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Diluted antiferromagnets in a field seem to be in a different universality class
than the random-field Ising model
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We perform large-scale Monte Carlo simulations using the Machta-Newman-Chayes algorithms to study the
critical behavior of both the diluted antiferromagnet in a field with 30% dilution and the random-field Ising
model with Gaussian random fields for different field strengths. Analytical calculations by Cardy [Phys. Rev. B
29, 505 (1984)] predict that both models map onto each other and share the same universality class in the limit of
vanishing fields. However, a detailed finite-size scaling analysis of the Binder cumulant, the two-point finite-size
correlation length, and the susceptibility suggests that even in the limit of small fields, where the mapping is
expected to work, both models are not in the same universality class. Based on our numerical data, we present
analytical expressions for the phase boundaries of both models.
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I. INTRODUCTION

The random-field Ising model1 (RFIM) is of paramount
importance in the field of disordered systems.2–5 A plethora of
problems across disciplines can be studied via the RFIM, rang-
ing from the thermodynamics of disordered magnets,6 hys-
teresis in magnetic systems and Barkhausen noise,7–9 tunable
domain-wall pinning,10 the random pinning of polymers,11

and even water seepage in porous media. As such, the RFIM
is still under intense theoretical, as well as numerical and
experimental scrutiny.

More recently, the RFIM has been realized in diluted dipolar
magnets in a transverse field such as LiHoxY1−xF4. However,
most experimental studies focus on diluted antiferromagnets
in a field (DAFF), such as FexZn1−xF2.3,12–15 Fishman and
Aharony16 were the first to note that a random antiferromagnet
in a field can be described by the RFIM, and Cardy17 predicted,
using a mean-field argument, that the critical behavior of
both models should be in the same universality class in the
limit of small fields. The work of Fishman and Aharony,16

as well as Cardy,17 therefore opened the door for intense
experimental investigation of the RFIM via DAFF materials.
However, early experiments and simulations already hinted
towards discrepancies between experimental and numerical
estimates of the critical exponents.3,18,19 On the other hand,
exact ground-state calculations using moderate system sizes
suggested an agreement between the critical exponents for
both models when the random fields are Gaussian distributed,
however not when the random fields are drawn from a
bimodal distribution.18,19 This result, however, has been
revised recently,20 i.e., the universality class of the RFIM
is independent of the form of the implemented random-field
distribution.

In this paper we perform detailed Monte Carlo simulations
of both the RFIM and the DAFF. The latter is studied
at 30% dilution, i.e., below the percolation threshold for
vacancies. Using a finite-size scaling analysis of the Binder
cumulant, the two-point finite-size correlation function, and
the susceptibility, we show that even in the limit of small

fields—where the Cardy mapping17 is expected to work—both
models seem to be in different universality classes. Therefore,
care should be taken when making predictions for the critical
behavior of the RFIM using experiments on DAFF materials.
Finally, we present heuristic analytical expressions based on
our numerical data for the phase boundaries of both models to
help guide experimental studies.

The manuscript is structured as follows. In Sec. II we
introduce both the RFIM and the DAFF, followed by an
explanation of the used algorithms in Sec. III, as well as
the measured quantities in Sec. IV. In Sec. V we show our
numerical results, followed by a detailed discussion of the
phase boundaries and universality between both models in
Sec. VI.

II. MODELS

The Hamiltonian of the diluted antiferromagnet in a field
(DAFF) is given by

HDAFF = +J
∑
〈i,j〉

εiεjSiSj − B
∑

i

εiSi, (1)

and the Hamiltonian for the random-field Ising model (RFIM)
is

HRFIM = −J
∑
〈i,j〉

SiSj − h
∑

i

δiSi . (2)

In Eqs. (1) and (2) Si ∈ {±1} represent Ising spins, J = 1 is
the coupling constant between two adjacent spins, and 〈i,j 〉
denotes a sum over nearest neighbors. The linear term in Si

couples to an external field: For the DAFF it is an externally-
applied uniform field B, whereas for the RFIM the spins couple
to a random field of strength hδi , where the δi are quenched
random variables chosen from a Gaussian distribution with
zero mean and standard deviation unity. This means that the
typical field has strength h. In the DAFF εi ∈ {0,1} represents
the site dilution, where each site is randomly and independently
occupied by a spin (εi = 1) with probability p. Here, we fix
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the dilution to 1 − p = 0.3. Both models are studied in three
space dimensions on a lattice with N = L3 spins, L being the
linear size of the lattice.

