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Josephson surface plasmons in spatially confined cuprate superconductors
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In this work, we generalize the theory of localized surface plasmons to the case of high-7, cuprate
superconductors, spatially confined in the form of small spherical particles. At variance from ordinary metals,
cuprate superconductors are characterized by a low-energy bulk excitation known as the Josephson plasma wave
(JPW), arising from interlayer tunneling of the condensate along the ¢ axis. The effect of the JPW is revealed in
a characteristic spectrum of surface excitations, which we call Josephson surface plasmons. Our results, which
apply to any material with a strongly anisotropic electromagnetic response, are worked out in detail for the case
of multilayered superconductors supporting both low-frequency (acoustic) and transverse-optical JPW. Spatial
confinement of the Josephson plasma waves may represent a new degree of freedom to engineer their frequencies
and to explore the link between interlayer tunneling and high-7, superconductivity.

DOI: 10.1103/PhysRevB.88.174513

I. INTRODUCTION

The concept of spatial confinement in low-dimensional
systems has led to a number of new ideas and achievements
in several areas of nanophysics, including semiconductors,
photonics, and plasmonics. In particular, confined surface
plasmons are widely exploited in the context of metal-
lic nanoparticles.'™ In this work, we generalize the same
concept to the field of high-T, cuprate superconductors.
These compounds are strongly anisotropic systems whose
layered structure is composed of conductive CuO, planes
stacked along the ¢ axis and separated by insulating block
layers. As a consequence of their strong anisotropy, cuprate
superconductors support two kinds of plasma excitations: the
Josephson plasma wave (JPW), arising from interplane Joseph-
son tunneling of the superfluid density,>® and quasi-two-
dimensional (acoustic) plasmons®!® that result from plasma
oscillations along the planes, with noncondensed electrons
being responsible for dissipation. The Josephson plasma wave
propagates at the Josephson plasma frequency wy, which
depends on the properties of the Josephson junction formed
between two consecutive CuO, planes through the interplane
distance and the critical current, thus providing a good estimate
of the strength of interplane Josephson coupling.

In addition to bulk excitations, the study of surface
Josephson plasma waves propagating on planar dielectric-
superconductor interfaces'' or in superconductor slabs'>!3
has been carried out. Surface modes in planar geometry
cannot be directly excited by light but can be probed with the
attenuated-total-reflection method.'* On the other hand, small
particles made of cuprate superconductors present optical
resonances whose frequencies can be related to the Josephson
frequency. They are used to probe the Josephson coupling
strength by an experimental technique called the sphere
resonance method,">'® which is commonly analyzed in the
dipole approximation and in the framework of a simple Drude
model. Here, a more complete theoretical framework for the
interpretation of such experiments is presented.

The mechanisms determining the critical temperature 7,
of cuprate superconductors are not well established, yet T,
is known to depend on the doping level and on apical-
oxygen distance from the CuO, plane,!” and in multilayered
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superconductors (MLSCs) it increases with the number n of
CuO, layers in a unit cell up to at least n = 3.'%!819 Studying
the Josephson plasma wave may contribute to clarifying
the mechanism of high-7, superconductivity, as it has been
proposed that Josephson tunneling may be responsible for a
lowering of the kinetic energy, i.e., an increase of the supercon-
ducting condensation energy,”*? which is proportional to w?.
This is especially likely to occur in multilayered superconduc-
tors, where inter- and intra-multilayer couplings give rise to
both low-frequency (acoustic) and optical JPWs.?*~2® The fre-
quency of the latter is in the mid-infrared range, it is of the same
order as the superconducting gap, and it correlates to the
critical temperature.'® Moreover, the JPW has recently become
of great interest for light-induced superconductivity?’ and
for nonlinear propagation of mixed plasma-electromagnetic
waves in the form of Josephson plasma solitons.?

