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Phase-dependent Andreev spectrum in a diffusive SNS junction:
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A long phase coherent normal (N) wire between superconductors (S) is characterized by a dense phase-
dependent Andreev spectrum. We investigate the current response of Andreev states of an NS ring to a time-
dependent Aharonov Bohm flux superimposed to a dc one. The ring is modeled with a tight-binding Hamiltonian
including a superconducting region with a BCS coupling between electron and hole states, in contact with a
normal region with on-site disorder. Both dc and ac currents are determined from the computed eigenstates
and energies using a Kubo formula approach. Beside the well-known Josephson current, we identify different
contributions to the ac response: a low-frequency one related to the dynamics of the thermal occupations of the
Andreev states and a higher-frequency one related to microwave induced transitions between levels. Both are
characterized by phase dependencies with a high-harmonic content, opposite to one another. Our findings are
successfully compared to the results of recent experiments.
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I. INTRODUCTION

Most properties of a nonsuperconducting N metal con-
nected to two superconductors (an SNS junction) can be seen
as resulting from the phase-dependent Andreev states (AS)
in the N metal. These eigenstates are described by coherent
combinations of electron and hole wave functions, determined
by boundary conditions imposed by the superconducting
contacts.1 Whereas most equilibrium properties of SNS junc-
tions are well understood theoretically and experimentally,2–5

their high-frequency dynamics is a more complex issue, which
has only been addressed very recently via the investigation6,7

of NS rings submitted to a dc Aharonov Bohm flux �dc

with a small ac modulation δ�ω exp(−iωt). The quantity
measured is the ac current response δIω superimposed to the
dc Josephson current. Within linear response, δIω is related to
δ�ω by the complex susceptibility χ (ω) = δIω/δ�ω = iωY ,
where Y is the impedance of the NS ring. Our work is
motivated by these recent experiments,6,7 which revealed
the dc flux, frequency, and temperature dependencies of the
response function χ (ω) and related them to the various relevant
energy scales: the Thouless energy ETh(inverse diffusion
time through the N wire) and the relaxation rate of the
population of the Andreev levels. On the theoretical side, the
linear response of SNS junctions has been investigated using
time-dependent Keldysh-Usadel equations.8 Whereas a good
agreement is found with experimental results in the frequency
range dominated by relaxation processes of the population
of the Andreev levels, the theoretical results obtained at
higher frequency, i.e., in the regime where the dynamics is
dominated by quasiresonant absorption of photons do not
agree with experimental findings. In order to elucidate this
disagreement, we have performed a Kubo analysis of the
linear current response of an NS ring to an ac flux, calculated
from the Andreev eigenstates and energies. The diffusive
NS ring is described with a tight-binding Bogoliubov-de
Gennes Hamiltonian. As detailed in Sec. II, this Hamiltonian
describes a ring containing a superconducting region with a
BCS coupling between electron and hole states, in contact with
a normal region with on site (Anderson type) disorder and a

vector potential imposing the phase(ϕ)-dependent boundary
condition. The eigenstate spectrum is obtained by numerical
diagonalization. For a long diffusive N metallic wire (of length
L greater than the superconducting coherence length ξs), we
find that as expected the spectrum exhibits a phase-dependent
gap 2Eg(ϕ).2,9 This so-called minigap, much smaller than
the superconducting gap �, is fully modulated by the phase
difference of the superconducting order parameter ϕ across
the N region. Eg(ϕ) is maximal at ϕ = 0 with Eg(0) � 3.1ETh

and goes linearly to zero at ϕ = π , approximatively like
Eg(ϕ) � Eg(0)| cos(ϕ/2)|.9,10 The phase-dependent Joseph-
son current IJ (ϕ) at equilibrium is calculated by summing
the contributions of each AS of energy εn, via in = − 2e

h̄

∂εn

∂ϕ
,

the current carried by level n of thermal occupation factor
fn(ϕ) = f (εn(ϕ)), where f (ε) is the Fermi-Dirac distribution
function:

IJ (ϕ) =
∑

n

fn(ϕ)in(ϕ). (1)

In Sec. III, we show how to compute from the Andreev levels
and eigenstates, the ac linear response of the NS ring to an ac
flux, using a Kubo formula similarly to what was previously
done in normal Aharonov Bohm rings.11–13 One can
identify two main mechanisms responsible for the frequency
dependence of the in-phase susceptibility and correlatively
the existence of an out-of-phase dissipative response.

