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Nonlocal transport and heating in superconductors under dual-bias conditions
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We report on an experimental and theoretical study of nonlocal transport in superconductor hybrid structures,
where two normal-metal leads are attached to a central superconducting wire. As a function of voltage bias
applied to both normal-metal electrodes, we find surprisingly large nonlocal conductance signals, almost of the
same magnitude as the local conductance. We demonstrate that these signals are the result of strong heating of the
superconducting wire and that under symmetric bias conditions, heating mimics the effect of Cooper pair splitting.
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I. INTRODUCTION

In hybrid proximity structures consisting of a normal metal
(N) and a superconductor (S), electrons can be converted
into Cooper pairs. Depending on the electron energy, this
conversion is provided by different physical mechanisms.
Electrons with overgap energies may easily penetrate from a
normal metal deep into a superconductor causing electron-hole
branch imbalance,1 which relaxes at macroscopic distances
from the NS interface. In contrast, electrons with subgap
energies penetrate into a superconductor by the mechanism of
Andreev reflection (AR).2 In this case, an electron propagating
in a normal metal may enter a superconductor only at a rather
short distance (of order of the superconducting coherence
length ξ ) forming a Cooper pair together with another electron
taken from the same normal metal. At sufficiently low
energies, this Andreev reflection mechanism is responsible
for dissipative charge transfer across NS interfaces.3

In multiterminal hybrid proximity structures, such as NSN
systems, the physics of low-energy electron transport becomes
much richer as it also includes coherent nonlocal effects.
Provided the superconductor size (i.e., the distance between
two NS interfaces) is comparable with (or smaller than) ξ ,
two extra charge transfer mechanisms gain importance. One
of them is the so-called elastic cotunneling (EC), i.e., direct
transfer of subgap electrons between two N metals through a
superconductor. Another mechanism is crossed (or nonlocal)
Andreev reflection4,5 (CAR). In contrast to local AR, here
a Cooper pair is formed by two electrons penetrating into a
superconductor from two different N terminals. This mecha-
nism essentially influences nonlocal charge transport in hybrid
NSN systems. Furthermore, employing the phenomenon of
CAR one can provide a direct experimental realization of
entanglement between electrons in different normal terminals.
In other words, three-terminal NSN devices can effectively act
as Cooper pair splitters.6–9

Both experimental10–19 and theoretical20–34 (see also further
references therein) investigations of dissipative electron trans-
port and nonlocal shot noise in three-terminal NSN structures
revealed a rich variety of nontrivial features. For instance, in
the tunneling limit and at T → 0 EC and CAR contributions to
nonlocal conductance exactly cancel each other,20 thus leaving
no possibility to experimentally test the effect of CAR in

transport experiments in this limit. Splitting the contributions
of EC and CAR becomes possible either at higher interface
transmissions24,28 or by applying an external ac field30 or, else,
by studying nonlocal shot noise.18,19,21,33

Further interesting features emerge in the presence of
disorder. In this case, an interplay between CAR, quantum
interference of electrons, and nonlocal charge imbalance
dominates the behavior of diffusive NSN systems31 and,
for instance, may yield strong enhancement of nonlocal
conductance in the low-energy limit. The effect of disorder
needs to be taken into account for a quantitative interpretation
of the experiments.13–15

Nontrivial physics also emerges from an interplay between
CAR and Coulomb interaction. For example, interactions lift
the exact cancellation of EC and CAR contributions to the
nonlocal differential conductance already in the lowest order
in tunneling.27 This conductance is predicted to have an S-like
shape and can turn negative at nonzero bias.33 Furthermore,
one can prove33 that there exists a fundamental relation
between Coulomb effects and nonlocal shot noise in NSN
structures which can be directly tested in future experiments.

In this work, we will explore yet another physical effect,
which—along with the above mentioned ones—can essentially
influence the behavior of three-terminal NSN proximity struc-
tures. Namely, we will demonstrate—both experimentally
and theoretically—that nonlocal transport properties of such
structures can be strongly affected (or even dominated) by
heating. It is important to emphasize that under certain condi-
tions heating can mimic both the effect of CAR and Cooper
pair splitting. Thus it is, in general, mandatory to account
for heating effects while analyzing nonlocal phenomena in
multiterminal proximity structures.

The structure of our paper is as follows. In Sec. II, we
describe our NSN samples as well as the key aspects of our
experiments. In Sec. III, we present our experimental results
demonstrating an importance of heating effects for nonlocal
electron transport in the structures under consideration. Theo-
retical model aimed to quantitatively explain our experimental
observations is worked out in Sec. IV. In Sec. V, we make
use of this model demonstrating a good agreement between
theory and experiment without involving any fit parameters.
Technical details of our derivation of the Coulomb correction
to the nonlocal conductance are displayed in Appendix.
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FIG. 1. (Color online) False color scanning electron microscopy
image of a section of sample B, together with the measurement
scheme.

