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Spin correlations and Dzyaloshinskii-Moriya interaction in Cs2CuCl4
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We report on electron spin resonance (ESR) studies of the spin relaxation in Cs2CuCl4. The main source
of the ESR linewidth at temperatures T � 150 K is attributed to the uniform Dzyaloshinskii-Moriya interaction.
The vector components of the Dzyaloshinskii-Moriya interaction are determined from the angular dependence of
the ESR spectra using a high-temperature approximation. Both the angular and temperature dependencies of the
ESR linewidth have been analyzed using a self-consistent quantum-mechanical approach. In addition, analytical
expressions based on a quasiclassical picture for spin fluctuations are derived, which show good agreement
with the quantum-approach for temperatures T � 2J/kB ≈ 15 K. A small modulation of the ESR linewidth
observed in the ac plane is attributed to the anisotropic Zeeman interaction, which reflects the two magnetically
nonequivalent Cu positions.
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I. INTRODUCTION

Low dimensional magnets are fascinating testing grounds
for the fundamental understanding of quantum physics. A
particularly rich example of a frustrated low-dimensional
quantum antiferromagnet is the spin-1/2 system Cs2CuCl4.
This material possesses an orthorhombic symmetry (space
group Pnma) with lattice parameters a = 9.753, b = 7.609,
and c = 12.394 Å.1–3 The spatial arrangement of the CuCl4
tetrahedra leads to the formation of antiferromagnetically
coupled chains along the b axis with a dominant exchange cou-
pling constant J = 0.62 meV.4–6 The exchange coupling J ′ =
0.117 meV (Ref. 5) between the chains gives rise to a triangular
magnetic lattice structure in the bc plane. The low-temperature
state below TN = 0.62 K corresponds to a spiral order4 and
the ratio f = |�CW|/TN � 5 of the antiferromagnetic Curie-
Weiss temperature �CW = −3.5 K (Ref. 7) and Néel temper-
ature TN signals a considerable degree of frustration in this
compound. This combination of low-dimensional magnetism
and frustrated geometry has made this compound a model
system to study nontrivial spin correlations and quasiparticle
excitations down to low temperatures.8–10 Magnetic resonance
experiments have been performed previously,11,12 but more
recently the low-temperature electron spin resonance (ESR)
spectra observed in the spin-liquid regime have been ascribed
to result from the spinon-continuum by the influence of a
uniform Dzyaloshinskii-Moriya (DM) interaction within the
spin chains.8,9

Here, we study the anisotropy and temperature dependent
properties by ESR measurements in the paramagnetic regime
and compare the microscopic spin dynamics at different tem-
peratures. Despite the existence of a quasi-two-dimensional
magnetic structure, we can describe the spin-spin relaxation in
terms of a linear spin chain in the presence of a uniform DM
interaction. To model the ESR linewidth, the corresponding
two- and four-spin correlation functions are calculated in
terms of a quantum approach and compared to the results

of a quasiclassical approach. Moreover, we study the effect of
the magnetically nonequivalent Cu sites on the anisotropy of
resonance field and linewidth.

II. EXPERIMENTAL DETAILS

High-quality single crystals of Cs2CuCl4 were grown from
aqueous solution by an evaporation technique as described
in Ref. 3 and characterized by magnetization and ultrasound
measurements.7,13 ESR measurements were performed in a
Bruker ELEXSYS E500 CW-spectrometer at X-band (ν ≈
9.36 GHz) and Q-band frequencies (ν ≈ 34 GHz) equipped
with continuous He-gas-flow cryostats (Oxford Instruments)
in the temperature region 4 � T � 300 K. ESR spectra display
the power P absorbed by the sample from the transverse
magnetic microwave field as a function of the static magnetic
field H . The signal-to-noise ratio of the spectra is improved by
recording the derivative dP/dH using lock-in technique with
field modulation.