The first mechanism, discussed in Sec. IV, is the relaxation
of the thermal populations of the Andreev levels with a time
scale τin, the inelastic scattering time. It leads to a response
χD that can be expressed with the diagonal matrix elements
of the current operator. This mechanism is at the origin of a
drastic increase of the harmonic content of the nondissipative
response, in contrast with the zero-frequency susceptibility
χ (0) = χJ = ∂IJ /∂�, which is a pure cosine in the same
regime of temperature. The dissipative response χ ′′

D is nearly
π periodic with extra cusps at π that reflect the closing of the
minigap.

The second mechanism, discussed in Sec. V, dominates
at frequencies ωτin � 1. It corresponds to quasiresonant

174505-11098-0121/2013/88(17)/174505(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.174505
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transitions above the minigap within frequency scales of the
order of Eg(ϕ)/h̄. In the limit where h̄ω � Eg � kBT , this
phase-dependent dissipative response is simply proportional
to the opposite of the minigap. In the other limit kBT �
Eg � h̄ω, this dissipative response is mainly determined by
the flux dependence of the nondiagonal matrix elements of
the current operator and is reversed in sign compared to the
diagonal ones determining the low-frequency phase-dependent
dissipation χ ′′

D . In Conclusion, we compare our results to recent
experiments6,7 and theoretical results based on frequency-
dependent Usadel equations.8

II. TIGHT-BINDING HAMILTONIAN FOR
A DIFFUSIVE SNS RING

We implement the Bogoliubov-de Gennes Hamiltonian
described by the four blocks matrix:

H =
(

H − EF �

� EF − H ∗

)
, (2)

where H and −H ∗ are N × N matrices that describe respec-
tively the electron and holelike wave function components of
a hybrid NS ring within a tight-binding 2D model with on-site
disorder:

H =
N∑

i=1

εi |i〉〈i| +
∑
i �=j

tij |i〉〈j |. (3)

The ring has N = NN + NS = Nx × Ny sites on a square
lattice of period a, with a normal portion of NN = NN

x × Ny

sites in contact with a superconducting one (NS = NS
x ×

Ny sites). The on-site random energies εi of zero average
and variance W 2 describe the disorder in the ring. The
hopping matrix element between nearest neighbors reads
tij = t exp iϕij , where the phase factor is related to the
superconducting phase difference through the normal junction
via ϕij = (π/2�0)

∫ 	A 	dl = ϕ(xi − xj )/NN
x , which describes

the effect of an Aharonov-Bohm flux � = ANN
x a = �0ϕ/2π ,

and �0 = h/2e is the superconducting flux quantum. For sites
in the S part, ϕij = 0. The BCS diagonal matrix � couples
electron and hole states exclusively in the S part �i,i = �

for NN + 1 � i � N and is zero otherwise. We have chosen
the amplitude of the superconducting gap � = t/4 such that
the S coherence length ξs = at/� 
 NS

x in order to avoid
any reduction of the superconducting correlations in the S
region (inverse proximity effect). The number of transverse
channels and the amplitude of the disorder correspond to the
diffusive regime where the length Nxa of the normal region
is longer than the elastic mean-free path le and shorter than
the localization length Nyle. The length le is related to the
amplitude of disorder by le � a15(t/W )2 at 2D.14 We checked
that the results do not depend on the position of the Fermi
energy, typically chosen at filling 1/4. Hereafter, all energies
are taken relatively to EF .