II. SAMPLES AND EXPERIMENT

Our samples consist of a central superconducting wire,
with several copper wires attached by tunnel junctions of
normal-state conductance GT. The junctions are connected
to the reservoirs by long normal-metal wires, which introduce
a series resistance rN to create an Ohmic environment for
the junctions. Figure 1 shows a false-color scanning electron
microscopy image of one of the samples as well as a scheme
of the measurement setup. The samples were fabricated
by standard e-beam lithography and shadow evaporation
techniques. In a first step, the superconducting aluminum
wire of thickness tAl = 20 nm was created. The aluminum
wire was oxydized in situ to form a thin but pinhole-free
tunnel barrier by exposing it to about 0.5 Pa of pure oxygen
for a few minutes. After the oxidation, copper of thickness
tCu = 15–30 nm was evaporated under a different angle to
form the tunnel junctions. We investigated samples with two
closely-spaced tunnel junctions as shown in Fig. 1, as well as
one sample with six junctions to investigate the dependence of
nonlocal transport on the contact distance d (not shown). An
overview of the sample parameters is given in Table I.

All measurements were performed in a dilution refrigerator
at temperatures down to T = 50 mK. A magnetic field B

could be applied in the substrate plane perpendicular to the
aluminum wire, as indicated in Fig. 1. A voltage Vinj consisting
of a dc bias and a low-frequency ac excitation was applied
to one tunnel contact, called injector, and the ac part of
the resulting current Iinj was measured by standard lock-in
techniques to obtain the local conductance Gloc = dIinj/dVinj.
Simultaneously, the ac current Idet through the second contact,
held at fixed bias voltage Vdet, was measured to determine
the nonlocal conductance Gnl = dIdet/dVinj. Our key exper-
imental results obtained in this way are outlined in the next
section.

TABLE I. Overview of sample properties. Number of tunnel
junctions, normal-state tunnel conductance GT, series resistance rN ,
thickness tCu, and length lCu of the copper wire.

Sample junctions GT (mS) rN (�) tCu (nm) lCu (μm)

A 2 3.2 240 15 15
B 2 4 15 30 4.8
C 6 1 13 30 3

(a) (b)

FIG. 2. (Color online) Local differential conductance gloc of a
junction of sample A as a function of injector bias Vinj at T = 20 mK.
(a) Data for different detector bias voltages Vdet and at zero field
in the superconducting state. (b) Data at B = 2T in the normal
state.

III. EXPERIMENTAL RESULTS

Figure 2(a) shows the local conductance of a junction of
sample A as a function of injector bias Vinj for different detector
bias Vdet at low temperature in the superconducting state.
The data exhibit a well-defined energy gap � ≈ 180 μeV and
coherence peaks for |eVdet| < �, and an increased broadening
for |eVdet| > �. In Fig. 2(b), we also show the conductance
at high magnetic field in the normal state. Here, a dip due
dynamical Coulomb blockade is observed.

In order to fit the local conductance, we model the density
of states ν(E) in the superconductor including a phenomeno-
logical life-time broadening parameter � (the so-called Dynes
parameter35),

ν(E) = Re

[
E + i�√

(E + i�)2 − �2

]
, (1)

where E is the quasiparticle energy and � is the gap. The
current through the tunnel junction is then given by

IT(VT) = GT

e

∫
ν(E) [f0(E) − f0(E + eVT)] dE, (2)

where VT is the voltage across the junction and f0 is the Fermi
function. For the samples with long copper wire, the series
resistance rN

inj is of similar magnitude as the junction resistance
1/GT, and we cannot neglect the voltage drop across rN

inj.
The actual voltage across the junction is therefore VT = Vinj −
rN

injIinj, and we solve the implicit equation

Iinj = IT
(
Vinj − rN

injIinj
)

(3)

for Iinj to fit the data. We thus have GT, rN
inj, �, �, and the

temperature as fit parameters. We denote the temperature from
these fits by TN, since it actually describes the smearing of
the Fermi distribution in the normal metal. While � and TN

describe a similar broadening of the conductance features, we
found that both had to be adjusted to give a good fit of the
data. Fits to this model are shown as lines in Fig. 2(a). We
proceeded by first fitting a trace at large detector bias, and
then kept GT = 3.2 mS and rN

inj = 240 � fixed for all other
fits. The high-field data are fit with the standard model of
dynamical Coulomb blockade,36–38 shown as a line in Fig. 2(b).
For the latter fit, we kept the junction conductance fixed to its
value in the superconducting state, and fit the series resistance
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(a) (b)

FIG. 3. (Color online) Fit parameters of the local conductance of
the sample A. (a) Normalized energy gap � and life-time broadening
parameter � as a function of detector bias Vdet. (b) Effective
temperatures TS and TN as a function of detector bias Vdet derived
from the fits (symbols), and model predictions (lines).

rN
inj = 370 � as well as the effective impedance RE = 80 �

of the electromagnetic environment. The fact that rN
inj in the

normal state is larger than in the superconducting state reflects
that the resistance of the aluminum wire now also appears in
series with the junction. On the other hand, RE < rN

inj indicates
that only a fraction of the series resistance actually affects
dynamical Coulomb blockade, which probes the environment
at high frequencies hν ≈ eV . A similar fit for sample B with
the shorter Cu wire yields RE = 40 �.