III. RESULTS

In the whole temperature range and for all orientations of
the magnetic field H , the ESR signal of Cs2CuCl4 consists
of a single exchange-narrowed resonance line as exemplarily
shown in Fig. 1 for H ‖ b. The line is well fitted by a Lorentz
shape at resonance field Hres with linewidth HWHM (half
width at half maximum) �H , indicating that spin-diffusion
effects are not relevant in Cs2CuCl4.14,15 The g tensor is
obtained from resonance field and microwave frequency ν

via the Larmor condition hν = gμBHres. It turns out to be
practically independent on temperature with the principal
values ga = 2.20, gb = 2.08, and gc = 2.30 and increases
only slightly below 25 K as depicted in the upper frame
of Fig. 2. This slight increase is most probably already
related to the opening of the antiferromagnetic resonance
gap to lower temperatures as reported by Povarov et al.9
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FIG. 1. (Color online) ESR spectra of Cs2CuCl4 at selected
temperatures for the magnetic field applied along the crystallographic
b axis. The red solid lines indicate the fit by a Lorentzian line shape.

At the same time, the linewidth exhibits three temperature
regimes with different behavior as one can see in the lower
frame of Fig. 2. At all orientations of the magnetic field,
the linewidth is only weakly temperature dependent between
50 and 150 K. It increases following an Arrhenius law
�H ∝ exp (−�/kBT ) with �/kB = 1600 ± 200 K for high
temperatures T > 150 K. For low temperatures, for T < 50 K,
the linewidth diverges on approaching magnetic order as
�H ∝ (T − TN)−p with p = 1.2 ± 0.1.

Concerning the high-temperature behavior, a similar acti-
vated process has been observed for other low-dimensional
magnets with Jahn-Teller active ions and spin S = 1/2.16–20

The activation energy �/kB = 1600 ± 200 K is larger than
the vibrational eigenfrequencies and, therefore, an Orbach
process can be excluded. However, an energy barrier of similar
size has been reported for the systems Sr2VO4 (Ref. 20) and
CuSb2O6.16 For the latter compound it has been proposed
that the relaxation might take place via an excited state of a
competing Jahn-Teller distortion,16 because there the activated
behavior appears at temperatures just below a structural
phase transition from a monoclinic into a tetragonal high-
temperature phase. This phase transition of CuSb2O6 at about
400 K can be understood as a thermally induced averaging
process between two possible elongation directions of the
CuO6 octahedra. However, such a structural phase transition
has been observed neither in Sr2VO4 nor in Cs2CuCl4 so
far. Thus more systematic investigations are necessary to
clarify this high-temperature behavior. However, a detailed
analysis of such spin-lattice type relaxation phenomena is

FIG. 2. (Color online) Temperature dependence of g value (upper
frame) and linewidth �H (lower frame) of Cs2CuCl4 for the magnetic
field applied along the three crystallographic axes. The solid lines
indicate a fit by an Arrhenius law, the dashed lines represent an
empirical description in terms of a critical divergence as described
in the text. The inset enlarges the low-temperature regime on a
logarithmic temperature scale.

beyond the scope of the present study, where we focus on
spin-spin relaxation mechanisms in the low- and intermediate-
temperature range.

Turning to the critical divergence at low temperatures,
we have to remind that, although this exponent is in the
range of the expected values for three-dimensional magnets
close to magnetic order,21 it is obtained from a fit of a
wide temperature range above TN = 0.62 K and should be
interpreted with great care, because the validity of critical
exponents is usually restricted to a narrow temperature regime
close to TN. Below we will show that the observed temperature
dependence of the linewidth can be described by modeling a
one-dimensional spin-1/2 chain in the presence of a uniform
Dzyaloshinskii-Moriya (DM) interaction.

To reach this goal, we first will focus on the intermediate
regime, where J � kBT � �, i.e., in this temperature range,
the linewidth can be treated in the high-temperature limit of
the theory of exchange narrowing,22,23 where the linewidth
is broadened by pure spin-spin relaxation, but not yet by
additional thermally activated processes. We will illustrate
that in this temperature range, the angular dependence of the
linewidth gives precise information on the DM interaction.