In this work, we consider a small particle made of a mul-
tilayered superconductor, which is modeled as a macroscopic
medium with an anisotropic dielectric tensor: as a benchmark
example leading to a simple solution, we take the particle
to have a spherical shape. In the quasistatic limit, we derive
a general analytic formula which provides the eigenmodes
corresponding to Josephson surface plasmons (JSPs), fully
confined at the particle, in the whole frequency range and for
any multipolar symmetry. They represent the generalization of
the well-known surface plasmons of a metallic nanoparticle,
but with a far more complex spectrum due to the presence
of longitudinal and transverse JPWs, quasi-two-dimensional
(quasi-2D) plasmons, and mutual couplings among them.
All these effects are also relevant for the interpretation of
experiments with the sphere resonance method.

The paper is organized as follows. In Sec. II we summarize
the properties of bulk electromagnetic modes of cuprate
superconductors. In Sec. III we treat surface modes that
originate at dielectric-superconductor interfaces, first for the
planar case and then for the fully confined geometry of a
small spherical particle. Calculations are carried out for a
n = 2 multilayered superconductor. We also evaluate optical
extinction and electron energy-loss spectra, the latter being a
probe of surface plasmons of any multipolar symmetry. Finally,
in Sec. IV we discuss our results in view of experiments on
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actual samples with more realistic shapes, and we formulate
some concluding remarks. Details on the calculations for bulk
electromagnetic modes and localized surface plasmons in the
spherical geometry are contained in Appendixes A and B,
respectively.

II. BULK MODES

As a starting point, we discuss the electromagnetic modes
of bulk cuprate superconductors. The characteristic frequency
of the acoustic Josephson plasma wave is generally in the ter-
ahertz range'>?*3? (however, for Bi,Sr,CaCu, Oy, , it is in the
gigahertz range'), whereas the characteristic frequency of the
optical JPW varies with different multilayered superconduc-
tors, ranging from 30 em~! (in SmLag gSrp,CuO4_,?) up to
400-500 cm~! in YBa,Cu307_, and Bi;Sr,CaCu,0g, 3330
In-plane quasi-2D plasmons are characterized by frequencies
of the order of eV.3”-*® The wavelengths corresponding to all
these excitations are significantly larger than the typical size
of the unit cell, which is of the order of a few angstroms.'’
For this reason, the optical response of high-T, cuprate
superconductors can be suitably modeled with macroscopic
electrodynamics in the long-wavelength approximation, as
commonly done in the literature.”®3° Moreover, when we
are interested in the low-frequency range of the spectrum,
the wavelengths are larger than several 10 to 100 pum, and
the electromagnetic response is very weakly sensitive to the
presence of local inhomogeneity at the microscale.

The dispersion of transverse magnetic (TM) modes in a
single-layer superconductor (such as Bi;Sr,CuQgy,) can be
derived from the microscopic Lawrence-Doniach model,*° as
shown in Appendix A. The dispersion relation, yielding the
frequency w = w(k,,k;) as a function of the wave vector k =
(kx,0,k;), assumes the form

cosh(as) — cos(k,s) =

2a

s sinh(as) | oo — €n(@)
o
Exo

4k2sin? (%2) 0 — £c()
$2[k2 — Ze(w)] e ’

(1)

where s is the interplane distance, €, is the high-frequency
dielectric constant, and «? = k)% — sooa)z/cz. The ¢ axis is
directed as Z. The dielectric function

2
Ean(®) = £0o (1 - %) ®)

is a Drude function which describes the in-plane response of
the charge carriers (for the moment, dissipation is neglected).
The screened in-plane plasma frequency wp depends on the
average density of the carriers and is generally of the order of
eV.3738 The dielectric function &.(w), on the other hand, takes
into account interplane tunneling effects due to Josephson
coupling. It presents a simple Drude-like behavior with the
Josephson plasma frequency wy:

2
gc(w) = €00 < - %) . 3
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The Josephson plasma frequency is defined as wy =

8mJoes/(hex) (Jp is the interlayer Josephson critical cur-
rent), and it is related to the c-axis London penetration depth

by wy = C/(\/ Ecohc).
In the long-wavelength approximation, the dispersion rela-
tion in Eq. (1) reduces to

2 2 2
kZ k: w

t(@) | Eml@) 2 x

in agreement with Ref. 7. TM modes can be interpreted as
retarded Josephson plasma waves along the ¢ axis coupled to
quasi-2D plasmons on the conductive planes.

