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In-plane Fulde-Ferrel-Larkin-Ovchinnikov instability in a superconductor–normal metal bilayer
system under nonequilibrium quasiparticle distribution
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It is predicted that a new class of systems, superconductor/normal metal (S/N) heterostructures, can
reveal the in-plane Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) instability under nonequilibrium conditions at
temperatures close to the critical temperature. It does not require any Zeeman interaction in the system. For S/N
heterostructures under nonequilibrium distribution there is a natural easily adjustable parameter, the voltage,
which can control the FFLO state. This FFLO state can be of different types: plane wave, stationary wave, and
even two-dimensional structures are possible. Some types of FFLO state are accompanied by a magnetic flux,
which can be observed experimentally. All the types of FFLO state can be revealed through the temperature
dependence of the linear response of the system on the applied magnetic field near Tc, which strongly differs
from that for the homogeneous state.
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There are two mechanisms of superconductivity destruction
by a magnetic field: the orbital effect and the Zeeman
interaction of electron spins with a magnetic field. Usually
the orbital effect is more restrictive. However, there are several
classes of systems where the orbital effect is strongly weakened
(systems with large effective mass of electrons,1,2 thin films,
and layered superconductors under in-plane magnetic fields3)
or even completely absent [superconductor/ferromagnet (S/F)
heterostructures4,5]. Then the Zeeman interaction of electron
spins with a magnetic or an exchange field is responsible for
the destruction of superconductivity.

The behavior of a superconductor with a homogeneous
exchange field h was studied long ago.6–9 It was found that the
homogeneous superconducting state becomes energetically
unfavorable above the paramagnetic (Pauli) limit h = �0/

√
2,

where �0 is the zero-temperature superconducting gap. As
predicted by Larkin and Ovchinnikov6 and by Fulde and
Ferrell,7 in a narrow region of exchange fields exceeding this
value superconductivity can appear as an inhomogeneous
state with a spatially modulated Cooper-pair wave function
(the FFLO state).

Now there is a growing body of experimental evidence
for a FFLO phase, generated by an applied magnetic field,
reported from various measurements.10–24 However, there are
not yet reported unambiguous experimental results which can
be interpreted only as a fingerprint of the FFLO state.

On the other hand, it has been predicted recently25 that the
FFLO state can be realized in S/F heterostructures, where S is a
singlet s-wave superconductor. Here we mean the so-called in-
plane FFLO state, where the superconducting order parameter
profile is modulated along the layers. It should be distinguished
from the oscillations of the condensate wave function normal
to the S/F interface in the ferromagnetic layer, which have been
well investigated both theoretically and experimentally.4,5,26

In this paper we show that the in-plane FFLO state can be
the most energetically favorable state in S/N heterostructures
under a nonequilibrium quasiparticle distribution and propose
a way to observe it. The exchange field is absent in S/N het-
erostructures. Correspondingly, there is no Zeeman interaction

without an applied magnetic field. The transition to the FFLO
state occurs due to creation of a double-step electron distribu-
tion in the bilayer. This nonequilibrium state can be reached
by changing the chemical potentials of additional electrodes in
opposite directions by applying a control voltage.27,28 To the
best of our knowledge, there are very few proposals for a FFLO
state in nonmagnetic systems [for example, a current-driven
FFLO state in two-dimensional (2D) superconductors with
Fermi surface nesting,29 in unconventional superconducting
films,30 and in nonequilibrium N/S/N heterostructures at low
enough temperatures31). The effect considered here greatly
differs from the one discussed in Ref. 31. It was demonstrated
in Ref. 31 that a superconductor under a particular quasiparticle
distribution is very similar to a superconductor in a uniform
exchange field. Therefore, the FFLO state can be realized
in this system. It is possible only at low temperatures, as is
known for superconductors in a uniform exchange field.32

Such a system is not sufficient to obtain the FFLO state at
temperatures close to Tc. Here we show that two essential
components, a nonequilibrium quasiparticle distribution and
proximity between a superconducting film and a normal film of
a particular finite width, allow us to obtain the FFLO state near
Tc. The possibility to obtain the FFLO state at temperatures
close to Tc is of great interest at least for two reasons: (i)
We propose a way to reveal this FFLO state through the
temperature dependence of its linear response to the applied
magnetic field near Tc; (ii) the orbital effect of the applied
magnetic field is highly nontrivial in the FFLO state: it can
enhance Tc instead of suppressing it.33

In addition we propose an alternative way to generate the
FFLO state in S/N heterostructures. It can occur due to creation
of two shifted Fermi surfaces for spin-up and spin-down
electrons if a spin imbalance is generated in the system.