The parameters extracted from the fits in the supercon-
ducting state are shown in Fig. 3 as a function of detector
bias Vdet. Figure 3(a) shows the gap � normalized to its
value �0 = 180 μeV at zero bias, as well as the normalized
life-time broadening parameter �. � decreases by about
15 % with increasing bias, whereas � remains about zero
for Vdet < �0/e, and sharply increases as soon as the bias
exceeds the gap. The effective temperature TN behaves in a
similar way as �, as seen in Fig. 3(b). It remains close to
the bath temperature T = 50 mK below the gap, and then
quickly increases to TN ≈ 200 mK. To estimate the effective
temperature TS of the quasiparticles in the superconductor,
we have inverted the BCS temperature dependence of the
gap to relate the decrease of � as a function of bias to an
increase of TS. Since �(T ) is almost flat at low temperatures,
the result of this inversion is not very reliable for small
deviations of � from �0. We therefore only plot the resulting
TS for large bias in Fig. 3(b). As can be seen, TS ≈ 1 K �
TN. This results is reasonable since the electrons in the
normal metal are heated indirectly by the quasiparticles in the
superconductor.

Figure 4 shows the nonlocal conductance for samples A
and B. For (nearly) zero detector bias, we observe a signal
of a few ten μS. A signal of this magnitude is expected
due to charge imbalance, as described in detail in a previous
publication.39 The signal due to charge imbalance is an even
function of injector bias, see Ref. 40. For finite detector bias,
we observe two peaks in the nonlocal conductance. These
exceed the charge imbalance signal by orders of magnitude,
and are odd functions of both injector and detector bias. The
peaks are relatively sharp and initially increase for |eVdet| < �.
For |eVdet| > �, the peaks broaden and decrease considerably,
much like the coherence peaks in the local conductance

(a) (b)

(c)

(e) (f )

(d)

FIG. 4. (Color online) Nonlocal differential conductance gnl of
a pair of junctions of samples A (a) and B (b) as a function of
injector bias Vinj for different detector bias voltages Vdet. (c) and
(d) Corresponding predictions of the heating model discribed in
Sec. IV. (e) and (f) Coulomb correction predicted by Eq. (10). Note
the different scale.

shown in Fig. 2(a). The nonlocal conductance is negative
if the sign of the injector and detector bias is the same,
and positive otherwise. Symmetric bias conditions Vinj =
Vdet are the typical operating point for Cooper-pair splitter
devices. Under these conditions, we observe negative nonlocal
conductance, the same as one would find for crossed Andreev
reflection.

Finally, in Fig. 5(a), we show the dependence of the
nonlocal conductance on contact distance d for a fixed detector
bias measured on sample C. The peaks described previously
decrease slowly upon increasing d, with little change in the
overall shape. The maximum conductance is plotted on a
semilogarithmic scale as a function of d in Fig. 5(b). The
decay can be fit by the sum of two exponentials, with relaxation
lengths λ1 = 0.23 μm and λ2 = 3.1 μm. The slow decay over
a scale of several microns is compatible with nonequilibrium
quasiparticle transport.

174509-3



KOLENDA, WOLF, GOLUBEV, ZAIKIN, AND BECKMANN PHYSICAL REVIEW B 88, 174509 (2013)

(a) (b)

FIG. 5. (Color online) (a) Normalized nonlocal conductance
gnl/GinjGdet for fixed detector bias Vdet = 250 μV for different
contact distances d . (b) Peak height as a function of contact distance
d . The solid line is a phenomenological fit to a two-scale exponential
decay, with relaxation lengths λ1 = 0.23 μm and λ2 = 3.1 μm. The
dashed line indicates the model prediction (see text).

IV. NONLOCAL CONDUCTANCE AND HEATING:
THEORETICAL MODEL

The behavior of the nonlocal conductance presented in
Figs. 4 and 5 qualitatively resembles that in the presence of
Coulomb effects.33 On the other hand, our data demonstrate
that—at least at sufficiently high voltages—heating effects
are essential and, hence, should also be taken into account.
The task at hand is to formulate a theoretical model, which
would adequately describe our system in the presence of both
Coulomb interactions and heating effects.