In multilayered superconductors with two planes per unit
cell (such as BiSr,CaCu;,0s.,), however, nonequivalent
junctions with inter- and intra-bilayer-coupling mechanisms
are present, resulting in two JPW frequencies, wy; and wy;,
respectively. Moreover, a transverse-optical Josephson plasma
mode arises, whose frequency wr is intermediate between
wy; and wy,. The situation has been extensively studied in
Refs. 24-26, leading to the result that the c-axis dielectric
function has to be modified in the form

(@ — ofy) (@ — wp)

o (o — )

&)

gc(w) = €00

The lower Josephson frequency wj; can be more than two
orders of magnitude smaller than wp, resulting in very strong
anisotropy effects, which are crucial for the electrodynamic
response in the superconducting phase.

In addition to TM modes, cuprate superconductors also
possess transverse electric (TE) modes, characterized by the
dispersion relation

ﬁ+H—ﬁs( 6
X z_cz aba))' ()

Notably, TE modes are less interesting for the study of
interlayer Josephson coupling in high-7, superconductors
since they are not affected by the out-of-plane dynamics of
the condensate.

TM modes, on the other hand, manifest a clear signature
of Josephson tunneling effects. For instance, the dispersion of
TM modes resulting from Eq. (4) is represented in Fig. 1 for the
case of an n = 2 multilayered superconductor, showing dis-
tinctive features over a large range of frequencies. On the scale
of wp, the plasmon-polariton dispersion closely resembles that
of quasi-2D acoustic plasmons in a layered electron gas with
no interplane tunneling.”'® At lower frequencies, however, the
acoustic character of the quasi-2D plasmons is lost, and a stop
band opens below the lower Josephson plasma frequency wy
as a consequence of interlayer Josephson tunneling. Moreover,
a second stop band is present at the intermediate range of
frequencies between wr and wjy; due to the effect of the
transverse-optical JPW. The stop band can be revealed as a
Reststrahl feature in the reflectance spectrum.!'®??

In the long-wavelength regime under consideration, the
electromagnetic response of bulk cuprate superconductors can
be treated in a more compact form with the use of the uniaxial
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FIG. 1. (Color online) (a) Dispersion of the optical TM modes of
a bilayered superconductor as a function of the ab-plane wave vector
ky, normalized to ,/ecwy/c. Each curve corresponds to a value of
the c-axis wave vector k, (with the same normalization), indicated
by the label. (b) Close-up of the low-frequency and long-wavelength
region of the dispersion. Parameters are wr = 9wy, w;, = 10wy;, and
wp = 10060]1.

dielectric tensor

. Eap(®) 0 0
£(w) = 0  éeal@ 0 |, (7
0 0 ec(w)

with the dielectric functions defined above. Transverse mag-
netic and transverse electric modes in Egs. (4) and (6) play
the role of extraordinary and ordinary waves, respectively.
The validity of Eq. (7) follows from the derivation of Eq. (4)
as the long-wavelength approximation of the microscopic dis-
persion relation (1). According to the macroscopic approach,
cuprates can be modeled as anisotropic materials where the
strong anisotropy combined with the presence of different
Josephson plasma frequencies leads to a highly structured op-
tical response over several decades of frequencies. Notice that
this macroscopic description holds irrespective of correlation
effects, and it remains valid even in the presence of local
(submicron) inhomogeneities, as discussed above.

III. SURFACE MODES

In this section, we study the spectrum of surface plasmon
modes that arise when cuprate superconductors are spatially
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confined. We suppose that the superconducting region is
immersed in a material with dielectric constant ¢4 and adopt
the quasistatic approximation, which is valid when the size
of the system is smaller than the wavelength of light under
consideration. The requirements of the system size for the
quasistatic approximation to hold are different for different
spectral regions. For the acoustic and optical JPWs (with
characteristic frequencies in the range 1-15 THz, as observed
in Sec. II) particles up to a few microns in diameter are
generally sufficient. For in-plane plasmons (wp ~ 1 eV), the
system size is restricted to less than a few hundred nanometers.