III. ALGORITHM

The simulations are done using the Machta-Newman-
Chayes replica-exchange (MNC) algorithm21 combined with
single-spin Metropolis Monte Carlo.22,23 The MNC algorithm
is a mixture of the Swendsen-Wang exchange algorithm24

and simulated tempering Monte Carlo.25,26 Note that the
latter is not efficient when simulating random-field systems.27

The advantage of the MNC algorithm over standard parallel
tempering lies in the fact that we can choose any path in the
field-temperature plane. Although parallel tempering can also
be implemented with a variable field, the method does not
perform efficiently when systems have disorder.28

In the MNC algorithm21 a cluster of connected spins is
grown between two replicas with the same disorder but at
different points in the parameter space, i.e., (T ,B) and (T ′,B ′),
where T represents the temperature and B the external field
(here for the case of the DAFF). Starting from an arbitrary spin
with different sign in both realizations, adjacent spins pointing
in the same direction are successively added to the cluster with
probability

p(β,β ′) = 1 − exp{−2(β + β ′)}, (3)

where β = 1/T is the inverse temperature. Once no more
spins can be added to the cluster C, it flips with the Metropolis
probability29 min{1, exp(−�)}, where

�DAFF = 2sign(C)[(β − β ′)(n++ − n−−) + (B − B ′)|C|]
(4)

for the DAFF, and for the RFIM

�RFIM = 2sign(C)

[
(β − β ′)(n++ − n−−) − (h − h′)

∑
i∈C

δi

]
.

(5)

Here |C| is the number of spins in the cluster, sign(C) the
orientation of the spin in the replica having inverse temperature
β, n++ and n−− are the number of bonds connecting to
nearest neighbors of the cluster with spin up and spin down in
both replicas, respectively. After each cluster update, (L/2)3

attempts to flip single spins are performed, where L is the
linear size of the system.

As stated before, the MNC algorithm enables us to perform
simulations along any arbitrary path in parameter space. We
denote such path a replica chain (RC). The phase boundaries
for the RFIM and DAFF in the field-temperature plane are
well described by ellipses (see below). To reduce corrections
to finite-size scaling30,31 we therefore choose paths in the
field-temperature plane that cut the phase boundaries at as
orthogonal an angle as possible. This means that, in general,
T ∼ h for the RFIM and T ∼ B for the DAFF. To ensure
efficient mixing and therefore fast convergence of the Monte
Carlo method, we additionally connect the point with the
highest field within the disordered phase to another RC
that runs parallel to the approximated phase boundary to a
temperature T > Tc and B = 0 (h = 0 for the RFIM), where

TABLE I. Simulation parameters for the RFIM along different
nontrivial paths of the type h = a + bT in the h-T plane for different
linear system sizes L (the first two path types have b = 0). Nsa is
the number of disorder realizations. NT corresponds to the number
of temperatures (points) along the simulation path. Tmin and Tmax

are the lowest and highest temperature simulated, respectively. The
equilibration/measurement times are 2x Monte Carlo sweeps.

Simulation path L Nsa NT Tmin Tmax x

h = 0.225 8 1536 25 4.00 5.00 18
h = 0.225 10 827 25 4.00 5.00 18
h = 0.225 12 2048 17 4.30 4.80 18
h = 0.225 16 1024 19 4.35 4.70 18
h = 0.225 20 1024 19 4.35 4.70 18
h = 0.225 24 1024 26 4.40 4.69 18
h = 0.225 28 666 26 4.40 4.69 18
h = 0.225 32 406 26 4.40 4.69 18
h = 0.225 36 1017 26 4.40 4.69 18
h = 0.5 10 2503 17 4.20 4.60 18
h = 0.5 12 4035 17 4.20 4.60 18
h = 0.5 16 2048 17 4.20 4.60 18
h = 0.5 20 1024 14 4.30 4.50 18
h = 0.5 24 512 14 4.30 4.50 18
h = 1.22T − 3.43 10 4096 15 3.40 4.10 18
h = 1.22T − 3.43 12 3852 15 3.40 4.10 18
h = 1.22T − 3.43 16 1177 17 3.65 4.10 18
h = 1.22T − 3.43 18 862 17 3.65 4.10 18
h = 1.22T − 3.43 20 957 17 3.60 4.00 18
h = 1.22T − 3.43 24 976 17 3.60 4.00 18
h = 1.22T − 3.43 28 646 17 3.60 4.00 18
h = 1.22T − 3.43 32 379 17 3.60 4.00 18
h = 2.67T − 6.10 8 4071 25 2.80 3.06 18
h = 2.67T − 6.10 10 4045 25 2.80 3.06 18
h = 2.67T − 6.10 12 512 27 2.85 3.00 18
h = 2.67T − 6.10 14 512 27 2.85 3.00 18
h = 2.67T − 6.10 16 605 17 2.85 2.95 18
h = 2.67T − 6.10 18 1024 27 2.85 3.05 18
h = 2.67T − 6.10 20 512 31 2.86 2.93 18
h = 2.67T − 6.10 22 981 31 2.85 3.05 18
h = 2.67T − 6.10 24 1024 31 2.85 3.05 18
h = 4.94T − 6.80 16 1912 15 1.76 1.88 18
h = 4.94T − 6.80 18 2048 15 1.76 1.88 18
h = 4.94T − 6.80 20 1858 15 1.76 1.89 18
h = 4.94T − 6.80 24 906 15 1.76 1.89 18
h = 4.94T − 6.80 28 505 15 1.76 1.89 18
h = 4.94T − 6.80 32 627 15 1.76 1.89 18