In order to construct a complete theory of nonequilibrium
heat transport in SN proximity structures, it is, in general,
necessary to employ the Keldysh technique and to work
out a solution of inhomogeneous Usadel equations,41 see,
e.g., Ref. 42 for a review. The corresponding analysis turns
out to be rather involved. For instance, substantial technical
complications are due to the fact that in our problem the
superconducting gap may acquire a significant coordinate
dependence �(r) induced both by the proximity effect and
by an inhomogeneous temperature profile inside the wire. Yet
another complication has to do with the presence of electron-
electron scattering, which leads to an effective equilibration
of the quasiparticle distribution function at a certain length
scale.

In order to proceed, below we will employ a simple
model of nonlocal charge and heat transport through the
structure depicted in Fig. 1. Within this model, we will
ignore the proximity effect assuming the resistances of the
tunnel junctions to be sufficiently high. Then the coordinate
dependence of � may become important only at sufficiently
strong overheating, i.e., provided the heat transport properties
of a superconductor already resemble those of a normal metal.
Our model does take into account the coordinate dependence
of �, but disregards Andreev reflection of quasiparticles
associated with it. Therefore we expect it to be more accurate at
relatively small overheating (low bias) and less accurate, but
still qualitatively correct, at strong overheating (high bias).
Within our model we will also assume that the electron-
electron energy relaxation length is the shortest length scale
in our problem and that the electron distribution function
coincides with the Fermi function with the local electron

temperature. The latter may deviate from the temperature
of the phonon subsystem, which we assume to be the same
as the base temperature of the cryostat. In order to justify
the above assumption, one can make use simple theoretical
estimates of the electron-electron relaxation length at high
energies and/or just quote earlier experiments with normal
wires,43 in which this length—under the conditions similar to
ours—was found to be of the order of or shorter than 1 μm. This
length scale is significantly shorter than the length of normal
wires in our setup. We expect similar values of the relaxation
length for strongly excited quasiparticles in aluminum, which
give the main contribution to the signal at high bias. Thus
the same arguments may be applied to the superconducting
wire as well. As we will demonstrate, our simple model
rather accurately describes the properties of the system under
consideration.

Under the conditions outlined above the current through the
detector junction can be expressed in the form

Idet = −I det
T

(
V1,Tdet,T

S
det

) + I det
CI

(
V1,Tdet,T

S
det

)
+ I nl

CI

(
V2,Tinj,T

S
inj

) + δI det
Col(V1,V2). (4)

Here, V1 and V2 are the voltage drops across the detector
and injector junctions, respectively. They are related to the
potentials Vdet and Vinj (see Fig. 1) as follows:

Vdet = V1 + Idetr
N
det, (5)

Vinj = V2 + Iinjr
N
inj, (6)

where rN
det and rN

inj are the resistances of the normal wires
attached, respectively, to the detector and injector junctions.
The voltage V2 actually coincides with the voltage VT already
introduced in Eq. (2).

The current of the detector (4) is the sum of four con-
tributions. The first one, −I det

T (V1,Tdet,T
S

det), is the standard
tunneling current between normal and superconducting wires
defined in Eq. (2). The minus sign in front of this contribution
is due to the adopted sign convention, see Fig. 1. The second
and the third contributions arise from the charge imbalance
(CI) induced by nonequilibrium quasiparticles injected into
the superconducting wire respectively through the detector
junction and the injector,

I det
CI

(
V1,Tdet,T

S
det

) =
(
Gdet

T

)2
rLrR

e(rL + rR)

∫
dE θ

(|E| − �
(
T S

det

))
× [

fdet(E − eV1,Tdet) − fS

(
E,T S

det

)]
,

(7)

I nl
CI

(
V2,Tinj,T

S
inj

) = G
(0)
nl

e

∫
dE θ

(|E| − �
(
T S

inj

))
× [

finj(E − eV2,Tinj) − fS

(
E,T S

inj

)]
,

(8)

and, finally, the fourth term, δI det
Col(V1,V2), is the Coulomb

interaction correction33 derived in Appendix.
In the above expressions, we introduced the following

parameters: rL and rR are the left and right normal state
resistances of the segments of the superconducting wire
between the corresponding junctions and the bulk leads,
fdet(E,Tdet) = 1/[1 + eE/Tdet ] and fS(E,TS) = 1/[1 + eE/TS ]
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are the quasiparticle distribution functions respectively in
the normal lead attached to the detector junction with
temperature Tdet and in the superconductor with the local
temperature TS , G

(0)
nl ∼ Gdet

T G
inj
T rLrR/(rL + rR) is the normal

state value of the nonlocal conductance unaffected by Coulomb
interaction.