Now we proceed with the microscopic calculations of
the FFLO critical temperature of the S/N bilayer under
nonequilibrium conditions. The sketch of the system is shown
in Fig. 1. As we consider a nonequilibrium system, we make
use of the Keldysh framework of quasiclassical theory. In
our calculations we assume that (i) S is a singlet s-wave

174502-11098-0121/2013/88(17)/174502(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.174502


I. V. BOBKOVA AND A. M. BOBKOV PHYSICAL REVIEW B 88, 174502 (2013)

V

-V

N

S

L

dS

dN

FIG. 1. Sketch of the system under consideration.

superconductor; (ii) the system is in the dirty limit, so the
quasiclassical Green’s function obeys Usadel equations;34 (iii)
the thickness dS of the S layer is less than the superconducting
coherence length ξS = √

DS/�0. This condition allows us to
neglect the variations of the superconducting order parameter
and the Green’s functions across the S layer; (iv) we work in the
vicinity of the critical temperature, so the Usadel equations can
be linearized with respect to the anomalous Green’s function:

D∇2f̂ R + 2iεf̂ R + 2π�̂ = 0. (1)

Here f̂ R ≡ f̂ R(ε,r) is the retarded anomalous Green’s func-
tion. It depends on the quasiparticle energy ε and the coordinate
vector r = (x,r‖), where x is the coordinate normal to the S/N
interface and r‖ is parallel to the interface [(yz) plane]. The hat
over the anomalous Green’s function means that it is a 2 × 2
matrix in spin space. However, here we consider the S/N sys-
tem without Zeeman interaction, so the retarded and advanced
components of the Green’s function have the standard spin-
singlet structure f̂ R,A = f R,Aiσ2, where σ2 is the correspond-
ing Pauli matrix. While we consider only the singlet pairing
channel, the same is valid for the superconducting order param-
eter �̂ = �iσ2. The spin structure can appear only in the dis-
tribuion function, as is described below. D = DS(N) stands for
the diffusion constant in the superconductor (normal metal).

Equation (1) should be used with the Kupriyanov-Lukichev
boundary conditions35 at the S/N interface (x = 0):

σS∂xf
R
S = σN∂xf

R
N = gNS

(
f R

S − f R
N

)∣∣
x=0, (2)

where σS(N) stands for the conductivity of the S (N) layer
and gNS is the conductance of the S/N interface. The
boundary conditions at the ends of the bilayer are ∂xf

R
S |x=dS

=
∂xf

R
N |x=−dN

= 0.
In the FFLO state the superconducting order parameter and

the anomalous Green’s function are spatially modulated. We
assume that �(r) = � exp(ikr‖) and f (r) = f (x) exp(ikr‖).
It is worth noting here that this plane wave is not the only
possible type of spatially modulated FFLO state which is
allowed in the system. There can also be stationary wave
states modulated as cos(kr‖) and also 2D modulated structures.
However, it can be shown that the critical temperature of all
these states is the same and depends only on the absolute
value of the modulating vector k. Further choice of the most
energetically favorable configuration is determined by the
nonlinear terms in the Usadel equation, which are neglected
now. So, while we are interested only in the instability point
and the critical temperature of the corresponding FFLO state,
we can consider the simplest type of modulation.