A. Minigap and dc Josephson current

Typical flux-dependent spectra obtained upon diagonaliza-
tion of the Hamiltonian H (2) are shown in Fig. 1. At energy
well below the superconducting gap, energy levels exhibit a

mean level spacing δN = EF /NN characteristic of the normal
part and a �0 = h/2e periodicity. These constitute the Andreev
spectrum. A denser spectrum is observed above the gap with
the periodicity h/e as expected for a normal ring, see Figs. 1(a)
and 1(b). By construction, the spectrum is perfectly symmetric
with respect to the Fermi energy. We observe disorder-
dependent fluctuations [see Fig. 1(c)] of the position of the
energy levels in the spectrum. At low energy, the amplitude of
these fluctuations is of the order of the mean level spacing δN in
the N part of the ring in which Andreev levels are confined. The
flux-dependent minigap closes linearly at ±π in the limit of a
very dense spectrum and can be well described as expected by
Eg(ϕ) = Eg(0)| cos(ϕ/2)|9 [see Fig. 1(d)]. In short junctions,
this closing of the gap at ϕ = π is directly related to the
existence of conductance channels of transmission one in
a large diffusive system.15,16 In long junctions, the same
qualitative behavior is observed even though Andreev levels
and eigenvalues of the transmission matrix are not simply
related and that the amplitude of the minigap is much smaller
than the superconducting gap. As shown in Fig. 2, the
flux dependence of the Josephson current IJ (ϕ) and its flux
derivative at low temperature are sensitive to the anharmonicity
of the flux dependence of low-energy levels and exhibit a
slight skewness. IJ (ϕ) becomes sinusoidal at temperatures
larger than the Thouless energy (of the order of 0.03� in
the simulations) according to Ref. 2. We will see in the
following that the ac current response is much more sensitive
than the Josephson current to the strong anharmonicity of
the flux-dependent minigap, and exhibits strong anomalies
at π that survive at temperatures larger than the Thouless
energy.

III. FINITE FREQUENCY LINEAR RESPONSE

We investigate the linear dynamics of the NS ring
excited by an ocillating flux δ�(t) = δ� exp(−iωt) leading to
the time-dependent Hamiltonian H (t) = H0 − Jδ�(t), where
J is the current operator. Inspired by previous work on
the dynamics of persistent currents in normal mesoscopic
Aharonov Bohm rings,12,13 we use as a starting point the
master equation describing the relaxation of the density matrix
towards equilibrium:

∂ρ(t)/∂(t) = (1/ih̄) [H (t),ρ] − �[ρ(t) − ρeq(t)], (4)

where the equilibrium density matrix ρeq(t) =
exp −H (t)/kBT and the phenomenological relaxation
tensor � describes the coupling of the system to a thermal
reservoir. The diagonal elements γnn = γD = h̄/τin describe
the relaxation of the populations fn of the Andreev states
due to inelastic scattering such as electron-phonon or
electron-electron collisions. Nondiagonal elements γnm

describe the relaxation of the coherences ρnm(t) due to
interlevel transitions. We will mostly consider the limit where
ω and kBT � γnm � δN , for which the response function
is independent of the values of γnm. Following12,13 the
linear current response δI (t) = Tr(Jδρ(t)) + Tr(δJ (t)ρ0) is
expressed via the complex susceptibility χ (ω) = δI (t)/δ�(t)
(ρ0 = ∑

n fn(�dc)|n〉〈n| is the unperturbed matrix density)
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(a) (b)

(c) (d)

FIG. 1. (Color online) Phase-dependent spectrum of Andreev levels: (a) close to the Fermi energy and (b) above the superconducting gap
for a diffusive ring with NN

x = 60 × 24 normal sites and on-site disorder of amplitude W/t = 1.5. (The number of S sites with � = t/4
is NS = 50 × 24.) Note the denser spectrum above the minigap and the different periodicity. (c) Same as (a), for three different disorder
configurations (different colors). Note the symmetry of the spectrum with respect to the Fermi level at zero energy as well as the opening of the
phase-dependent minigap, whose amplitude scales with the Thouless energy, ETh = δNNyle/N

Na, where δN is the energy level spacing in the
normal region. (d) Diffusive ring with a larger number of transverse channels NN = NN

x × Ny = 20 × 100 normal sites for a single disorder
configuration of amplitude W/t = 1.5. (The number of S sites is NS = 20 × 100.)

leading to

χ (ω) = −N
e2

2mL2
−

∑
n

∂fn

∂εn

|Jnn|2 γD

γD − iω

−
∑

n,m�=n

|Jnm|2 fn − fm

εn − εm

i(εn − εm) + h̄γnm

i(εn − εm) − ih̄ω + h̄γnm

.