According to Eqs. (4) and (6) the nonlocal conductance of
the system reads

Gnl = dIdet

dVinj
=

∂Idet
∂V2

+ ∂Idet
∂Tdet

∂Tdet
∂V2

+ ∂Idet

∂T S
det

∂T S
det

∂V2

1 + ( ∂Iinj

∂V2
+ ∂Iinj

∂Tinj

∂Tinj

∂V2
+ ∂Iinj

∂T S
inj

∂T S
inj

∂V2

)
rN

inj

. (9)

This formula expresses Gnl as a function of the voltages V1

and V2. In order to reformulate it in terms of experimentally
accessible voltages Vdet and Vinj, Eq. (9) should be employed
in combination with Eqs. (5) and (6).

The nonlocal conductance (9) contains two types of
derivatives. The derivatives ∂Idet/∂V2 and ∂Iinj/∂V2 remain
finite even in equilibrium when the sample is well cooled
and the temperature values in all electrodes do not depend on
the bias voltages. The terms containing the derivatives over
temperature account for the heating effect. It turns out that
these terms give the dominant contribution to the nonlocal
conductance in our samples.

As compared to the above terms, the Coulomb correction
to the nonlocal conductance ∂δI det

Col(V1,V2)/∂V2 remains small
and can be disregarded for the structures under consideration.
In order to see that, let us set T → 0 and choose e|V1|,e|V2| >

�. In this case, the derivative ∂ δI det
Col(V1,V2)/∂V2 may be

expressed in a relatively simple form (see Appendix for
details):

∂ δI det
Col(V1,V2)

∂V2

≈ −G
(0)
nl

gE
det

ln

[
1 + V 2

0

(V1 − V2)2

]
− G

(0)
nl

2gE
det

�2

e2V 2
2 − �2

×
{

ln

[
1 + V 2

0

(V1 − V2)2

]
− ln

[
1 + V 2

0

(V1 + V2)2

]}
,

(10)

where we defined the high-voltage cutoff eV0 ∼ 1/τRC deter-
mined by the inverse effective RC−time of our system and
introduced the dimensionless conductance gE

det = 2π/e2RE
det

of the electromagnetic environment “seen” by the detector.
For our samples, we typically have gE

det � 1. Thus the
Coulomb correction ∝1/gE

det remains small except, perhaps, an
immediate vicinity of the gap voltage eV1 = �, see Figs. 4(e)
and 4(f). This observation allows us to ignore the Coulomb
interaction correction in our further consideration.

Our next step is to find the dependence of the temperatures
Tinj,Tdet, T S

inj,T
S

det on the bias voltages Vinj and Vdet. For this
purpose, it will be necessary to solve the corresponding heat
transport equations.

Let us first consider the normal lead attached to the detector.
We will approximately treat it as a thin quasi-one-dimensional
wire. The equation describing the heat transport along the wire

reads

Pdet = −Sdet

∫ x

0
dx ′ (T 5

det(x
′) − T 5

0

)
+ I 2

detx

σSdet
+ π2σSdet

6e2

d

dx
T 2

det(x), (11)

where we defined the coordinate x along the wire and assumed
that the detector junction is located at x = 0. The quantity
Pdet denotes the heat power extracted from the normal wire
or, equivalently, the cooling power of a detector wire. This
quantity is given by the integral44

Pdet
(
V1,Tdet,T

S
det

) = Gdet
T

e

∫
dE ν(E)(E − eV1)

× [
fdet(E − eV1,Tdet) − fS

(
E,T S

det

)]
,

(12)

which remains positive at eV1 � � and Tdet = T S
det and turns

negative in the high-bias regime eV1 � �, Tdet < T S
det. The

first term in the right-hand side of Eq. (11) describes the
heat current from the electron subsystem into the phonon one,
the material parameter  characterizes the electron-phonon
coupling strength, and Sdet stands for the cross sectional area of
the detector normal wire. The second term in Eq. (11) describes
the Joule heating of the wire by the current, and the last term
is the heat current flowing along the wire and leaking into
the outer bulk electrode. According to the Wiedemann-Franz
law, this heat current is proportional to the conductivity of
the normal wire σ . Thus Eq. (11) implies that the power
generated in the biased detector junction is partially dissipated
in the phonon subsystem and partially carried away along
the wire.

Finally, Eq. (11) should be supplemented by the boundary
conditions

Tdet(0) = Tdet, Tdet(Ldet) = T0, (13)

where Ldet is the length of the detector normal wire. Here, we
assumed that at x = Ldet the wire is coupled to a bulk metallic
lead kept at the base temperature T0. The heat transport in the
normal wire attached to the injector is described by Eq. (11)
with interchanged indices.