In the macroscopic approach, the problem of calculating
surface plasmons in confined cuprate superconductors reduces
to the more general problem of solving the electrostatic
problem in confined geometry for a strongly anisotropic
material with a dielectric tensor such as that in Eq. (7). A
similar problem has been addressed, limited to the dipolar
approximation, in the context of optical scattering from
anisotropic dielectric particles.*! Here, we present a complete
analysis of surface plasmons for the introductory example of
a planar surface and for the benchmark situation of a spherical
particle.

A. Plasmons in the half space

As a first preliminary example, we calculate the char-
acteristic frequencies of surface modes on a dielectric-
superconductor interface perpendicular to the superconductor
¢ axis (e.g., along the z =0 plane). The basic procedure
is to solve the anisotropic equation for the scalar potential

V. (E) V¢) =0 inside and outside the boundary with the
proper continuity conditions at the interface. The potential
in the regions z > 0 (dielectric) and z < O (superconductor)
can be written in the form

. A exp(—kz), z>0, o
o(r)=e B exp ( i‘—‘c"kz), z<0. @)

The application of boundary conditions leads to the character-
istic equation

V Eap(w) &c(w) = &q, 9

whose solutions represent the frequencies of instantaneous
(quasistatic) surface plasmons over the planar interface. Notice
that, in the isotropic limit, the well-known condition &(w) =
—g4 18 recovered.

The solutions are constrained to lie in the spectral regions
where e.(w) and &,,(w) have the same sign. In particular, as a
consequence of strong anisotropy, for cuprate superconductors
the frequencies of planar surface plasmons are closer to
the plasma frequencies than in the isotropic case. This
phenomenon is evident for single-layer superconductors in the
€00 = &¢ = 1 situation by comparing the anisotropic solution
of Eq. (9),

2

WpL = —F/————
‘/l—l-wjz/a)lz,

with its well-known isotropic counterpart wpr, = wy/ V2.

S wy,
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For an n =2 cuprate superconductor, application of
Eq. (9) leads to two different solutions for instantaneous
surface plasmons, which are located in close proximity to the
Josephson plasma frequencies wy; and wy;.

B. Plasmons in spherical geometry

As we have already stressed, in this work we are mostly
concerned with the effect of spatial confinement for plasmonic
modes in high-7, superconductors. As a benchmark system
fully confined in three dimensions, we consider a spherical par-
ticle made of a multilayered superconductor. The electrostatic
problem with the proper boundary conditions on the spherical
surface is solved by means of a coordinate transformation
to an ellipsoidal geometry, where the usual isotropic Laplace
equation is recovered, as elaborated in Appendix B. As aresult,
we are led to the characteristic equation

ec(w) K %le(lc) +eq(l+1P"(k) =0, (10)

with « = [1 — sc(w)/eab(a))]‘% and P/" being the associated
Legendre polynomials. This equation is a central result of
the present work. In particular, we stress that it holds for
any uniaxial material: the specific properties of the solutions
are entirely dependent on the behavior of the dielectric
functions eu(w) and e.(w). For the case of multilayered
superconductors, its solutions represent a spectrum of surface
excitations that are localized close to the superconducting
particle and which we call Josephson surface plasmons. Each
surface mode is identified by the “azimuthal” quantum number
[ and the “magnetic” quantum number m. Each m > 0 mode is
degenerate with its —m counterpart; however, at variance from
the case of spherical particles made of isotropic materials,
modes with the same / and different m are nondegenerate.
Equation (10) reduces to the well-known result for spheres
of isotropic media in the limit situation &, = &, as shown in
Appendix B.

The spectrum for the case of n = 2 multilayered supercon-
ductor is shown in Fig. 2(a) as a function of the azimuthal
number / for some values of the magnetic number m, and
it spans a large range of frequencies up to the in-plane
plasma frequency wp. In particular, several m = 0 modes lie
entirely inside the stop bands, as their charge oscillations are
mostly related to Josephson plasma waves along the ¢ axis.
In the remaining regions of the spectrum, a large number of
closely spaced Josephson surface plasmons gives rise to a
quasicontinuum of excitations.*?