(5)

Jnm is the matrix element of the current operator between the
eigenstates n and m of the unperturbed Hamiltonian H0 and
Jnn = in. Using the sum rule derived from the second-order
perturbation of H with respect to the perturbation Jδϕ:12,17

∑
m�=n

|Jnm|2
(εn − εm)

= −1

2

∂in

∂�
− e2

2mL2
. (6)

χ (ω) can be expressed as

χ (ω) = ∂IJ

∂�
−

∑
n

i2
n

∂fn

∂εn

iω

γD − iω
−

∑
n,m�=n

|Jnm|2

× fn − fm

εn − εm

ih̄ω

i(εn − εm) − ih̄ω + h̄γnm

. (7)

This second expression clearly yields the zero-frequency limit
of the susceptibility χ (0) = ∂IJ /∂�. This expression also

emphasizes the two relaxation processes that cause frequency-
dependent effects as discussed in the next sections.

IV. DIAGONAL SUSCEPTIBILITY AND RELAXATION
OF ANDREEV LEVELS POPULATIONS

We discuss in the following the second term of expression
(7) that we call χD and is the finite frequency nonadiabatic
contribution due to the thermal relaxation of the populations
fn of the Andreev levels with the characteristic inelastic time
τin.20 As pointed out in Ref. 12, this term contains exclusively
diagonal elements of the current operator and is, like χJ ,
nonzero only in the Aharonov Bohm ring geometry. It is
associated to the existence of a finite persistent current in a
phase coherent ring at equilibrium. It is proportional to the
sum over an energy range kBT around the Fermi energy of
the square of the single-level current i2

n . We recast χD into a
product of a frequency-dependent term and a phase-dependent
one:

χD(ω) = iωτin

1 − iωτin
F (ϕ,T ), (8)

where F (ϕ,T ) = −�n(i2
n

∂fn

∂εn
). We have numerically evaluated

this function deriving in from the phase derivative of each
eigenenergy pictured in Fig. 1. F (ϕ) is shown for different
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φφ

FIG. 2. (Color online) Phase-dependent Josephson current and susceptibility calculated from the Andreev spectrum shown in Fig. 1(left).
The temperatures correspond to 0.01, 0.02, 0.04, 0.06, and 0.08 in the units of the superconducting gap �. The amplitude of the minigap is
estimated to be 0.04 �. The anharmonicity is best revealed on the derivative dIJ /dφ.

temperatures in Fig. 3. As expected, F (ϕ) has a strong second-
harmonic component and exhibits sharp anomalies in the
vicinity of odd multiples of π for which the minigap closes. In
the continuous spectrum limit and for kBT � ETh, F (ϕ,T ) can
be written in terms of the spectral current J (ε) and the density
n(ε) of Andreev levels as F (ϕ,T ) = ∫

J 2(ϕ,ε)/[kBT n(ε)]dε.
This function, initially introduced by Lempitsky21 to describe
nonequilibrium effects in voltage biased SNS junctions, can
be approximated by the analytical expression derived from
Usadel equations in the limit where kBT � Eg(0):6,8

FU (ϕ,T ) ∝
(

1

kBT

){
[−π + (π + ϕ)(2π )] sin(ϕ)

− | sin(ϕ)|
π

sin2(ϕ/2)

}
. (9)