In order to fit our data, we numerically solved the heat
balance equation (11). For the parameters of our samples,
we verified that the term responsible for electron-phonon
interactions may be omitted provided the wire is short enough,
i.e., Ldet � Le-ph, where

Le-ph =
√

π2σ

6e2T 3
det

(14)

is the electron-phonon relaxation length. For the copper wire
one has44  ≈ 2 nW/μm3K5. Combining this value with with
the conductivity of our copper leads, σ ≈ 45 (μ� m)−1, we
find Le-ph = 1500 μm at T = 50 mK and Le-ph = 17 μm at
T = 1 K. Thus the electron-phonon relaxation length, indeed,
exceeds the length of the normal wire in both our samples in
the whole range of temperatures relevant for our experiment.

Hence we can safely omit the electron-phonon term from
the differential equation (11). With this in mind one can easily
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integrate this equation reducing it to the algebraic one:

π2
(
T 2

det − T 2
0

)
6e2rN

det

+ Pdet − I 2
detr

N
det

2
= 0, (15)

where rN
det = Ldet/σSdet is the resistance of the detector normal

wire. Similarly, for the injector normal wire one finds

π2
(
T 2

inj − T 2
0

)
6e2rN

inj

+ Pinj − I 2
injr

N
inj

2
= 0. (16)

We now turn to the heat transport equation in the supercon-
ducting wire. In this case, the heat current from quasiparticles
to phonons is in general defined by a rather complicated double
integral. Here, we will disregard the corresponding term in
our heat transport equation from the very beginning assuming
that overheating of our superconducting wire remains not too
strong. This approximation requires that the superconducting
wire length LS is smaller than the electron-phonon relaxation
length in the superconductor LS

e-ph, i.e.,

LS �
√

π2σS

6e2ST
3
S

, (17)

where σS and S are the conductivity and the electron-phonon
coupling parameter in the normal state of the superconductor.
We find that for our samples the condition (17) is satisfied in
the range of voltages e|Vinj|,e|Vdet| � 1.5�, but may be not
fulfilled at higher voltages.

In order to further simplify our model, we also assume that
the detector and injector junctions are located close enough
to each other, meaning that the temperature values on their
superconducting sides are the same, i.e., T S

det = T S
inj = TS .

Under these conditions, we can write the heat transport
equation in the form

P + = Pqp(T (x)), x > 0,

−P − = Pqp(T (x)), x < 0, (18)

P + + P − = IinjV2 + Pinj + IdetV1 + Pdet.

Here, we assumed that both junctions are in the vicinity of the
point x = 0, introduced the temperature of the superconduc-
tors at the point x, T (x), the heat current P + flowing to the
direction x > 0 and the heat current P − flowing in the opposite
direction x < 0. The combination IinjV2 + Pinj + IdetV1 + Pdet

is the total heat power injected into the superconductor by both
tunnel junctions. It is given by the sum of the Joule heating by
both junctions, IinjV2 + IdetV1, and the total cooling power of
both normal wires, Pinj + Pdet. The boundary conditions for
Eq. (18) read

T (0) = TS, T (−LS1) = T0, TS(LS2) = T0, (19)

where LS1 and LS2 are the lengths of the wire segments on
both sides of the junctions.

Next, Pqp(T (x)) is the quasiparticle heat current in the
superconductor in presence of the temperature gradient. It
reads

Pqp(T (x)) = −κ
(
T (x)

)
SS

dT (x)

dx
, (20)

where SS is the cross sectional area of the superconducting wire
and the heat conductivity of the superconductor is defined as45

κ(T ) = 2σS

e2
T

[
2F

(
�

T

)
+ 2�

T
ln(1 + e−�/T )

+ �2

T 2(1 + e�/T )

]
,

F (x) =
∫ ∞

0
dz

z

1 + ez+x
. (21)

Equation (18) can be integrated in exactly the same way
as Eq. (11). As a result, we arrive at the following algebraic
equation:

F (TS) = F(T0) + e2

2

rLrR

rL + rR

[V1Idet(V1,Tdet) + V2Iinj(V2,Tinj)

+Pdet(V1,Tdet,TS) + Pinj(V2,Tinj,TS)], (22)

where the function F(T ) is defined as

F(T ) =
∫ T

0
dT ′

[
2T ′F

(
�(T ′)

T ′

)
+ 2�(T ′)

× ln(1 + e−�(T ′)/T ′
) + �2(T ′)

T ′(1 + e�(T ′)/T ′)

]
, (23)

and �(T ′) denotes the standard BCS temperature dependence
of the superconducting gap.

Equations (15), (16), and (22) constitute a complete system
which allows one to determine the temperatures Tinj, Tdet, and
TS as functions of the bias voltages. This system of equations
was resolved numerically by iterations. The corresponding
results are compared to the experiments in Figs. 3 and 4 and
discussed below in the next section.