When [/ tends to infinity for fixed m, Eq. (10) reduces to
the corresponding relation for a planar surface, i.e., Eq. (9).
Indeed, with increasing /, sphere modes view the surface
as a planar one. For this reason, the true watersheds
between different regions of the excitation spectrum are the
frequencies of the surface plasmons on a planar interface,
defined as the solutions of Eq. (9). As we noticed before, these
frequencies are very close to the Josephson plasma frequencies
wy12, and in Fig. 2, they are practically indistinguishable
from them.

An important family of Josephson surface plasmons is that
with [ = 1 (dipolar modes). Here, Eq. (10) reduces to the
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FIG. 2. (Color online) Quasistatic Josephson surface plasmons in
a spherical particle made of a n = 2 multilayered superconductor.
(a) The modal frequencies as a function of the azimuthal quantum
number / and for three values of the magnetic quantum number m =
0,1,2. Notice the different scales in the frequency ranges of the w axis.
Parameters are wr = 9wy, wp; = 10wy, wp = 100wy, €5 = 10, and
€4 = 1. (b)—(e) Potential maps of the modes indicated by the dashed
lines. Potential is shown on a cut along the xz plane including the
center of the sphere, with the ¢ axis oriented as 2.

isotropic forms

g(w)+ 264 =0
ean(@) +264 =0

(m = 0),
(m =1),

implying that the m = 0,1 JSPs have the same frequencies of
those of isotropic spheres with dielectric functions equal to
e.(w) and &,,(w), respectively. The m = 1 mode at w/wy; =
91.3 can be interpreted as a quasi-2D plasmon confined in the
ab planes, as confirmed by the potential profile in Fig. 2(b),
which reveals an oscillating electric field perpendicular to the ¢
axis inside the particle. Analogously, the two m = 0 modes at
w/wy; = 0.93 and 9.84 can be considered longitudinal JPWs
confined along the c axis, in agreement with Fig. 2(e). This is
consistent with the fact that the m = 0 modes lie within the
stop bands below the Josephson frequencies wy; and wy;.
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For the generic modes with / > 1 this interpretation is not
valid anymore since &.(w) and &up(w) are coupled together
in Eq. (10); for instance, in the case [ =2,m =0, the
characteristic equation becomes

1 1 1

ea | e(@) | 2em(@)

The [ > 1 plasmonic modes do not have a specific Josephson
or quasi-2D character, but they present confinement both along
the optical axis and perpendicular to it, as shown by the
potential plots in Figs. 2(c) and 2(d). This can be interpreted
as a phenomenon of mixing of JPWs and quasi-2D plasmons,
which is a peculiar feature of the multipolar surface modes of
confined layered superconductors.

Y

C. Probing of surface plasmons

Measuring Josephson surface plasmons requires employing
an external probe and investigating, for instance, the extinction
cross section or the electron-energy-loss (EEL) spectrum.
The theoretical calculation of these quantities depends on the
multipolar polarizabilities o;,,(w). Several results for spheres
of isotropic media can be directly generalized to the anisotropic
case, as long as the polarizabilities «;,, are redefined as

(@) k L PM"(k) —eal P"(k)

g R, (12)
ec(@) i - P (k) + eal + 1) P" (k)

Apm(w) =

where k is defined as in Eq. (10) and R is the sphere
radius. In the limit of zero dissipation, «;, behaves like a
§ function centered on the zeros of Eq. (10), i.e., the JSP
frequencies. However, due to the presence of noncondensed
carriers, a certain amount of dissipation occurs, and it is
responsible for linewidth broadening of the peaks. Moreover,
aradiative broadening of JSPs is expected when going beyond
the quasistatic approximation.

After redefining the multipolar polarizabilities as in
Eq. (12), the extinction cross section for an incident plane
wave in the dipolar approximation is given by*!

drw 2 .2
Cext = ——Im(ajg cos” O + gy sin” Og), (13)
Cc

where 0¢ = arccos(E - ¢) is the polar angle of the electric field.
Indeed, scattering from small objects is dominated by dipolar
modes, while higher-order modes will become manifest for
larger particles.**

These results are relevant for sphere-resonance experi-
ments. Usually, the absorption resonances are associated with
the frequencies