As shown on Fig. 3, this analytical form describes well the
phase dependence of the numerical results at temperatures

larger than Eg(0). We find, however, that the 1/T decrease
at large temperature predicted in Eq. (9) is only qualitatively
obeyed for numerical results. As pointed out in the context
of atomic point contacts,18 the dissipative component of
χD is related via the fluctuation dissipation theorem to the
existence of a nonintuitive supercurrent low-frequency thermal
noise.18 This low-frequency noise due to the closing of the
minigap at π does not exist in ordinary tunnel Josephson
junctions.19 One can associate to this dissipative response an
effective phase-dependent conductance δGeff(ϕ) = χ ′′

D(ϕ)/ω.
The amplitude of δGeff(ϕ) at frequencies smaller than γD

and temperatures of the order or larger than Eg is of the
order GNE2

g/(kBT h̄γD) and can be much larger than GN ,
the normal state conductance. This component χD(ω,ϕ) was
recently experimentally measured on a mesoscopic NS ring7

with a very good quantitative agreement with expressions (8)
and (9).

φ φ

F(
φ,

T)
  (

a.
u.

)

F(
φ)

  (
a.

u.
)

FIG. 3. (Color online) (Right) Phase dependence of the function F computed for different temperatures, increasing from the top to the
bottom curves, in units of the minigap: 2Eg(0). (Left) Comparison of the numerical results (diamonds) with the analytical expression (9)
(continuous line) at a temperature equal to the minigap 0.08�.
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V. NONDIAGONAL SUSCEPTIBILITY AND
MICROWAVE INDUCED TRANSITIONS

IN THE ANDREEV SPECTRUM

A. Analytical considerations

We now consider the contributions of nondiagonal ele-
ments of the current operator, which describe the physics of
microwave induced transitions within the Andreev spectrum,

χND =
∑

n,m�=n

|Jnm|2 fn − fm

εn − εm

ih̄ω

i(εn − εm) − ih̄ω + h̄γND
, (10)

where we have assumed that all γnm are identical given by a
single γND.

In the continuous spectrum limit, the average level spacing
δN is much smaller than the energy scales γND, kBT , and h̄ω,
so that one can write

χND = −
∫ EM

−EM

|Jε,ε′ |2 f (ε) − f (ε′)
ε − ε′

ih̄ω

i(ε − ε′) − ih̄ω + γND

× n(ε)n(ε′)dεdε′, (11)

where EM is a high-energy cutoff of the order of the bandwidth,
from now on arbitrarily taken as unity, and n(ε) is the density
of states at energy ε. In the limit where the induced minigap
is very small compared to the superconducting gap � (long
junction), one can approximate the density of states as a
step function at Eg(ϕ): n(ε,ϕ) = n0[θ (ε − Eg(ϕ)) + θ (−ε −
Eg(ϕ))], [with θ (x), the Heaviside function]. Below, we also
assume that |Jε,ε′ |2 can be approximated by a constant J 2.
We will see that this approximation is valid when kBT 

Eg < h̄ω where the dominant contribution comes from matrix
elements nearly independent of ϕ. This leads to

χND = −n2
0

∫∫
|ε|,|ε′|�Eg(ϕ)

dεdε′

×
[
|J |2 f (ε) − f (ε′)

ε − ε′
ih̄ω

i(ε − ε′) − ih̄ω + γND

]
. (12)

We define δχ ′
ND = χ ′

ND(π ) − χ ′
ND(0) and δχ ′′

ND =
χ ′′

ND(π ) − χ ′′
ND(0) as the amplitudes of the flux-dependent

components of the real and imaginary parts of χND(�,ω). The
frequency dependence of these quantities is depicted in Fig. 4

for several values of the minigap larger than the temperature.
We find that δχ ′

ND is negative and decreases slowly at low
frequency with an inflexion point at ω = Eg(0)/h̄; δχ ′′

ND
is positive and increases linearly with frequency up to
ω = Eg(0)/h̄ and is independent of frequency at larger values.
These results, in agreement with Kramers-Kronig relations,
show that the minigap is the fundamental frequency scale
for χND(ϕ). In the limit where γND 
 ω and γND 
 kBT ,
γND/[(ε − ε′ − h̄ω)2 + γ 2