Substituting the modulated Green’s function into the Usadel
equation, we obtain the anomalous Green’s functions in the S
and N layers:

fS = iπ�

ε + iDSk2/2 + igNSDSλ tanh[λdN ]
2σSds (λ tanh[λdN ]+gNS/σN )

, (3)

fN (x) = (gNS/σN ) cosh[λ(x + dN )]

λ sinh[λdN ] + (gNS/σN ) cosh[λdN ]
fS, (4)

where λ2 = k2 − 2iε/DN .
The critical temperature of the bilayer should be determined

from the self-consistency equation

� =
∫ ωD

−ωD

dε

4π

Im

[
f R

S

]
(ϕ↑ + ϕ↓), (5)

where ωD is the cutoff energy, 
 is the dimensionless coupling
constant, and ϕ↑,↓ is the distribution function for spin-up
(-down) quasiparticles. In order to generate the FFLO state
we need

ϕ↑ + ϕ↓ = tanh
ε − eV

2T
+ tanh

ε + eV

2T
. (6)

This quasiparticle distribution can be reached in the bilayer
in two different ways. (i) The bilayer can be attached to two
additional electrodes with a voltage applied between them.
We assume that the bilayer length L is shorter than the energy
relaxation length. Then the energy distribution of the electrons
in the bilayer is given by the superposition of the Fermi-
Dirac distributions of the reservoirs27,28 and ϕ↑ = ϕ↓. (ii)
If an electric current is injected into the bilayer through
a ferromagnet, spin imbalance is generated at the interface
between the ferromagnet and the nonmagnetic region. This
is the so-called Aronov gap.36,37 It provides the conversion
(by spin-relaxation processes) of the spin-polarized current,
injected from the ferromagnet, into the non-spin-polarized
current, because only the non-spin-polarized current can flow
through nonferromagnetic material. The value of the Aronov
gap at the interface with the ferromagnet can be estimated as
eV ∼ ePjinjρls , where P is the degree of spin polarization in
the ferromagnet, jinj is the density of the current injected
from the ferromagnet, ρ is the resistivity of the normal
metal, and ls is the spin-relaxation length in it. The spin
relaxation length is usually large in normal metals, so we can
assume that our bilayer is shorter than ls and, consequently,
the spin imbalance is spatially constant in it. In this case
ϕ↑(↓) = tanh[(ε ∓ eV )/2T ].

The critical temperature of the S/N bilayer as a function
of the modulation vector k is represented in Fig. 2. Different
curves correspond to different values of the applied voltage
eV . The curves of most physical interest are in the region
of small k and a narrow interval of eV close to eVc [see
Fig. 2(b)]. The critical voltage eVc corresponds to the complete
destruction of homogeneous superconductivity in our bilayer.
It is seen from Fig. 2(b) that if eV is close enough to eVc, the
critical temperature of the FFLO state is higher than Tc of the
homogeneous state. That is, the FFLO state is energetically
more favorable. The optimal values of the modulation vector
kopt, corresponding to the maximal Tc, are marked by points.
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FIG. 2. (a) Dependence of the S/N bilayer critical temperature vs the modulation vector k for different values of eV . Points mark
k = kopt. In units of Tc(eV = 0,k = 0), eV = 0,0.556,0.833,1.111 from top to bottom. (b) Enlarged region of (a), corresponding to small k.
eV = 1.112 01,1.112 41,1.112 443,1.112 457 from top to bottom. The other parameters are σS/σN = 0.5, ξSgNS/σS = 1.0, DS/DN = 0.04,
dN = 6.0ξS , dS = 0.8ξS (Ref. 38).

A more detailed analysis shows that for the system under
consideration the mean-field Tc is higher for a finite k than
for k = 0 at any eV . Does this mean that the S/N bilayer
should be in the FFLO state even in equilibrium (at eV = 0)?
In order to analyze this question we plot in Fig. 3 the
difference between the critical temperature of the FFLO
state corresponding to kopt and the critical temperature of
the homogeneous state δTc/Tc = [Tc(kopt) − Tc(k = 0)]/Tc vs
eV . As is seen from Fig. 3, δTc/Tc is very small for a wide
range of eV and grows sharply only in the narrow region near
eVc. We have estimated that for small enough voltage biases
δTc/Tc does not considerably exceed the Ginzburg number
Gi2D ∼ 0.1/(k2

F ld) ≈ 10−4–10−3. So we cannot conclude on
the basis of our mean-field analysis whether the FFLO state or
the homogeneous state is more energetically favorable in this
voltage range. However, in the narrow region of eV near eVc

(estimated width ∼0.1–1 μV) δTc/Tc exceeds Gi2D at least
by an order of magnitude. So for this voltage region the FFLO
state is indeed more favorable.

