx.doi.org/10.1016/0375-9601(86)90692-4
http://dx.doi.org/10.1103/PhysRevA.66.012108
http://dx.doi.org/10.1103/PhysRevA.68.062104
http://dx.doi.org/10.1103/PhysRevA.69.052104
http://dx.doi.org/10.1103/PhysRevA.69.052104
http://dx.doi.org/10.1103/PhysRevA.47.642
http://dx.doi.org/10.1103/PhysRevB.60.5737
http://dx.doi.org/10.1103/PhysRevB.63.125326
http://dx.doi.org/10.1103/PhysRevB.63.125326
http://dx.doi.org/10.1103/PhysRevB.63.115403
http://dx.doi.org/10.1103/PhysRevB.64.193407
http://dx.doi.org/10.1088/0953-8984/15/46/020
http://dx.doi.org/10.1088/0953-8984/15/46/020
http://dx.doi.org/10.1103/PhysRevB.67.235408
http://dx.doi.org/10.1103/PhysRevB.71.165317
http://dx.doi.org/10.1103/PhysRevB.74.045328
http://dx.doi.org/10.1103/PhysRevB.74.045328
http://dx.doi.org/10.1103/PhysRevB.77.125304
http://dx.doi.org/10.1103/PhysRevB.77.125304
http://dx.doi.org/10.1007/BF01307644
http://dx.doi.org/10.1007/BF01307644
http://dx.doi.org/10.1016/0921-4526(94)90078-7
http://dx.doi.org/10.1016/0921-4526(94)90078-7
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1103/PhysRevLett.88.228304
http://dx.doi.org/10.1016/j.physe.2007.05.002
http://dx.doi.org/10.1103/PhysRevB.85.174515
http://dx.doi.org/10.1103/PhysRevB.85.174515
http://dx.doi.org/10.1016/S0375-9601(97)00717-2
http://dx.doi.org/10.1103/PhysRevA.58.1699
http://dx.doi.org/10.1103/PhysRevA.58.1699
http://dx.doi.org/10.1103/PhysRevA.50.3650
http://dx.doi.org/10.1088/1751-8113/41/17/175304
http://dx.doi.org/10.1103/PhysRevA.87.052138
http://dx.doi.org/10.1007/978-1-4020-5295-8


STOCHASTIC BLOCH-REDFIELD THEORY: QUANTUM . . . PHYSICAL REVIEW B 88, 174514 (2013)

43J. Bylander, T. Duty, and P. Delsing, Nature (London) 434, 361
(2005).

44J. Bylander, T. Duty, and P. Delsing, AIP Conf. Proc. 850, 1442
(2006).

45Y. Nakamura, A. N. Korotkov, C. D. Chen, and J. S. Tsai, Phys.
Rev. B 56, 5116 (1997).

46M.-S. Choi, F. Plastina, and R. Fazio, Phys. Rev. B 67, 045105
(2003).

47G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling:
Coulomb Blockade Phenomena in Nanostructures, NATO Science
Series: B, edited by H. Grabert and M. H. Devoret, 1st ed. (Plenum,
New York, 1992), Chap. 2, pp. 21–107, Vol. 294.

174514-11

http://dx.doi.org/10.1038/nature03375
http://dx.doi.org/10.1038/nature03375
http://dx.doi.org/10.1063/1.2355244
http://dx.doi.org/10.1063/1.2355244
http://dx.doi.org/10.1103/PhysRevB.56.5116
http://dx.doi.org/10.1103/PhysRevB.56.5116
http://dx.doi.org/10.1103/PhysRevB.67.045105
http://dx.doi.org/10.1103/PhysRevB.67.045105