Tc is the critical temperature of the model at zero field (see
Fig. 5, light dashed lines). This end point of the second
RC is simulated efficiently by the Wolff cluster algorithm.32

Simulation parameters are listed in Tables I and II for the RFIM
and DAFF, for the first RCs, respectively.

Finally, we also study the DAFF at zero temperature using
the method introduced in Refs. 33 and 34. Here, the DAFF
is mapped onto a graph35 with N nodes (N is the number of
spins) attached to a source and a sink node, all connected in
a distinct manner via edges with positive edge weights. The
edge weights are calculated depending on the local staggered
field, i.e., ±B. The maximum flow/minimum cut is obtained
using the algorithm introduced in Ref. 36. The minimum cut is
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TABLE II. Simulation parameters for the DAFF along nontrivial
paths of the type B = a + bT in the B-T plane for different linear
system sizes L (the first two path types have b = 0). Nsa is the
number of disorder realizations. NT corresponds to the number of
temperatures (points) along the simulation path. Tmin and Tmax are the
smallest and the highest temperatures of the RC, respectively. The
equilibration/measurement times are 2x Monte Carlo sweeps.

Simulation path L Nsa NT Tmin Tmax x

B = 0.1 8 2166 26 2.50 3.50 18
B = 0.1 12 1208 26 2.50 3.50 18
B = 0.1 14 1042 18 2.70 3.30 18
B = 0.1 16 2048 19 2.80 3.30 18
B = 0.1 18 1104 19 2.80 3.30 18
B = 0.1 20 796 21 2.80 3.35 18
B = 0.1 24 444 21 2.80 3.35 18
B = 0.1 28 505 21 2.80 3.35 18
B = 0.1 32 322 21 2.80 3.35 18
B = 1.0 14 1271 21 2.70 3.20 18
B = 1.0 16 1718 21 2.70 3.20 18
B = 1.0 18 1215 21 2.70 3.20 18
B = 1.0 20 888 21 2.70 3.20 18
B = 1.0 24 491 21 2.70 3.20 18
B = 1.0 28 556 21 2.70 3.20 18
B = 1.0 32 352 21 2.70 3.20 18
B = 0.2T 8 1344 17 2.55 3.30 18
B = 0.2T 10 685 17 2.55 3.30 18
B = 0.2T 12 452 17 2.55 3.30 18
B = 0.2T 16 542 31 2.87 3.50 18
B = 0.2T 20 1564 31 2.87 3.50 18
B = 0.2T 22 825 31 2.87 3.50 18
B = 0.2T 24 189 31 2.87 3.50 18
B = 0.2T 26 128 31 2.87 3.50 18
B = 0.2T 28 115 31 2.87 3.50 18
B = 0.2T 30 558 31 2.87 3.50 18
B = 0.2T 32 383 31 2.87 3.50 18
B = 0.67T 10 1201 30 2.45 3.50 18
B = 0.67T 12 711 30 2.45 3.50 18
B = 0.67T 16 305 30 2.45 3.50 18
B = 0.67T 20 512 27 2.35 3.50 18
B = 0.67T 22 1024 27 2.35 3.50 18
B = 0.67T 24 2048 30 2.35 3.50 18
B = 0.67T 28 1024 27 2.35 3.50 18
B = 0.67T 32 741 30 2.37 3.50 18
B = 1.5T 10 1920 17 1.30 1.62 18
B = 1.5T 12 1984 17 1.30 1.62 18
B = 1.5T 16 2048 17 1.30 1.62 18
B = 1.5T 18 2048 26 1.30 3.50 18
B = 1.5T 20 1056 20 1.35 1.60 18
B = 1.5T 24 807 20 1.35 1.60 18
B = 1.5T 28 457 20 1.35 1.60 18
B = 1.5T 32 532 20 1.35 1.60 18
B = 1.5T 36 336 20 1.35 1.60 18