IV. THEORETICAL CONSIDERATION

If the paramagnetic resonance line is of Lorentz shape, the
half width at half maximum �H can be calculated following
the theory of exchange narrowed resonance spectra24 as

�H = C

(
M3

2

M4

)1/2

, (1)
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where C is a dimensionless constant, depending on how the
wings of the Lorentzian profile drop at fields of the order of the
exchange field J/gμB � �H . In the simple case of a cutoff of
the Lorentzian profile one obtains C = π/2

√
3. As discussed

by Castner et al.,24 it may be more useful to consider a profile
with exponential or Gaussian wings, which yield C to be π/

√
2

or
√

π/2, respectively. Here, M2 and M4, respectively, denote
the second moment

M2 = 〈[Han,S
+][S−,Han]〉

h2〈S+S−〉 (2)

and fourth moment

M4 = 〈[Hex,[Han,S
+]][[S−,Han],Hex]〉

h4〈S+S−〉 . (3)

In the general case, the anisotropic Hamiltonian Han contains
the anisotropic exchange interactions, dipole-dipole inter-
action, and anisotropic Zeeman term. Hex is the isotropic
exchange Hamiltonian. S+ and S− denote the left and right
circular components of the total spin summed up over the
whole sample, respectively. As it has been shown for other Cu
based spin-chain compounds like CuGeO3,25,26 LiCuVO4,27 or
KCuF3,18,28 the anisotropic exchange interactions are usually
dominant as compared to the dipole-dipole interaction.

A similar situation is realized in Cs2CuCl4 as well.
Following conventional estimations,29 the contribution to the
linewidth related to the dipole-dipole interaction is about
�HDD ∼ 1 Oe only, because the distance between nearest
neighbor Cu ions is quite large (6.3 Å).3 An interesting specific
feature of Cs2CuCl4, which was not pointed out in previous
studies, is that in the unit cell, there are two magnetically
nonequivalent positions on neighboring chains. Therefore we
additionally investigated the contribution to the linewidth due
to the anisotropic Zeeman interaction. The detailed theoretical
analysis is described in Appendix A. Moreover, the presence
of this additional broadening mechanism of the ESR line is
confirmed by measurements at higher frequency (i.e., Q-band,
34 GHz). At X-band frequency (9.36 GHz), its contribution is
relatively small and thus negligible.

Therefore we turn again to the anisotropic exchange
contributions. Indeed, the uniform DM interaction has already
been shown to play a major role for the properties of Cs2CuCl4
at low temperatures (below 4.2 K)8,9 and, thus, can be expected
to provide the main source of the ESR line broadening.
Note that the case of Cs2CuCl4 significantly differs from
systems like Cu benzoate,30 KCuGaF6,31 and CuSe2O5,32

where the nonequivalent sites are alternating within the chain
and the DM interaction within the chains is staggered as
well. Moreover, the influence of staggered fields within the
chain on the g value has been discussed earlier by Nagata33

and is expected to increase the anisotropy of the g values
to low temperatures, which is not observed in Cs2CuCl4 (cf.
Fig. 2) again corroborating the general difference of these spin
systems.

To derive the contribution of the uniform DM interaction to
the linewidth in Cs2CuCl4, we consider the one dimensional
Heisenberg Hamiltonian

H =
∑

i

JSi · Si+1 +
∑

i

D · (Si × Si+1), (4)

where J is the isotropic superexchange coupling parameter and
D denotes the DM vector. In Cs2CuCl4, there are four different
chains with different orientations of the corresponding DM
vector D. For their description, we shall follow the notations
of Starykh et al.10 The calculations of the second and fourth
moments were performed in a laboratory coordinate system
xyz with the z axis chosen along the externally applied
magnetic field. In order to apply the usual expressions for the
transformation of the D components between laboratory (xyz)
and crystallographic (XYZ) coordinate systems, the following
notations were used: Y axis is chosen along the chain (i.e.,
crystallographic b axis), Z and X axes are parallel to c and a,
respectively. Then the components of the DM vector transform
as follows:

Dx = DX cos β cos α + DY cos β sin α − DZ sin β,

Dy = DY cos α − DX sin α, (5)

Dz = DX sin β cos α + DY sin β sin α + DZ cos β,

with

cos α = A√
A2 + B2

, cos β = C√
A2 + B2 + C2

,

g =
√

A2 + B2 + C2,

A = gaa sin θ cos φ + gab sin θ sin φ + gac cos θ,

B = gba sin θ cos φ + gbb sin θ sin φ + gbc cos θ, (6)

C = gca sin θ cos φ + gcb sin θ sin φ + gcc cos θ.