V. DISCUSSION AND CONCLUSIONS

The dependence of temperature on the bias voltage Vinj

at Vdet = 0 for the parameters of the sample A predicted by
the heating model is compared to the experimental data in
Fig. 4(b). In agreement with the experiment one observes
that the superconducting wire is overheated stronger than the
normal wire, in particular, at low-bias values. This effect can
easily be understood since in this regime, the heat conductivity
of the superconductor (21) is exponentially suppressed by the
factor ∼exp[−�/TS]. Note that in our numerical simulations,
the broadening parameter � was set equal to zero in the
whole range of bias voltages. Enhanced smearing of the
I − V curves encountered at high-bias voltages results from
additional heating of the wires by the injector junction.

Our main results are depicted in Figs. 4(c) and 4(d), where
the predicted nonlocal conductances of the samples A and B
are plotted. We observe that our model not only qualitatively
captures the behavior of Gnl as a function of the bias voltages
Vdet and Vinj but also correctly predicts the magnitude of the
nonlocal conductance. It is also important to stress that a
good agreement between theory and experiment was achieved
with no fit parameters as all resistances and other parameters
were measured independently. Hence we conclude that strong
nonlocal response observed in our samples at not very small
bias voltages is indeed due to the effect of heating.
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Note that the model prediction for the dependence of the
nonlocal signal on the distance between the junctions turns
out to be not very accurate, see Fig. 5(b). We speculate that
the main cause for this discrepancy might be the effect of a
finite electron-electron relaxation length which was considered
short in our calculation. In any case, in order to quantitatively
reproduce the two scale decay of the signal observed in our
experiment it appears necessary to further refine the model
employed in our theoretical analysis.

In Figs. 4(e) and 4(f), we also show the Coulomb correction
predicted by Eq. (10). Here, we have used the maximum of the
charge imbalance signal measured at Vdet = 0 as G

(0)
nl , and the

environmental resistance RE obtained from fitting the local
Coulomb dip in the normal state. As can be seen, the Coulomb
correction is qualitatively similar to the measured data, but too
small by about three orders of magnitude.

Thermoelectric effects caused by the combination of a
thermal gradient and a supercurrent have been observed in the
1970s.46,47 These might also contribute to the nonlocal effects
reported here. For aluminum, the magnitude of the nonlocal
voltage due to these effects was found experimentally48 to be

VdetGdet

js∇T
≈ 10−21 � m3

K
. (24)

For our experiment, we can estimate this contribution by
assuming that the entire current, which is initially injected as
quasiparticle current, is eventually converted to supercurrent.
This yields an upper limit of the supercurrent density js �
Iinj/A, where A ≈ 10−14 m2 is the cross-section area of
the aluminum wire. Since the quasiparticle temperature is
increased by about 1 K over the bath temperature, and the
observed effects decay on the length scale of a few microns,
we can further estimate ∇T � 1 K/μm. For comparison with
our nonlocal conductance experiment, we express Eq. (24) in
terms of injector voltage and detector current and obtain

Idet

Vinj
≈ G2

T∇T

A
× 10−21 � m3

K
� 1 μS. (25)

This is orders of magnitude smaller than the observed effects.
Also, in our experiment, the driving force of the thermal gradi-
ent is heating due to the injector bias. The heating power, and
therefore ∇T , is an even function of bias. The nonlocal conduc-
tance for this mechanism should also be even in bias according
to Eq. (25). We conclude that both by symmetry and order
of magnitude the observed effects are not caused by charge
imbalance in the presence of supercurrents and thermal
gradients.

In summary, we demonstrated that heating can play a major
role dominating the nonlocal properties of three-terminal
hybrid proximity structures at not very small bias voltages.
In simple terms, this effect can be understood as follows.
Increasing the bias voltage in the injector, one effectively
heats the superconductor which, in turn, yields the temperature
increase in the detector wire. As a result, the detector current
changes thus providing the nonlocal response. It turns out that
in our samples this simple mechanism prevails—at least at
substantial bias voltages—over more standard charge transfer
mechanisms, such as charge imbalance or crossed Andreev
reflection. Quite generally, the heating strength is controlled

by the ratio between the wire resistances and those of the tunnel
junctions. Heating effects are negligible provided this ratio is
small, i.e., the junctions are more resistive than the wires. On
the other hand, in the opposite limit of highly resistive wires,
heating gains importance and essentially influences the system
behavior.

In particular, in a typical beam-splitter setup with equal bias
across both junctions, increasing the current in one branch will
lead to an increase in the other branch as well. This mimics
Cooper pair splitting in multiterminal proximity devices, and
an adequate analysis of the experimental data is needed in order
to avoid possible misinterpretations. Our theoretical model
provides a proper tool for such analysis.