a direct representation of the ground-state spin configuration
from which derived quantities, such as a zero-temperature
Binder ratio, can be calculated. Note that the method takes
the ground-state degeneracy into account. The simulation
parameters for the DAFF at zero temperature are shown in
Table III.

TABLE III. Simulation parameters for the DAFF at zero temper-
ature for different fields B and for different linear system sizes L. Nsa

is the number of disorder realizations. Bmin and Bmax are the lowest
and highest fields simulated, and NB corresponds to the number of
fields simulated to perform a finite-size scaling analysis.

L Nsa Bmin Bmax NB

24 10302 2.00 4.30 31
32 2091 2.40 2.70 16
48 2091 2.10 2.80 17
64 2091 2.30 2.70 21
72 2040 2.30 2.54 17
96 5100 2.30 2.54 17
128 3586 2.30 2.47 22

IV. OBSERVABLES

Both the DAFF and RFIM undergo second-order phase
transitions as a function of temperature and field. To pinpoint
the transition temperature, we measure the Binder cumulant,37

as well as the two-point finite-size correlation function.38–40

To compute these observables, we measure the magnetization
per spin

M = 1

N

N∑
i

Si . (6)

For the DAFF we measure the staggered magnetization, i.e.,
each second spin is counted opposite to its orientation in
a three-dimensional checker-board manner. For simplicity,
we refer to the staggered magnetization also as M . An
antiferromagnetically-ordered spin configuration has therefore
M = 1. A Binder cumulant for M can then be defined via

g(T ,L) = 1

2

(
3 − [〈M4〉]av

[〈M2〉2]av

)
, (7)

where 〈· · ·〉 represents a thermal average and [· · ·]av an average
over disorder (field or dilution configurations) for a fixed value
of h (RFIM) or B (DAFF). Close to criticality the Binder ratio
scales as

g(T ,L) = G̃[L1/ν(T − Tc)], (8)

where G̃ is a universal function. Note that for the DAFF,
when T = 0, g(B,L) = G̃′[L1/ν(B − Bc)]. To compute the
two-point finite-size correlation function we first calculate the
wave-vector-dependent susceptibility (along the x direction)
via

χ (k) =
[〈(

1

N

∑
j

Sj e
ikxj

)2〉]
av

. (9)

The two-point finite-size correlation function is then given by

ξL = 1

2 sin(kmin/2)

√
χ (0)

χ (kmin)
− 1 (10)

with kmin = (2π/L,0,0). The two-point finite-size correlation
function scales as

ξL(T ,L)/L = X̃[L1/ν(T − Tc)]. (11)
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FIG. 1. (Color online) Left: Two-point finite-size correlation function ξL/L vs temperature T for the DAFF with B = 1.0 and different
linear system sizes L. Finite-size corrections are small and the data cross at one point signaling a transition. Right: Finite-size scaling collapse
of the data in the left panel. The best collapse is obtained with Tc ≈ 2.807 and ν ≈ 1.2.

Using both the Binder ratio and the two-point finite-size
correlation function allows us to perform a detailed finite-size
scaling analysis to determine the critical exponent ν, as well
as to test if both models share the same universality class
using the method introduced in Ref. 41. To obtain an optimal
data collapse we use a Levenberg-Marquardt minimization
combined with a bootstrap analysis, see Ref. 41. This allows
us to determine the optimal values of the critical parameters
Tc and ν with a statistical error bar by fitting the data to a
third-order polynomial that approximates the scaling functions
G̃(x) and X̃(x) close to x = 0, where x = L1/ν(T − Tc).