€00
a = o ’ = 112~ 14
WSR¢ = Wjq, | ot 2y a (14

However, the frequencies of the dipolar [ = 1, m = 0 JSPs
obtained from Eq. (10) generally differ from expressions (14)
as an effect of the transverse-optical JPW. This can be seen in
Fig. 3, where the JSP frequencies are plotted as a function of
wr. In the limit wr — wy, the lowest JSP mode tends to wgg 1,
while the difference is maximum for the upper JSP mode. In
the limit wr — wj;, on the other hand, the situation is reversed.
These results show that a careful analysis of sphere-resonance
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FIG. 3. (Color online) The frequencies of the two [ =1, m =
0 JSPs for the same particle as in Fig. 2 vs the transverse-optical
Josephson frequency wr. The red dotted lines indicate the frequencies
calculated with Eq. (14).

experiments should be undertaken so that wy;, wy,, and wr are
simultaneously determined.

At variance from extinction spectroscopy, electron-energy-
loss spectroscopy allows us to excite the full spectrum of
multipolar JSPs, as shown by the EEL probability function
for an electron with impact parameter b > R (moving outside
the particle along the ¢ axis),*

dP 4 wR\? wb
— = — Y M (=) K2 (=) Im@m),
dw nv2R2§ ! (v) m<v>m(a1)

where K,,(x) are the modified Bessel functions, v is the
electron velocity, and My, = (2 — §,,0)/[( +m)!(l — m)!].
The EEL spectrum for a 300-eV electron is represented by
the solid curve in Fig. 4 and compared with the extinction
cross section, indicated by the dashed curve. The effect
of higher-order Josephson surface plasmons is particularly
evident in the region around wr and wy;. The peak in proximity
of wy, is blueshifted with respect to the extinction cross
section as a consequence of the increasing weight of the
! > 1 higher-frequency modes (see Fig. 2); moreover, an

10° g7

10 E

10

)

Lk

Cet/R

107!

dP/dw (at. un.)

1072

Frequency w/wj (log)

FIG. 4. (Color online) Black solid line: the EEL spectrum of
a 300-eV electron moving along the ¢ axis at grazing incidence
(b =1.02R) on a R = 400 nm sphere of a bilayered superconductor.
Dashed line: the extinction cross section for a field polarized along
the ¢ axis. Here, w;; = 10 meV, and the parameters are as in Fig. 2
(vertical dotted lines). In-plane dissipation is modeled assuming
Ime,, = IOwJlez) /w?*, whereas inter- and intrabilayer tunneling are
supplemented with the additional conductance 470, = wy;/2 and
4ro, = wp /4, respectively. Inset: close-up around wr and wy,.
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additional peak arises just below wr due to the excitation of
the corresponding modes of nondipolar symmetry.

IV. DISCUSSION AND CONCLUSIONS

The present treatment assumes a spherical geometry for the
superconducting particle, which is appropriate as a benchmark
example but it is hard to realize experimentally with ceramic
compounds. Other shapes are more suitable for fabrication
with top-down nanotechnology approaches. For example,
epitaxial films of cuprate superconductors could be patterned
in the shape of small discs, lying on a dielectric substrate and
with the height oriented along the superconductor ¢ axis. For a
typical thickness of cuprate films around 100-300 nm,*6—*
discs with an aspect ratio of a few units (and therefore a
diameter up to 1 um) are fully compatible with the quasistatic
approximation in the terahertz range (A ~ 300 um). The
patterning can be realized by using optical*® or electron-beam
lithography*’ followed by ion milling or using focused ion-
beam lithography.*’**® In order to increase the signal-to-noise
ratio, several discs can be arranged together in a periodic
configuration. Since the electrostatic field is strongly localized
around the particle [the potential decays as r~(*D; see
Eq. (B1) in Appendix B], a separation distance of a few
times the diameter should be enough to rule out overlapping
effects for the fields. This is analogous to the spectroscopy of
surface plasmons in the usual metallic nanoparticles, which
are commonly prepared in dense (ordered or disordered)
arrangements. >

Despite the exact frequencies of Josephson plasmons being
modified, we believe that the general qualitative features of
surface plasmons in cylindrical geometry remain similar to
those presented in this work. More detailed calculations can
be performed with a full computational approach, either by
adapting existing numerical methods or by expanding the
eigenmodes of an arbitrary particle in the basis consisting
of the Josephson surface plasmons of the spherical geometry.