Here, the angles α and β define the orientation of the local
coordinate system in which the Hamiltonian of the Zeeman
energy takes diagonal form gμBH , while θ is the polar
angle between external magnetic field and c axis, and φ is
the azimuthal angle counted from the a direction. Note that
the orientation of these axes is essentially different for the
two magnetically nonequivalent positions in the unit cell, as
described in Appendix A. These transformations should be
applied for all four chains using the corresponding settings
DX

1 = Da , DZ
1 = −Dc in chain 1, DX

2 = −Da , DZ
2 = −Dc

in chain 2, DX
3 = −Da , DZ

3 = Dc in chain 3, and DX
4 = Da ,

DZ
4 = Dc in chain 4, following the notation of Ref. 10.
To derive the second and fourth moment for the general

form of the DM interaction, we treat the spins (S = 1/2) in
terms of Pauli matrices using the corresponding commutation
rules. This is in contrast to the previous approach by Yamada
and Nagata,29,34,35 who treated the spins as classical vectors.
Doing so we obtain

M2 = ND2(α,β)

h2〈S+S−〉
(

1

8
− C1

2
− C2

)
(7)

for the second moment and

M4 = NJ 2D2(α,β)

h4〈S+S−〉
(

1

16
− C1 + C2 + C3

4
+ C(4)

)
(8)

for the fourth moment with the angular dependent DM
parameter

D2(α,β) = D2
a(1 + sin2 β cos2 α) + D2

c (1 + cos2 β)

+DaDc cos α sin 2β (9)
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and the pair-spin correlation functions

Cn = 〈
S

μ

i S
μ

i±n

〉
, (μ = x,y,z) (10)

for the nearest neighbors (n = 1), next-nearest (n = 2), and
higher-order neighbors within the chain, N is the total number
of spins.

The additional term C(4) in Eq. (8) is related to the four-spin
correlation functions, which are usually not taken into account
for simplicity and are assumed to be small. Nevertheless,
the contribution of the four-spin correlation functions is not
negligible in the fourth moment. In the present work, we
have calculated them in a quasiclassical picture for spin
fluctuations introduced by Fisher.36 The details are described
in Appendix B. The dominating contributions to both moments
M2 and M4, of course, originate from the pair-spin correlation
functions Cn. The thermodynamic average 〈S+S−〉, entering
into the denominators of M2 and M4 also can be expressed via
pair-spin correlation functions as

〈S+S−〉
N

= kBT

J

8|C1|
1 − 12αC1 + 4αC2

, (11)

where α denotes the decoupling parameter introduced by
Kondo and Yamaji37 for the chain of Green’s functions
appearing in the calculations. It is determined by the “sum-
rule” condition that the thermodynamic value of the spin
per one site has to be 1/2. According to the approach of
Kondo and Yamaji, all spin-spin correlation functions and
the decoupling parameter α are calculated self-consistently
using the fluctuation-dissipation theorem, i.e., via the dynamic
susceptibility. Below, we shall call this procedure the quantum
approach. A part of our results is displayed in Fig. 3.

For T > 0.5J/kB, all Cn decrease monotonously on
increasing temperature, and for T � J/kB one finds

FIG. 3. (Color online) Calculated temperature dependence of the
pair-spin correlation functions Cn (lower frame) and the decoupling
parameter α, using the quantum approach as discussed in the text.
The lines are drawn to guide the eyes.