Finally, to determine the critical exponent η, we determine
the peak position of the connected susceptibility given by

χ = 1

T

(
[〈M2〉]av − [〈M〉]2

av

)
, (12)

where the magnetization M is given by Eq. (6). Note that the
connected susceptibility is related to Eq. (9) in the limit of
zero wave vector. Furthermore, in the thermodynamic limit
[〈M〉]av = 0 for T = Tc so, in principle, Eq. (9) could also be
used for the analysis. In general, the susceptibility scales as

χ ∼ L2−ηC̃[L1/ν(T − Tc)] . (13)

Therefore, when T = Tc the function C̃ is a constant indepen-
dent of the system size and χ ∼ L2−η from which the exponent
η can be determined.

V. RESULTS

The critical parameters for both the RFIM and the DAFF
have been computed via a finite-size scaling analysis of the
two-point finite-size correlation function [Eq. (11)] along the
different simulation paths. Finite-size corrections can be large
for small system sizes and are strongly field dependent, which
is why for some external fields in both models we do not
include small systems in the finite-size scaling analysis used
to determine the critical parameters. To illustrate the typical

behavior, in Fig. 1, left panel, we show the two-point finite-size
correlation function for the DAFF for B = 1.0 and different
system sizes. The data cross at a point, therefore signaling the
existence of a phase transition. Note that for this particular
field corrections to scaling are manageable and the data scale
well, as can be seen in Fig. 1, right panel. However, this is
not always the case, especially when the external field is large.
For the RFIM corrections to scaling are considerably stronger,
even at small fields, see Fig. 2.

Using finite-size scaling we determine the location of the
critical points, as well as the associated critical exponent ν for
the different simulation paths. In addition, we also compute
the critical exponent η by studying the finite-size behavior of
the susceptibility peak. Data for the RFIM are summarized in
Table IV, for the DAFF in Table V.

To determine the critical field Bc at zero temperature for the
DAFF we compute ground states with the algorithm introduced
in Ref. 34. The same finite-size scaling technique as used for
the two-point finite-size correlation function (see above) can
be used to analyze the ground-state Binder cumulant. The data
collapse is shown in Fig. 3. The results for the critical point
and the correlation-length exponent at zero temperature are
stated in the last line of Table V.

TABLE IV. Critical temperature Tc and critical field hc computed
from a finite-size scaling analysis of the two-point finite-size
correlation function for the RFIM. ν is the critical exponent of the
correlation length. The exponent η is computed from the peak of the
susceptibility.

Simulation path Tc hc ν η

h = 0.225 4.481(1) 0.225 1.39(4) 0.082(1)
h = 0.5 4.381(2) 0.5 1.30(5) 0.202(16)
h = 1.22T − 3.4 3.76(2) 1.16(3) 1.39(5) 0.92(40)
h = 2.70T − 6.1 2.89(5) 1.7(1) 1.3(1) 0.47(15)
h = 4.94T − 6.8 1.79(1) 2.01(5) 1.4(1) 0.85(4)
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FIG. 2. (Color online) Left: Two-point finite-size correlation function ξL/L vs temperature T for the RFIM with h = 0.225 and different
linear system sizes L. Finite-size corrections are large. Right: Finite-size scaling collapse of the data in the left panel. Because of the large
corrections to scaling, only data for L � 28 are used in the scaling collapse. Data for L � 24 (light shaded) are not included in the data collapse
and shown to illustrate the corrections to scaling. The best collapse is obtained with Tc ≈ 4.481 and ν ≈ 1.39.

We also determine the peak position of the fluctuations of
the staggered magnetization of the ground states:

F(B) = L3
(
[M2]av − [M]2

av

)
. (14)

This approach has proven to be quite accurate in previous
studies for the susceptibility.42 Because the fluctuations peak
at the putative transition, we fit a Gaussian to the peak and
determine its precise location. Error bars are determined via
a configurational bootstrap analysis.43 Figure 4, left panel,
shows the fluctuations at zero temperature and as a function of
the applied field B. The peaks are well described by Gaussians.
The right panel of Fig. 4 shows an extrapolation of the peak
position to infinite system size assuming the functional form
Bc(L) = Bc + aL−ω. The best fit is obtained for Bc = 2.34(2)
[ω = 1.25(9)], in agreement with the estimate using the Binder
cumulant, see Table V.