In addition, there is a narrow voltage region eV > eVc

where homogeneous superconductivity is completely de-
stroyed, but the FFLO state survives [see Fig. 2(b), where
the bottom curve corresponds to eV > eVc].

It is worth noting here that in order to observe the FFLO
state the number of inelastic scatterers should be very small in
the system. They can be described by adding an imaginary part
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FIG. 3. Dependence of δTc/Tc = [Tc(kopt) − Tc(k = 0)]/Tc on
eV . The parameters of the system are the same as in Fig. 2.

� to the quasiparticle energy ε → ε + i�. Then the condition
� < DSk

2
opt/2 should be fulfilled.

The plane-wave state � ∝ exp(ikr ||) can, in principle,
carry a supercurrent in the bilayer plane. It is interesting to
calculate this supercurrent. The corresponding expression for
the supercurrent density takes the form

j (0)(x) = σ (x)

4π2e
k

∫ ∞

−∞
dεIm

{
f (0)2

(x)
}
(ϕ↑ + ϕ↓), (7)

where σ (x) = σS(N) in the S (N) layer, and f (0)(x) is the
solution of the linearized Usadel equation, expressed by
Eqs. (3) and (4). The superscript (0) means that the value
is calculated in the absence of the magnetic field. It is well
known7 that for a homogeneous system the true ground
state corresponds to zero current density. For our bilayer
system this statement is valid for the total current, integrated
over the bilayer width

∫ dS

−dN
dxj (x) = 0. It can be shown by

straightforward calculations that this is valid simultaneously
with ∂Tc/∂k2 = 0, that is, at k = kopt. Vanishing of the total
current means that the supercurrent mainly flows in the
opposite directions in the N and S regions of the bilayer. This
results in the appearance of a magnetic flux, which can be
a hallmark of exp(ikr ||) in the bilayer. This flux is plotted
in Fig. 4 vs eV . The spatial profile of the corresponding
magnetic field is shown in the inset to Fig. 4. However,
for a state proportional to cos(ikr ||) the supercurrent density
j (x) = 0 locally for a given x. Consequently, this state is not
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FIG. 4. Magnetic flux per unit length along k, generated in the
plane-wave FFLO state of the S/N bilayer, vs eV . Inset: The spatial
profile of the corresponding magnetic field.
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accompanied by nonzero supercurrents and cannot be detected
by the corresponding magnetic flux.

Now we turn to the calculation of the Meissner response
of the bilayer in the limit of a weak magnetic field H ,
applied in the plane of the bilayer. As shown in Ref. 25, the
transition of S/F hybrid structures to the in-plane FFLO state
is accompanied by vanishing of the Meissner effect. This is
connected to the fact that the Meissner response of a S/F bilayer
in the homogeneous state can become paramagnetic, and such
a structure is unstable with respect to the formation of the
FFLO state.25 The homogeneous state of our nonmagnetic S/N
bilayer never exhibits the paramagnetic Meissner response. So
vanishing of the Meissner response cannot be a hallmark of the
in-plane FFLO state in our system. However, we have found
other features of the linear response which are typical for an
in-plane FFLO state in heterostructures.

We choose the vector potential A = (0,Hzx, − Hyx) to
be parallel to the yz plane. For the considered FFLO state
proportional to exp(ikr‖) the contribution to the electric
current density linear in magnetic field takes the form

j (1)(x) = σ (x)

2π2e

∫ ∞

−∞
dε

[
kIm{f (1)(x)f (0)(x)}

− e

c

(
A − c

2e
δk(1)

)
Im{f (0)2(x)}

]
(ϕ↑ + ϕ↓), (8)

where the vector potential is taken in the gauge-invariant form
A − c

2e
δk(1). f (1)(x) is the linear correction to the anomalous

Green’s function. It is worth noting that in the homogeneous
state f (1)(x) is zero in the gauge divA = 0. This is because
divA is the only possible first-order scalar function of A.
In the FFLO state f (1)(x) ∝ k A′

x . Therefore, in general, the
linear response of the heterostructure in the FFLO state can
be anisotropic with respect to the direction of the applied
magnetic field.39

The full expression for f (1)(x) takes the form

f (1)(x) = �(1)