Cn+1 ≈ 0.1Cn, i.e., C1 and C2 are dominant. Only at low
temperatures T < 0.5J/kB, where the pair-spin correlations
become approximately temperature independent, higher pair-
spin correlations gain influence. The same holds for the
decoupling parameter α, which essentially differs from 1
below T < J/kB.

Substituting Eqs. (7) and (8) into Eq. (1), we obtain
the temperature and angular dependence of the linewidth in
Cs2CuCl4 as

�H (Oe) = C
D2(α,β)kB

JgμB

1

Z

√
A3

B
(12)

with the substitutions

A = 1

8
− C1

2
− C2, (13)

B = 1

16
− C1 + C2 + C3

4
+ C(4), (14)

Z = 〈S+S−〉
N

. (15)

We note that this expressions are valid for both approaches,
quantum and quasiclassical (see Appendix B). Below, we
will compare both variants in the discussion of the temper-
ature dependence of the linewidth. The quantum-mechanical
approach, performed by a numerical self-consistent procedure
as described above and the simpler quasiclassical one, de-
scribed in Appendix B.

V. DISCUSSION AND CONCLUSIONS

The anisotropic parameters Da and Dc can be found
from the angular dependence of the linewidth in the high-
temperature limit of Eq. (12), which reads

�HT →∞(Oe) = C
D2(α,β)kB

JgμB

1

2
√

2
. (16)

In Eqs. (12) and (16), the parameters D and J are taken in
degrees Kelvin.

Figure 4 shows the angular dependence of the g value and
linewidth �H at T = 100 K for the magnetic field applied
within in the ac plane as well as in a plane perpendicular to
the ac plane, i.e., including the b axis. This results from the
fact that samples with well defined orientation could be best
prepared as plates cut perpendicular to the chain (b) axis, or
as thin rods grown along the b axis. From the coincidence of
both linewidth and g value, one recognizes that the angular
dependent data including the b axis intersect the ac plane at
an angle of 58◦ with respect to the c axis.

The simultaneous fitting of both X-band and Q-band data
sets using the infinite-temperature approximation (T → ∞)
(which is applicable because of T = 100 K � J/kB = 7.2 K)
and taking into account the anisotropy of the g factors
for nonequivalent copper positions (see Appendix A) yields
Da = 0.33 K (6.9 GHz) and Dc = 0.36 K (7.5 GHz) for
C = π/

√
2. Povarov et al.9 estimated values of Da and

Dc from the field dependence of resonance frequency as
Da = 5.1 ± 1.2 GHz and Dc = 7.0 ± 1.2 GHz. As one can
see, our results are close to the previous estimation on the
assumption of an exponential dropping of the Lorentzian
profile. However, it is important to note that our angular
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FIG. 4. (Color online) Angular dependence of the linewidth �H

(lower frame) and g value (upper frame) of Cs2CuCl4 at T = 100 K.
Solid lines indicate the fit curves by Eqs. (6), (16), and (A7), dashed
and dotted lines represent the anisotropy of the g tensors of the
nonequivalent Cu sites in the ac plane.

dependence analysis provides more precise information on
the relative value, i.e., Da/Dc ≈ 0.92 ± 0.05, of the DM
components in Cs2CuCl4. The slight deviation of the fit curve
from the X-band data in the ac plane results from our simplified
approach, which neglects symmetric anisotropic exchange
(SAE) and anisotropic Zeeman interaction as further sources
of line broadening. The latter one becomes sizable for the
Q-band data where it convincingly explains the additional 90◦
modulation (see Appendix A), but is only of the order of a few
Oersteds at X-band frequency. Concerning SAE, we note that
usually it is comparable to the dipole-dipole interaction, which,
as pointed out before, is very small. Therefore it is natural that
we do not find a sizable effect of SAE in Cs2CuCl4.