Combining the data in Table V with some values from the
literature44–47 we can approximate to good accuracy the phase

TABLE V. Critical temperature Tc and critical field Bc computed
from a finite-size scaling analysis of the two-point finite-size
correlation function for the DAFF. ν is the critical exponent of the
correlation length. The exponent η is computed from the peak of the
susceptibility. Note that estimating η was not possible for B = 1.5.
The last line lists data from zero-temperature simulations (see text).
The estimate of the critical field Bc is obtained from a finite-size
scaling analysis of the zero-temperature Binder ratio.

Simulation path Tc Bc ν η

B = 0.1 2.977(1) 0.1 1.34(5) 0.406(26)
B = 1.0 2.807(1) 1.0 1.2(2) 0.023(12)
B = 0.2T 2.908(4) 0.582(8) 1.36(7) 0.11(2)
B = 0.67T 2.42(1) 1.61(1) 1.5(3) 0.67(5)
B = 1.5 1.46(9) 2.2(1) 1.4(3)
T = 0 0 2.32(2) 1.43(2) 0.68(1)

boundary for the DAFF via(
Bc

B̃0
c

)1.81

+
(

Tc

T̃ 0
c

)3.54

= 1 (15)

with T̃ 0
c ≈ 2.980 and B̃0

c ≈ 2.31. Similarly, using the data from
Table IV and known values from the literature48–50 we obtain
for the RFIM (

hc

h0
c

)1.95

+
(

Tc

T 0
c

)1.80

= 1 (16)
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L= 32
L= 48
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FIG. 3. (Color online) Data collapse of the zero-temperature
Binder cumulant of the DAFF as a function of the reduced scaling
variable (B − Bc)L1/ν for different system sizes. The best collapse is
obtained for B0

c ≈ 2.32 and ν ≈ 1.43.
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FIG. 4. (Color online) Left: Fluctuations of the staggered magnetization of the DAFF as a function of applied field B for different system
sizes. The peak positions signals the presence of a transition. The data are well described by a Gaussian close to the peak (solid lines). To
determine the thermodynamic critical field Bc we extrapolate the data to infinite system size (right panel) using Bc(L) = Bc + aL−ω. The best
fit is obtained for Bc = 2.34(2) and ω = 1.25(9). The red (filled) point represents the thermodynamic extrapolation, Bc = 2.34(2).

with h0
c = 2.2749 and T 0

c = 4.5115.48 Note that the critical
phase boundary points T 0

c and h0
c have been determined

to high precision in the literature; see Refs. 48 and 49,
respectively. Furthermore, for the RFIM with bimodal dis-
order, a similar elliptical phase diagram has been proposed
in Ref. 51. For the DAFF, T̃ 0

c and B̃0
c are approximated but

agree with the numerical estimates we present. In Fig. 5
we show the phase boundaries for the DAFF (left panel)
and the RFIM (right panel), together with the simulated

critical points. The dashed lines represent the simulation paths
taken.

VI. DISCUSSION

Cardy17 predicted an equivalence between the DAFF and
the RFIM for small applied fields using a mean-field argument.
This equivalence is often quoted in experimental studies where
materials which are diluted antiferromagnets in a field are
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FIG. 5. (Color online) Left: Empirical phase boundary of the DAFF (p = 0.7). The red point is from Ref. 44, the coral point from Ref. 45,
and the purple points from Ref. 46. Our data agree within error bars with these previous studies. The blue (solid) curve is given by Eq. (15).
The dashed lines represent the parts of the simulation paths that cross the phase boundary. The light shaded line is an example of the second RC
that runs parallel to the approximated phase boundary to a temperature T > Tc and B = 0 to speed up equilibration. Right: Empirical phase
boundary of the RFIM. The zero-field critical temperature is T 0

c = 4.511548 and h0
c = 2.27049 (gray open circles). The red (solid) curve is given

by Eq. (16). The dashed lines represent the parts of the simulation paths that cross the phase boundary. Again, the light shaded line shows an
example of the second RC that runs parallel to the approximated phase boundary to a temperature T > Tc and h = 0 to speed up equilibration.
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FIG. 6. (Color online) Phase boundary of the RFIM (solid line,
from Fig. 5, right panel). The temperature axis has been normalized
with Tc(h = 0) = 4.5115. The circles represent the different esti-
mates of the critical points along the different simulation paths. The
dashed line is the phase boundary computed by applying Eq. (17)
to the data of the DAFF. Squares represent the different critical
points simulated for the DAFF along the different simulation paths.
An approximate correspondence between the phase boundaries only
works for fields h � 1.2 (B � 1.6 for the DAFF).

then described using the RFIM (see, for example, Refs. 3
and 12–15).