ND)] entering in χ ′′ deduced
from Eq. (12) can be approximated by the δ function:
δ(ε − ε′ − h̄ω). It is then possible to express simply χ ′′

ND(ω,ϕ)
analytically as

χ ′′
ND = n2

0|J |2
∫

|ε|�Eg(ϕ)
[f (ε) − f (ε + h̄ω)] dε. (13)

Because the variation in ϕ is only contained in the integration
limits, we find that in the frequency range where ω � kBT ,
χ ′′(ϕ) mimics the minigap (with a minus sign) in the flux
domain where h̄ω � 2Eg(ϕ) and reads χ ′′

ND(ϕ,ω) = GN (ω −
2Eg(�)/h̄). The normal state conductance GN = χ ′′

ND(π )/ω
(where the minigap closes) can be expressed as GN = |J |2n2

0.
On the other hand, at low frequencies below Eg(ϕ), χ ′′

ND(ϕ) is
equal to zero. As a result, when ω 
 Eg(0), the flux-dependent
absorption exhibits sharp peaks at odd multiples of π whose
amplitude scales linearly with ω as shown on Fig. 4. One
finds that at low frequency, the ratio δχ ′′

ND/δχJ = δχ ′′/δχJ

varies like h̄ω/Eg . There is, however, no simple analytical
expression for the complete phase and frequency dependencies
of χ ′(ω,ϕ) owing to the fact that according to Eq. (12), it
explicitly depends logarithmically on the energy cutoff EM .

In the opposite limit of high temperature T � Eg � h̄ω,
we can easily find from Eq. (11) that the ratio δχ ′′

ND/δχ ′
J (T )

varies like h̄ω/kBT , independently of the energy and phase
dependence of |Jε,ε′ |2. It is, however, not possible to use
Eq. (13) to deduce the phase dependence of χ ′′

ND. This
equation relies on a crude approximation neglecting the
phase dependence of the nondiagonal matrix elements of the
current operator. We will show in the next paragraph devoted
to numerical calculations that this approximation is only
reasonable at low temperature and large frequency where, in
the expression of χ ′′

ND, only a small number of matrix elements

φ

FIG. 4. (Color online) Nondiagonal suscep-
tibility calculated assuming no phase depen-
dence for the nondiagonal matrix elements of the
current operator. The temperatures and frequen-
cies investigated correspond to T 
 h̄ω. The
values of γND and kBT were both taken equal to
0.01, i.e., much smaller than the minigap 2Eg(0).
(Left) Frequency dependence of δχ ′′

ND and δχ ′
ND

dissipative and nondissipative responses for dif-
ferent values of the minigap. (Right) Phase
dependence of χ ′′

ND for different frequencies. The
thick continuous lines correspond to a fit with a
−| cos(ϕ/2)| ∝ −Eg(ϕ) dependence.
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contribute. These are matrix elements |Jε,ε′ |2 coupling negative
energy levels close to the minigap to positive energy levels
much larger than Eg . These matrix elements have indeed only
a very small phase dependence. On the other hand, at high
temperature, kBT � Eg , a large number of matrix elements
|Jε,ε′ |2 contribute to the integral in ε′ in Eq. (11). We can then
estimate their contribution to the phase dependence of χ ′′

ND
using the fact that Tr(J 2) = �n|Jnn|2 + �n,m�=n|Jnm|2 does not
depend on the Aharonov-Bohm phase just like Tr(H) (since
the Aharonov Bohm phase only affects nondiagonal matrix
elements of H). The sum of all nondiagonal matrix elements
|Jnm(ϕ)|2 with m �= n is thus opposite in sign to the variation
of F (ϕ) ∝ ∑

n |Jnn|2 at large T . Therefore, in the limit T �
h̄ω � Eg(0), where the sum of a large number of nondiagonal
matrix elements |Jnm(ϕ)|2 with m �= n contributes to the phase
dependence of χ ′′

ND, the phase dependencies of χ ′′
D and χ ′′

ND are
thus expected to be reversed from one another. The results of
the numerical simulations presented in the next section agree
with this simple qualitative prediction.