Finally, the temperature dependence of the linewidth data
below 120 K again corroborates that the DM interaction is
indeed the dominant broadening mechanism, as shown in
Fig. 5. The data are satisfactorily approximated using the
parameters obtained from the fitting of the angular dependence
in Fig. 4 as asymptotic values for the linewidth at T → ∞.
Moreover, we compare the quantum approach used in our
treatment to the previous classical approach. It is remarkable
that both approaches for the temperature dependence of
the spin-spin correlation functions are consistent to each
other and yield results in agreement with the experiment
in the temperature range J/kB � T � 120 K. Only at low
temperatures, the quantum approach yields more realistic
results than the classical one. A big advantage of the classical
approach is the fact that we can use convenient analytical
expressions for the spin-spin correlation functions entering the
second and fourth moments determining the ESR linewidth.

FIG. 5. (Color online) Calculated temperature dependence of the
linewidth �H [see Eq. (12)] of Cs2CuCl4 using quantum (solid
lines) and classical (dotted lines) spin correlation functions. Symbols
correspond to experimental data.
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APPENDIX A

Here, we consider the contribution to the linewidth due
to the anisotropic Zeeman interaction. The Hamiltoinian for
Cu2+ (3d9) states is written as

H =
∑
k,q

B(k)
q C(k)

q + λ(S · L). (A1)

The first term describes the crystal-field effect and the second
one the spin-orbit coupling. In a superposition model (or in
other words in a model of independent metal-ligand bonds),
the crystal-field parameters can be calculated as follows:

B(k)
q =

∑
j

ak(Rj )(−1)qC(k)
−q(ϑj ,φj ), (A2)

where sum is performed over all surrounding ligands of the

crystal lattice and C(k)
q =

√
4π

2k+1Y k
q are the components of

the spherical tensor. According to Refs. 38–40, the so-called
intrinsic crystal-field parameters ak(Rj ) can be evaluated as

a2(Rj ) = −Zje
2 〈r2〉3d

R3
j

+ G
e2

Rj

(
S2

3dσ + S2
3dπ + S2

3ds

)
, (A3)

a4(Rj ) = −Zje
2 〈r4〉3d

R5
j

+ G
9e2

5Rj

(
S2

3dσ − 4

3
S2

3dπ + S2
3ds

)
.

(A4)

Here, Zj are the effective charges of the lattice ions, i.e., −1
for the Cl− ion, +1 for Cs+, and +2 for Cu2+. S3dσ , S3dπ , S3ds

denote the overlap integrals between the Cu(3d9) states and
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TABLE I. Energy levels of Cu2+(3d9) in Cs2CuCl4 (cm−1).

Calculated Experiment43

0 0
5060 4800
6260 5550
7110 7900
9026 9050

surrounding pσ , pπ and s orbitals of the Cl− ions. The overlap
integrals in Eq. (A3) are calculated in local coordinate systems
with the z axis along the Cu–Cl bond. In the present work,
these integrals were calculated using the Hartree–Fock wave
functions.41,42 The parameter G was set to 14. Using this one
adjustable parameter and the typical values of λ = 630 cm−1

and of the orbital momentum reduction factor κ = 0.8 (due to
covalency effect), we have calculated the energy level scheme,
which is in reasonable agreement with experimental data43

(see Table I).
Using the energy levels and corresponding wave functions

we have calculated the components of the g tensors for both
magnetically nonequivalent positions of Cu in the unit cell of
Cs2CuCl4 (see Fig. 1 in Ref. 3).

For the ground-state Kramers doublet | ± 1/2〉, the obtained
components [g1 – for Cu(1) and Cu(3), g2 – for Cu(2) and
Cu(4)] read

g1 =
⎛
⎝ 2.260 0 0.402

0 −2.088 0
−0.056 0 −2.453

⎞
⎠,

(A5)

g2 =
⎛
⎝ 2.260 0 −0.403

0 −2.086 0
0.056 0 −2.453

⎞
⎠.