Equation (15) in Ref. 17 maps the RFIM onto the DAFF:

h(T ) = p(1 − p)
(
T

pure
c

/
T

)2
(B/T )2

(1 − θMF /T )2
. (17)

Here, p = 0.7, T
pure
c = 4.5115, and θMF = 2dJ = 6 is the

mean-field coupling strength. We can now use the obtained
phase boundaries [Eqs. (15) and (16)] to compare both models.
Figure 6 shows the phase boundary for the RFIM (solid line, the
circles represent the obtained critical points along the different
simulation paths) together with the phase boundary for the
DAFF mapped onto the RFIM space using Eq. (17) (dashed
line, the squares represent the obtained critical points along
the different simulation paths for the DAFF). For random-field
strengths of up to h ≈ 1.2—which means field strengths
of up to B ≈ 1.6 for the DAFF—there is an approximate
correspondence between both models. However, as the figure
clearly illustrates, strictly speaking the correspondence only
seems to work in the limit of h → 0 (h � 0.3). Given the
mean-field nature of the Cardy argument, the agreement of
the phase boundaries is rather good. On the other hand,
it is not surprising that for larger disorder, they do not
agree exactly. It is of importance to take these limitations
of the Cardy mapping17 into account when studying diluted
antiferromagnets in an external field experimentally while
attempting to describe the data analytically using the RFIM.
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1.7

1.8

ν

0.58 1 1.62 2.2

0.22 0.5 1.16 1.7 2.02

B

h

DAFF
RFIM

FIG. 7. (Color online) Critical exponent ν as a function of the field
h (RFIM) and B (DAFF). The labels on the upper axis correspond to
the random-field strength h (RFIM), those on the lower axis to the
external field B (DAFF). The weighted mean is ν = 1.39(17) (gray
line) and the weighted error is represented by the shaded (light blue)
area. The difference between ν̄DAFF = 1.41(15) (blue dashed line) and
ν̄RFIM = 1.37(12) (red dashed line) is marginal in comparison to the
error bars of the data points. The RFIM ground-state value is taken
from Ref. 49.

Furthermore, a basic finite-size scaling analysis leads to no
systematic deviations of the correlation-length exponent ν.
Including the estimates for rough simulations at high fields,
our results support

ν = 1.39(17) (18)

for the range of fields studied, in agreement with previous
studies, such as νRFIM = 1.37(9),49 ν = 1.20(5)14 from ex-
periments on Fe0.85Zn0.15F2 (p = 0.85), or ν = 1.40(6) from
the disconnected part of the susceptibility of Fe0.93Zn0.07F2

(p = 0.93).52 Note that our results are also compatible with the
value ν = 1.10(15) computed by Fernandez et al.44 obtained
for their largest system size using the quotient method. They
do find other values of ν for smaller system sizes. Our results
are summarized in Fig. 7. As can be clearly seen, the difference
between the estimates for the critical exponent of the correla-
tion length for both models is marginal and within error bars:
The average estimate for the RFIM is ν̄RFIM = 1.37(12) (red
line in Fig. 7), whereas for the DAFF ν̄DAFF = 1.41(15) (blue
line in Fig. 7). This apparent agreement of the critical exponent
is quite good, given that the proposed equivalence is based on
a mean-field argument that typically leads to quite different
exponents compared to the true non-mean-field values.

However, the error bars are large and therefore a more
detailed study needs to be performed. To truly discern if both
models are in the same universality class, in addition to having
one (apparently) agreeing critical exponent, one would have
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FIG. 8. (Color online) Critical exponent η as a function of the field
h (RFIM) and B (DAFF). The labels on the upper axis correspond to
the random-field strength h (RFIM), those on the lower axis to the
external field B (DAFF). For comparison, we also add the estimates
for the three-dimensional Ising ferromagnet (filled circle at h = 0,
marked with “Ising magnet”),48 the RFIM at T = 0 (open circle at
h = hc, marked with “RFIM GS”),50 and the DAFF at T = 0 and
B = Bc computed from our ground-state data [η(T = 0) ≈ 0.68(1),
filled square, marked with “DAFF GS”]. Note that we find very large
fluctuations, i.e., a detailed determination of the different universality
classes is difficult.