Finally, we would like to point out that even at rather small
voltages heating effects in our structures can be non-negligible
and should be treated on equal footing with, e.g., the effects of
electron-electron interactions. This subject, however, requires
a separate consideration that goes beyond the simple analysis
presented here.
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APPENDIX: COULOMB CORRECTION TO THE CURRENT

The Coulomb correction to the current can be derived
from the theory of environmental Coulomb blockade.38 For
simplicity, we first consider a single detector tunnel junction
between normal and superconducting bulk leads. In this case,
the theory38 predicts the current in the form

Idet = −Gdet
T

e

∫
dEdE′ν(E′)

{
fdet(E,Tdet)

[
1 − fS

(
E,T S

det

)]
×Pdet(E − E′ + eV1) − [1 − fdet(E,Tdet)]fS

(
E,T S

det

)
×Pdet(E

′ − E − eV1)
}
, (A1)

where

Pdet(E) =
∫

dt

2π
eJdet(t)+iEt (A2)

is the probability to emit a photon with energy E to the
electromagnetic environment of the junction defined in terms
of the phase correlation function J (t):

Jdet(t) = e2

π

∫ ∞

0
dω

Re
[
ZE

det(ω)
]

ω

×
[

(cos ωt − 1) coth
ω

2T
− i sin ωt

]
. (A3)

Here, ZE
det(ω) is the impedance of the environment “seen” by

the detector tunnel junction. Here, we will choose it in the
form

ZE
det(ω) = RE

det

1 − iωτRC

, (A4)

where RE
det is an effective Ohmic shunt of the detector

junction and τRC ≈ RE
detCdet is a (short) charge relaxation time
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depending on the effective junction capacitance Cdet. With a
reasonable accuracy one can identify the shunt resistance RE

det
with the resistance of the normal wire attached to the detector
junction rN

det, i.e., RE
det ≈ rN

det.
Here, we are mostly interested in the nonlocal contribution

to the detector current. It can be derived in the same way as the
main contribution to the current (A1) repeating the procedure
outlined, e.g., in the review 38.

As a first step one assigns a phase factor eiϕ̂j (t) (j = inj
or j = det) to the tunneling amplitudes of the junctions tj

treating the phases ϕ̂j (t) as quantum operators. This phase
is related to the voltage fluctuations across the junctions,
˙̂ϕj (t) = eδV̂ (t). Next, one performs the standard perturba-
tive expansion of the current in powers of the tunneling
Hamiltonians of the two junctions to the lowest nonvanish-
ing order ∝t2

injt
2
dete

iϕ̂inj(t1)e−iϕ̂inj(t2)eiϕ̂det(t3)e−iϕ̂det(t4). Subsequent
averaging over the phase fluctuations results in the product
of the two functions Pinj(E1)Pdet(E2). Leaving out further
technical details, we go over to the final result, which
reads

δI nl
det = −G

(0)
nl

2e

∫
dEdE1dE2θ (|E| − �)Pinj(E1)Pdet(E2)[fdet(E − E2 + eV1) + 1 − fdet(E + E2 + eV1)]

×
{ (

2 − �2

E2 − �2

) [
fS

(
E,T S

inj

)
(1 − finj(E + E1 + eV2)) − (

1 − fS

(
E,T S

inj

))
finj(E − E1 + eV2)

]
− �2

E2 − �2

[
fS

(
E,T S

inj

)
(1 − finj(E − E1 − eV2)) − (

1 − fS

(
E,T S

inj

))
finj(E + E1 − eV2)

]}
. (A5)

Bearing in mind the property of the Fermi function f (−E) =
1 − f (E), it is straightforward to check that in the noninter-
acting limit, where Pinj(E) = Pdet(E) = δ(E), the correction
(A5) reduces to the charge imbalance correction defined in the
Eq. (8).

In the relevant for our experiment weak Coulomb blockade
limit gE

j ≡ 2π/e2RE
j � 1, we may express the functions

Pj (E) in the form

Pj (E) = δ(E) + δPj (E), (A6)

where we defined

δPj (E) ≈ 2

gE
j

(e−γ EτRC)2/gE
j

E
(
1 + E2τ 2

RC

)
(1 − e−E/T )

− 2

gE
j

δ(E)
∫

dE′ (e−γ E′τRC)2/gE
j

E′[1 + (E′)2τ 2
RC

]
(1 − e−E′/T )

.

Within this approximation and in the limit Tinj,Tdet,T
S

inj,T
S

det →
0 the correction to the nonlocal conductance derived from the
general expression (A5) reduces to the form (10).
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Rev. Lett. 109, 207001 (2012).

41W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin,
Superlatt. Microstruct. 25, 1251 (1999).

42P. Virtanen and T. Heikkil, Appl. Phys. A 89, 625 (2007).
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