To sum up, we have analyzed the effect of spatial con-
finement on the optical response of high-7, cuprate super-
conductors, giving rise to a discrete spectrum of collective
excitations of the condensate, which we call Josephson surface
plasmons. The spectrum of surface plasmons contains a
rich variety of dipolar and multipolar modes, which span a
wide frequency range up to the in-plane plasma frequency.
For multilayered superconductors, spatial confinement leads
to delicate coupling effects between acoustic and optical
Josephson plasma waves. Confined surface plasmons can be
probed by optical absorption or by EEL spectroscopy, the latter
being sensitive to modes of any symmetry.

The present approach, in addition, is suitable to study
localized surface excitations for arbitrary uniaxial materials.
It can also be extended to superconducting particles of
nonspherical shapes, in analogy with surface plasmons in
metal nanoparticles, but with the additional effects of strong
dielectric tensor anisotropy. We believe that the study of
Josephson plasmons via their size confinement is a promising
new route to explore phenomena associated with interlayer
tunneling in cuprates and, possibly, their relation to high-T7,
superconductivity.

PHYSICAL REVIEW B 88, 174513 (2013)

ACKNOWLEDGMENT

L.C.A. is grateful to Lucia Bossoni for introducing him to
the problem and for many precious discussions.

APPENDIX A: ELECTROMAGNETIC MODES
OF A SINGLE-LAYER SUPERCONDUCTOR

In this appendix, we sketch the derivation of the electromag-
netic dispersion for TM modes in a single-layer cuprate super-
conductor, reported in Eq. (1). We model the superconductor
as a stack of two-dimensional conductive planes separated by
the distance s, located at the positions z = ns (with integer
n), and immersed in a background material with dielectric
constant €.

As a consequence of interlayer Josephson tunneling, the
average current density flowing from the nth to the (n + 1)th
plane can be written as’®

hwo

(m+ln) _ . (n+1,n) . L c(n+1,n)
I = —Jo sing L] 41— g0,

(AD

where £+ is the gauge-invariant phase difference between
the superconducting layers. The out-of-plane conductivity
o, accounts for the tunneling of noncondensed electrons,
and it is responsible for dissipation. Since we are interested
in the dispersive properties of the modes, for the moment
we consider the limit situation o; — 0. Neglecting the
effect of breaking charge neutrality® (which is appropriate in
the long-wavelength approximation), the phase difference is
proportional to the averaged z component of the electric field
along the junction,

2es
(n+ln) _ _ (n+1,n)
& = —l—EZ .

hw
The layered structure of the superconductor can be viewed as
a superlattice. Thus, as a consequence of the Bloch-Floquet
theorem, the in-plane electric field on the nth plane can be
written as E,(z = ns) = &,e"%.

TM modes are characterized by the non-null components
E,,E.,and H, of the electric and magnetic fields, respectively.
Their dispersion relation can be calculated from the vector
equation

(A2)

2 ? 0]
V(V-E)—V E=800_2E+l—2.].
c c

(A3)
Upon performing the Fourier transform with respect to x, the
x component of the vector equation becomes

52 5 L Ar L,y Amo ),
|:8—Z2—ai|Ex=2n:|:lkx§pn —lc—z-]x 8(z—ns),

(A4)

with @? = k2 — eow?/c? and p2° being the local charge
density on the nth plane. The in-plane current on the nth plane
follows the ordinary Drude behavior (we neglect dissipation
effects),

. S€x0
JP =i =W E,,
4w

(A5)

whereas the charge density can be expressed as a function
of the in-plane electric field E, by applying the continuity
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relation
iwpzD — ikx]xZD + Jz(n-‘rl,il) _ Jz(n.n—l)’

the linearized approximation of the Josephson current in
Eq. (A1), and Maxwell equations. The result is

D o sin® (1%)
P =k w + ns(k)% —8ca)2/c2)

[‘900 - Sc] Ex .