�(0)
f (0)(x) + F

(1)
S , (9)

where

F
(1)
S = (2e/c)(iDS/dS)

E

[
f

(0)
S

∫ dS

0
k[A(x) − δk(1)]dx

+
gNS

σS

∫ 0
−dN

k[A(x) − δk(1)]f (0)
N (x) cosh[λ(x+dN )]

cosh[λdN ] dx

λ tanh[λdN ] + gNS/σN

]

(10)

and

E = ε + iDSk
2/2 + igNSDSλ tanh[λdN ]

2σSds(λ tanh[λdN ] + gNS/σN )
. (11)

The correction �(1) to the superconducting order parameter
linear in magnetic field can be obtained from the self-

consistency equation (5). The expression for �(1) takes the
form

�(1) =
∫ ωD

−ωD

dε
4π


Im
[
F

(1)
S

]
(ϕ↑ + ϕ↓)

1 − ∫ ωD

−ωD

dε
4 
Re [1/E] (ϕ↑ + ϕ↓)

. (12)

The denominator of Eq. (12) vanishes at T = Tc because it
is just the equation for calculating Tc at zero applied field.
Consequently, for temperatures close to Tc the linear correction
�(1) ∝ �(0)/(Tc − T ). Therefore, the main contribution to
f (1)(x) is given by the first term f

(1)
� (x) ∝ �(1) in Eq. (9).

In the state proportional to cos(kr‖) the leading contribution
to the Meissner current takes the same form (it is only twice
larger). Certainly, this behavior is violated extremely close to
Tc, where �(1) becomes of the order of �(0) and our linear
approximation fails.

Therefore, it follows from Eq. (8) that the Meissner
response of the S/N bilayer system in the FFLO state would
exhibit a nontrivial temperature dependence. While in the
homogeneous state the Meissner current j (1)(T ) ∝ �2 ∝
(Tc − T ) if the temperature is near Tc, in the FFLO state
the leading contribution to j (1)(T ) ∝ �(1)�(0) and does not
depend on temperature. In fact, this means that there are two
possibilities: (i) The temperature dependence of the Meissner
response near Tc in the FFLO state will be indeed nontrivial
or (ii) Tc itself is shifted by the magnetic field in the FFLO
state in the linear approximation, but the temperature depen-
dence of the Meissner response can be of standard type. At the
same time Tc of the homogeneous system does not depend
on the applied magnetic field in the linear approximation.
Which of the possibilities is realized in the particular system
depends on what type of FFLO state is more stable in the
system (plane wave, stationary wave, etc.). In any case, near
Tc the behavior of the linear response of the system to the
applied magnetic field in the FFLO state strongly differs
from the behavior of the same system in the homogeneous
state.

Anisotropy of �(1) with respect to the mutual direction
of the applied magnetic field and the modulation vector
k is also clearly seen from Eqs. (12) and (10). This, in
turn, leads to the corresponding anisotropy of the Meissner
response.

In conclusion, we have shown that the in-plane FFLO state
can be stabilized in a S/N bilayer under a nonequilibrium
quasiparticle distribution for temperatures close to Tc. Its
existence does not require any Zeeman interaction in the
system. In general, this FFLO state can be of different
types: plane wave, stationary wave, and, even, 2D structures
are possible. The plane-wave state is accompanied by an
internal magnetic flux. For all types of FFLO state near
Tc the temperature dependence of the linear response of
the system to the applied magnetic field should be strongly
nontrivial.

The authors are grateful to S. Mironov for useful dis-
cussions. Support by RFBR Grant No. 12-02-00723-a is
acknowledged.

174502-4



In-PLANE FULDE-FERREL-LARKIN-OVCHINNIKOV . . . PHYSICAL REVIEW B 88, 174502 (2013)

1A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L.
Sarrao, Phys. Rev. Lett. 91, 187004 (2003).

2C. Capan, A. Bianchi, R. Movshovich, A. D. Christianson,
A. Malinowski, M. F. Hundley, A. Lacerda, P. G. Pagliuso, and
J. L. Sarrao, Phys. Rev. B 70, 134513 (2004).

3S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M.
Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, Nature
(London) 410, 908 (2001).