B. Numerical results for the nondiagonal susceptibility

The nondiagonal matrix elements of the current operator
	J = (h̄/i) 	∇ − q 	A along the ring are calculated from the eigen-

wave-functions according to

Jnm = h̄

i

∑
j

�e∗
n (xj ,yj )

[
�e

m(xj + 1,yj )

−�e
m(xj ,yj ) + eA(xj )

] + �h∗
n (xj ,yj )

× [
�h

m(xj + 1,yj ) − �h
m(xj ,yj ) − eA(xj )

]
, (14)

where �e
m(xj ,yj ) and �h

m(xj ,yj ) correspond respectively to
the electron and hole components of the wave function at point
j of coordinates (xj , yj ) in units of a. The phase dependence
of the square modulus of these matrix elements is shown for
various indices n and m in Figs. 5 and 6. The indices n and m

are taken respectively positive above and negative below the

60x10-3
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20

0
6543210

J-1,1
J-1,2
J-1,7

|J nm
|² 

3x10-3

2

1

0
6543210

J1,-7

J1,-3

J1,-5

φ

φ

FIG. 5. (Color online) Phase dependence of the nondiagonal
current matrix elements |J−1,n|2 coupling the highest level below
the minigap to levels above the minigap. (Inset) Zoom on |J−1,n|2
with n > 1, which have a very small phase dependence compared
to |J−1,1|2. They are obtained from the exact diagonalization of the
spectrum of an NS ring whose normal region size is 90 × 30 and
W/t = 2. The minigap amplitude is 2Eg(0) = 8δN .

60x10-3

40

20

0
6543210

J1,-1
J2,-2
J3,-3
J9,-9

|J nm
|²(a

.u.
)

φ

50x10-3

40
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20

10

0
6543210

J1,1

J2,2J3,3

|J n,n
|²

φ

FIG. 6. (Color online) Phase dependencies of the electron hole
symmetrical nondiagonal matrix elements compared to the diagonal
ones shown in the inset. These matrix elements are obtained from
the exact diagonalization of the spectrum of an NS ring whose
normal region size is 90 × 30 and W/t = 2. The minigap amplitude
is 2Eg(0) = 8δN .

minigap. Whereas |J−11(ϕ)|2 = i2
1 (ϕ) exhibits a strong peak at

ϕ = π , the amplitude of |J−1n(ϕ)|2 is much smaller at large
n with a phase dependence that is smooth around π and a
maximum around zero phase, see Fig. 5. On the other hand,
matrix elements |J−nn(ϕ)|2 corresponding to states symmetric
with respect to the minigap, i.e., electron hole symmetric states,
keep a phase dependence peaked at π similar but reversed in
sign compared to |J1,1|2(ϕ). We can see in Fig. 6 that their
amplitude decreases only slowly with n in contrast to the fast
amplitude decrease of the diagonal matrix elements Jnn = in
shown in the inset. Whereas we can understand qualitatively
that matrix elements between electron-hole symmetric states
such a |J−nn| are much larger than matrix elements between
nonsymmetrical states |J−nm| with n �= m, it is difficult to
explain why their decay with n is lower than the decay of the
diagonal matrix elements |Jnn|. The difference between the
phase dependence of |J−nn(ϕ)|2 compared to |J−1n(ϕ)|2 can
qualitatively explain the evolution of the shape of χND(ϕ) in
the limit ω � kBT compared to ω 
 kBT . In the first case,
the main contribution stems from matrix elements |J−1n(ϕ)|2,
where n � 1 with a very small phase dependence, whereas
in the second case, a much larger number of matrix elements
contribute to χ ′′

ND, including the electron hole symmetrical
ones |J−nn(ϕ)|2.