Equation (A4) has the form
[02/02% — a*1E, = —8(z — z0),

whose solution is® E,(z) = (2a)~le~¥==%l_ At this point, we
can follow the procedure in Ref. 9 and obtain the dispersion
relation in Eq. (1) of Sec. II from the result

§ :e—(zk;n-k—alnl)s —
n

The dispersion relation for TE modes can be obtained with
a similar procedure. TE modes have a null z component of
the electric field, so they are not affected by the Josephson
tunneling current in Eq. (A1).

sinh(as)

. (A6)
cosh(as) — cos(k,s)

APPENDIX B: SURFACE PLASMONS OF A SPHERICAL
PARTICLE IN THE PRESENCE OF ANISOTROPY

In this appendix, we consider a spherical particle with
radius R filled by an anisotropic material with a diagonal
dielectric tensor such as that in Eq. (7). We solve the
electrostatic problem inside and outside the particle, and
from the boundary conditions at the interface, we derive the
characteristic equation for surface plasmon modes [Eq. (10)].

In spherical coordinates, the electrostatic potential in the
region outside the particle has the form?

Bou(r) = Y Apr TV P (c0s 0) { zj’lf((n"fg)) . (B

Im

where P/ are the associated Legendre polynomials and the ¢-
dependent part of the potential varies for even and odd modes.
The effect of anisotropy inside the sphere can be taken into

<>
account by means of the coordinate transformation ., defined
as

X X o x X
y | — y =L|ly|= Yy
z z z b

Ec

We introduce the potential ¢;, in the transformed space, which
is connected to the potential inside the particle by the relation

~ <> <~
din(L 1) = ¢in(r). The transformation [, is chosen so that the
anisotropic equation V - ((g Vi) = 0reduces to the isotropic
Laplace equation in the transformed space:

V() =0; F=Lr. (B2)
Notice that the coefficient \/&,p /€. of the transformation could
assume purely imaginary values, implying that the components
of 7 could be purely imaginary as well. This is due to the fact
that transformed coordinates are just a mathematical device
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without an explicit physical meaning; measurable quantities,
such as the electric field, remain real even in the latter situation.

The linear operator i transforms the spherical surface of the
particle into a spheroidal surface. The solution of the Laplace
equation in spheroidal coordinates can be expanded in the
form>°

Fun(F) = IZ By P" (cosh /1) P" (cos ) { ‘;?If((f;j)) , (B3)

where 7j and @ are the prolate spheroidal coordinates in the
transformed space, defined as in Ref. 50:

% = asinhjsind cos ¢,
§ = asinh7jsinf sin @,
7 =acoshijcosf,

with @ = R\/eap/ec — 1. The spheroidal surface in trans-
formed space that corresponds to the spherical surface in
real space is given by the condition #j = fjy, with tanh 7jy =
/€c/€a. The choice of the factor a has been made so that the
coordinates 6 and @ coincide on the spheroidal surface.

On the particle surface, the radial component of the external
displacement field takes the form

cos(me)
sin(me) *

(B4)

DL =Y eqAum(l + DR Pr(cos 6) {

Im

On the other hand, the displacement field inside the particle can
be easily related to the gradient of the electrostatic potential in
the transformed space,

Din(r) = — € Voun(r) = —ew L' Vin(F).

This allows us to express the radial component of the internal
displacement field on the particle surface as

cos(me)
sin(me) ’

Bm d m m
DE=-Y e Ile kPP, (cose){

Im

(B5)

with k = cosh#jp = [1 — &./ eab]’%. Boundary conditions are
enforced by equating each term in Eqs. (B1) and (B3) on the
surface (r = R and 7 = 7, respectively) and each term of
Egs. (B4) and (BS5). The result is the characteristic equation
reported in Eq. (10) of the main text.

The same equation reduces to the well-known result for
spheres of isotropic materials in the limit case &4, = &, i.e.,
k — 00. From the large-argument behavior of associated
Legendre polynomials® [P (k) ~ k'], it is easy to see that

AP [ L
dx /Pl () = K

from which we recover the characteristic equation for instan-
taneous surface plasmons in spheres of isotropic materials'-

(k = 00),

lec() + (I + Deg = 0. (B6)
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