Here, we used the global coordinate system like it was chosen
for description of the crystal structure.3 The corresponding
effective spin Hamiltonian is defined as

H = −μB

∑
α,β

gαβSαHβ. (A6)

As one can see, the differences between the g-tensor
components of these two Cu complexes are small, when
the external magnetic field is applied along one of the
main crystallographic axes. Therefore the anisotropic Zeeman
contribution to the ESR linewidth

�HAZ =
(

g1 − g2

g

)2
gμBH 2

res√
〈J 2〉

(A7)

is expected to be small at least with respect to the DM
contribution when considering the temperature dependence
for the magnetic field applied along one of the main crys-
tallographic axes. Here, 〈J 2〉 = (J 2 + 2(J ′)2)/3 denotes the
averaged exchange integral as introduced in Ref. 44.

In order to be sure, we have further checked this conclusion
experimentally by measurements of the ESR linewidth at Q-
band frequencies (≈35 GHz) at T = 100 K. At the same time
one sees that the difference of the nondiagonal components
(g(1)

ac − g(2)
ac ) = +0.8 is quite large. Therefore the additional

broadening effect, which is quadratic in the applied magnetic

field, should be visible as soon as one changes the orientation
of the field away from the main crystallographic directions.
Indeed, our Q-band measurements have confirmed this effect.
For fitting the experimental data in the upper panel of
Fig. 4, the calculated g components were slightly tuned as
follows: g(1)

aa = g(2)
aa = 2.2, g

(1)
bb = g

(2)
bb = −2.08, g(1)

cc = g(2)
cc =

−2.3, g(1)
ac = −g(2)

ac = 0.25, and g(1)
ca = −g(2)

ca = −0.056.

APPENDIX B

Using the classical-spin model—as has been done by
Fisher36—the temperature dependence of the pair-spin and
〈S+S−〉 correlation functions reads

Cn = S(S + 1)

3
un, (B1)

〈S+S−〉
N

= 2

3
S(S + 1)

1 + u

1 − u
, (B2)

where u = coth K − 1/K and K = −JS(S + 1)/kBT .
The four-spin contribution C(4) introduced in Eq. (8)—in

general case for a spin S = 1/2 chain—after some manipula-
tions, can be written as follows〈

Sz
i S

z
i+1

(
Sz

i+2S
z
i+3 − Sz

i+3S
z
i+4

)〉 + 3
〈
S

y

i Sz
i+1S

y

i+2S
z
i+3

〉
− [〈

S
y

i S
y

i+1S
x
i+3S

x
i+4

〉 + 〈
S

y

i Sx
i+1

(
Sx

i+2S
y

i+3 + Sx
i+3S

y

i+4

)〉]
.

Using the classical spin fluctuation picture,36 Nagata and
Tazuke45 have derived the following analytical expressions:

〈
Sμ

mS
μ

m+1S
μ

i S
μ

j

〉 = [S(S + 1)]2

9
uj−i+1

(
1 + 4

5
vi−m−1

)
,

〈
Sμ

mS
μ

m+1S
γ

i S
γ

j

〉 = [S(S + 1)]2

9
uj−i+1

(
1 − 2

5
vi−m−1

)

for m + 1 < i < j . With these expressions and the following,
one derived in the present work:

〈
Sμ

mS
μ

k S
γ

i S
γ

j

〉 = [S(S + 1)]2

15
uj−i+m−kvk−m (B3)

for i < m < k, j > k,〈
Sμ

mS
γ

m+1S
μ

i S
γ

i+1

〉 = 〈
Sμ

mS
γ

m+1S
γ

i S
μ

i+1

〉

= [S(S + 1)]2

15
u2vi−m−1 (B4)

for i > m + 1, μ,γ = (x,y,z), and v = 1 − 3u/K , finally, we
arrived at

C(4) = − [S(S + 1)]2

9
u2(v − 1)2. (B5)

It should be noted that during the derivation of the general
expression in the second moment, the four-spin correlation
functions also appear in the following combination:∑

|j−m|�2

〈
Sμ

mS
γ

m+1

(
S

μ

j S
γ

j+1 − S
γ

i S
μ

j+1

)〉
. (B6)

However, in the quasiclassical approach with the use of relation
(B4), it becomes clear that this contribution vanishes and,
hence, it was not considered in Eq. (8).
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