χ ′′
ND(ϕ) is computed from these matrix elements and the

related energy spectrum following Eq. (10). We took γND =
3δN in order to reproduce the continuous spectrum limit.
The results concerning the imaginary component χ ′′

ND(ϕ) are
shown in Figs. 7(a) and 7(b) for h̄ω > kBT and h̄ω < kBT ,
respectively. In the first case, h̄ω > kBT , we find good
qualitative agreement with our analytical findings neglecting
the flux dependence of the |Jnm|2 in particular δχ ′′

ND(ϕ) is
peaked at π and its amplitude increases linearly with frequency
up to h̄ω = 2Eg , whereas in the second case, h̄ω < kBT , we
find that the shape of δχ ′′

ND(ϕ) is very similar to the opposite of
the function F (ϕ) (giving the phase dependence of the average
square of the single level current) with a characteristic bump at
ϕ = 0 [see Eq. (8)]. A similar behavior is found for δχ ′

ND(ϕ).
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FIG. 7. (Color online) Evolution of the phase dependence of
GND = χ ′′

ND/ω obtained from the exact diagonalization of the spec-
trum of an NS ring (size 90 × 30) W/t = 2 using Eq. (10) γND = 3δN .
(Top) For kBT = 2δN and different frequencies h̄ω > kBT below and
of the order of the minigap, note the good agreement with the data
obtained in Fig. 4, neglecting the phase dependence of the current
matrix elements. (Bottom) h̄ω = 2δN and different temperatures
kBT > h̄ω below and of the order of the minigap. For the largest
temperature, the phase dependence observed is close to the opposite
of the function FU (ϕ), continuous line.

VI. CONCLUSION

We have developed a simple model for the computation
of the ac linear response of an NS diffusive ring to a high-
frequency flux in the long junction limit. Starting from the dc
phase-dependent Andreev spectrum and wave functions of the
ring, we use a Kubo formula adapted for the Aharonov-Bohm
geometry, which yields the complex susceptibility of the ring
as a function of the energy levels and matrix elements of
the current operator. We clearly identify two different finite
frequency contributions superimposed to the dc response
which is the flux derivative of the Josephson current. The first
one, expressed in terms of the diagonal element of the current
operator, can be understood as the Debye relaxation of the
populations of the Andreev states. The second one, expressed
in terms of the nondiagonal matrix elements of the current
operator, describes interlevel transitions within the Andreev
spectrum. It is striking that numerical simulations on small sys-
tems with less than ten levels in the energy scale corresponding
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FIG. 8. (Color online) The phase-dependent dissipative response
measured experimentally7,22 is shown for three different regimes:
circles: ωτin � 1, where χ ′′

D is the dominant contribution with a phase
dependence following F (ϕ). At frequencies and kBT of the order
of Eg(0), the dissipative response is dominated by χ ′′

ND (triangles)
and we observe a phase dependence peaked at π , which resembles
the minigap. In the limit where kBT > ω � Eg , a phase dependence
opposite to F (ϕ) is found (squares) as expected for the contribution of
the nondiagonal matrix elements of the current operator, in agreement
with the results in Fig. 7. The continuous line is −FU (ϕ) calculated
from expression (9).

to the minigap can reproduce the experiments7,22 investigating
the ac susceptibility of an NS ring where Eg/δN is of the
order of 1000, as illustrated in Fig. 8. The phase-dependent
dissipative response is shown for three different regimes:
(i) ωτin � 1, where χ ′′

D is the dominant contribution with a
phase dependence well described by F (ϕ); (ii) at frequencies
and kBT of the order of Eg(0), we observe a phase dependence
peaked at π , which resembles the minigap; (iii) finally, in
the limit where kBT > ω � Eg , a phase dependence opposite
to FU (ϕ) is found, as expected for the contribution of
the nondiagonal matrix elements of the current operator,
in agreement with the numerical results in Fig. 7. On the
other hand, whereas Usadel equations8 provide an excellent
agreement between the numerical and experimental findings
for the diagonal contribution χD , the high-frequency regime
yields different results. In particular, the predicted phase
oscillations of the susceptibility do not reproduce our findings.
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