4A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
5F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77,
1321 (2005).

6A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762
(1965) [Zh. Eksp. Teor. Fiz. 47, 1136 (1964)].

7P. Fulde and R. A. Ferrel, Phys. Rev. 135, A550 (1964).
8G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).
9K. Maki, Prog. Theor. Phys. 39, 897 (1968).

10J. Singleton, J. A. Symington, M.-S. Nam, A. Ardavan, M. Kurmoo,
and P. Day, J. Phys.: Condens. Matter 12, L641 (2000).

11M. A. Tanatar, T. Ishiguro, H. Tanaka, and H. Kobayashi, Phys.
Rev. B 66, 134503 (2002).

12A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich,
J. D. Thompson, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. Lett.
89, 137002 (2002).

13C. F. Miclea, M. Nicklas, D. Parker, K. Maki, J. L. Sarrao, J. D.
Thompson, G. Sparn, and F. Steglich, Phys. Rev. Lett. 96, 117001
(2006).

14S. Uji, T. Terashima, M. Nishimura, Y. Takahide, T. Konoike,
K. Enomoto, H. Cui, H. Kobayashi, A. Kobayashi, H. Tanaka,
M. Tokumoto, E. S. Choi, T. Tokumoto, D. Graf, and J. S. Brooks,
Phys. Rev. Lett. 97, 157001 (2006).

15J. Shinagawa, Y. Kurosaki, F. Zhang, C. Parker, S. E. Brown,
D. Jerome, K. Bechgaard, and J. B. Christensen, Phys. Rev. Lett.
98, 147002 (2007).

16R. Lortz, Y. Wang, A. Demuer, P. H. M. Bottger, B. Bergk,
G. Zwicknagl, Y. Nakazawa, and J. Wosnitza, Phys. Rev. Lett. 99,
187002 (2007).

17K. Cho, B. E. Smith, W. A. Coniglio, L. E. Winter, and C. C. Agosta,
J. A. Schlueter, Phys. Rev. B 79, 220507(R) (2009).

18J. A. Wright, E. Green, P. Kuhns, A. Reyes, J. Brooks, J. Schlueter,
R. Kato, H. Yamamoto, M. Kobayashi, and S. E. Brown, Phys. Rev.
Lett. 107, 087002 (2011).

19B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza,
Y. Nakazawa, and R. Lortz, Phys. Rev. B 83, 064506 (2011).

20W. A. Coniglio, L. E. Winter, K. Cho, C. C. Agosta, B. Fravel, and
L. K. Montgomery, Phys. Rev. B 83, 224507 (2011).

21C. Tarantini, A. Gurevich, J. Jaroszynski, F. Balakirev, E. Bellingeri,
I. Pallecchi, C. Ferdeghini, B. Shen, H. H. Wen, and D. C.
Larbalestier, Phys. Rev. B 84, 184522 (2011).

22T. Gebre, G. Li, J. B. Whalen, B. S. Conner, H. D. Zhou,
G. Grissonnanche, M. K. Kostov, A. Gurevich, T. Siegrist, and
L. Balicas, Phys. Rev. B 84, 174517 (2011).

23C. C. Agosta, J. Jin, W. A. Coniglio, B. E. Smith, K. Cho, I. Stroe,
C. Martin, S. W. Tozer, T. P. Murphy, E. C. Palm, J. A. Schlueter,
and M. Kurmoo, Phys. Rev. B 85, 214514 (2012).

24S. Uji, K. Kodama, K. Sugii, T. Terashima, Y. Takahide, N. Kurita,
S. Tsuchiya, M. Kimata, A. Kobayashi, B. Zhou, and H. Kobayashi,
Phys. Rev. B 85, 174530 (2012).

25S. Mironov, A. Melnikov, and A. Buzdin, Phys. Rev. Lett. 109,
237002 (2012).

26A. S. Sidorenko, V. I. Zdravkov, J. Kehrle, R. Morari, G. Obermeier,
S. Gsell, M. Schreck, C. Muller, M. Yu. Kupriyanov, V. V.
Ryazanov, S. Horn, L. R. Tagirov, and R. Tidecks, JETP Lett.
90, 139 (2009).

27H. Pothier, S. Gueron, N. O. Birge, D. Esteve, and M. H. Devoret,
Phys. Rev. Lett. 79, 3490 (1997).

28J. J. A. Baselmans, A. F. Morpurgo, B. J. van Wees, and T. M.
Klapwijk, Nature (London) 397, 43 (1999).

29H. Doh, M. Song, and H.-Y. Kee, Phys. Rev. Lett. 97, 257001
(2006).

30A. B. Vorontsov, Phys. Rev. Lett. 102, 177001 (2009).
31A. Moor, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 80, 054516

(2009).
32D. Saint-James, G. Sarma, and E. J. Thomas, Type II Superconduc-

tivity (Pergamon, Oxford, 1969).
33A. M. Bobkov and I. V. Bobkova, arXiv:1309.2461.
34K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
35M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163

(1988).
36A. G. Aronov, JETP Lett. 24, 32 (1976).
37M. V. Tsoi and V. S. Tsoi, JETP Lett. 73, 98 (2001).
38The parameters are chosen to be close to the real experimental

parameters for Nb/Cu bilayers.
39It was already proposed in the literature to detect the magnetic-

field-driven FFLO state by the anisotropy of Tc in dependence on
the magnetic field direction: M. D. Croitoru, M. Houzet, and A. I.
Buzdin, Phys. Rev. Lett. 108, 207005 (2012).

174502-5

http://dx.doi.org/10.1103/PhysRevLett.91.187004
http://dx.doi.org/10.1103/PhysRevB.70.134513
http://dx.doi.org/10.1038/35073531
http://dx.doi.org/10.1038/35073531
http://dx.doi.org/10.1103/RevModPhys.77.935
http://dx.doi.org/10.1103/RevModPhys.77.1321
http://dx.doi.org/10.1103/RevModPhys.77.1321
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1016/0022-3697(63)90007-6
http://dx.doi.org/10.1143/PTP.39.897
http://dx.doi.org/10.1088/0953-8984/12/40/102
http://dx.doi.org/10.1103/PhysRevB.66.134503
http://dx.doi.org/10.1103/PhysRevB.66.134503
http://dx.doi.org/10.1103/PhysRevLett.89.137002
http://dx.doi.org/10.1103/PhysRevLett.89.137002
http://dx.doi.org/10.1103/PhysRevLett.96.117001
http://dx.doi.org/10.1103/PhysRevLett.96.117001
http://dx.doi.org/10.1103/PhysRevLett.97.157001
http://dx.doi.org/10.1103/PhysRevLett.98.147002
http://dx.doi.org/10.1103/PhysRevLett.98.147002
http://dx.doi.org/10.1103/PhysRevLett.99.187002
http://dx.doi.org/10.1103/PhysRevLett.99.187002
http://dx.doi.org/10.1103/PhysRevB.79.220507
http://dx.doi.org/10.1103/PhysRevLett.107.087002
http://dx.doi.org/10.1103/PhysRevLett.107.087002
http://dx.doi.org/10.1103/PhysRevB.83.064506
http://dx.doi.org/10.1103/PhysRevB.83.224507
http://dx.doi.org/10.1103/PhysRevB.84.184522
http://dx.doi.org/10.1103/PhysRevB.84.174517
http://dx.doi.org/10.1103/PhysRevB.85.214514
http://dx.doi.org/10.1103/PhysRevB.85.174530
http://dx.doi.org/10.1103/PhysRevLett.109.237002
http://dx.doi.org/10.1103/PhysRevLett.109.237002
http://dx.doi.org/10.1134/S0021364009140124
http://dx.doi.org/10.1134/S0021364009140124
http://dx.doi.org/10.1103/PhysRevLett.79.3490
http://dx.doi.org/10.1038/16204
http://dx.doi.org/10.1103/PhysRevLett.97.257001
http://dx.doi.org/10.1103/PhysRevLett.97.257001
http://dx.doi.org/10.1103/PhysRevLett.102.177001
http://dx.doi.org/10.1103/PhysRevB.80.054516
http://dx.doi.org/10.1103/PhysRevB.80.054516
http://arXiv.org/abs/1309.2461
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1134/1.1358429
http://dx.doi.org/10.1103/PhysRevLett.108.207005