to compute a second critical exponent. We also analyzed the
behavior of the magnetic susceptibility χ which has a peak at
the phase transition. By studying the finite-size behavior of the
peak height (not shown), we determine the critical exponent η

using the finite-size scaling form of the susceptibility, Eq. (13).
Our estimates of the critical exponent η along the phase
boundary are shown in Fig. 8 and summarized in Tables IV
and V for the RFIM and DAFF, respectively. Fluctuations are
very large, especially for large fields, but suggest that both the
RFIM and the DAFF might not share the same universality
class. For the DAFF, a clear systematic trend is visible that
shows that η might be strongly field dependent for B � 1.6,
i.e., in the curved portion of the phase boundary. However, note
that the exponent η is very difficult to compute, as recently
shown in Ref. 20. A different approach is the computation of
the critical exponent α that describes the divergence of the
specific heat. However, for both the RFIM and the DAFF α is
close to zero.34,49 Therefore, simulations of very large system
sizes that are currently not accessible numerically are required.

Fortunately, there is a simple yet more sensitive method to
verify if two different systems share the same universality class
without having to compute any critical exponents:41,53 Both
the Binder cumulant and the two-point finite-size correlation
function divided by the system size are dimensionless quanti-
ties. By plotting one as a function of the other, nonuniversal
quantities cancel out.41 For a given system, once large enough
system sizes are reached such that corrections to scaling

are negligible, the data for all system sizes collapse onto a
universal curve within error bars. If two systems share the same
critical exponent ν, we expect that all data should collapse onto
the same universal curve within error bars and, in particular,
that the estimates of the Binder cumulant and the two-point
finite-size correlation function agree at the putative critical
point(s). We therefore would expect that data sets of g(ξL/L)
for both the DAFF and the RFIM should agree for all simulated
temperatures and, in particular, for T = Tc.

Figure 9 shows the Binder cumulant as a function of the
two-point finite-size correlation function divided by the system
size for both the DAFF and the RFIM. The left set of points
(reddish/light tones, circles) are for the RFIM. Data for the
different simulation paths used collapse onto a master curve.
The right set of points (greenish/dark tones, squares) are for
the DAFF. Again, all data collapse onto a master curve for all
simulation paths taken. This shows that for this type of analysis
the finite-size corrections are small for both models and within
the statistical fluctuations. However, the data sets for the RFIM
and the DAFF do not agree, except in the trivial limit where
g(T ) → 1. The large circles for the RFIM (squares for the
DAFF) represent our estimates of g(ξL/L) at T = Tc. As can
be seen, the data for both models do not agree (i.e., a large
circle should sit on top of a large square), something which
is even more clear when zooming into the boxed area (inset).
Note that the large error bars are due to the uncertainty of the
critical temperature. This discrepancy reveals the differences
between the DAFF and the RFIM which could not be detected
within the scope of a mean-field calculation.

VII. CONCLUSIONS

We have performed extensive Monte Carlo simulations of
the diluted antiferromagnet in a field at 30% dilution (p = 0.7)
and the random-field Ising model. Using these data we show
that the phase boundaries for both models are well described
by ellipses (see Fig. 5). In addition, using zero-temperature
heuristic methods, we compute the zero-temperature critical
point for the DAFF with 30% dilution (p = 0.7). We expect
that the phase boundary for other dilutions will be similar,
albeit with different nonuniversal parameters. Furthermore,
we numerically study the equivalence of the RFIM and the
DAFF as predicted by Cardy.17 Our results show that only in
the limit of small fields do both phase boundaries map onto
each other.

Finally, we perform a finite-size scaling analysis to deter-
mine the critical exponent ν of the correlation length. Our re-
sults from the two-point finite-size correlation function suggest
that the exponent ν agrees within error bars for both the RFIM
and the DAFF. However, error bars are large. To circumvent
this problem, we study the Binder cumulant as a function
of the two-point finite-size correlation function divided by the
system size and show that both models apparently do not share
the same universality class. A computation of the exponent η is
extremely difficult and plagued by finite-size effects. Clearly,
more detailed simulations need to be performed to fully discern
the critical behavior of both models and fully determine their
universality classes. It would be interesting to also measure
the critical behavior of the specific heat (critical exponent
α). However, because the exponent is close to zero for both
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FIG. 9. (Color online) Binder ratio g as a function of the two-point finite-size correlation function divided by the system size ξL/L for
several system sizes and simulation paths. Note that also small system sizes are included, i.e., corrections to finite-size scaling are small. The
data for the RFIM and DAFF collapse onto two distinct set of curves, suggesting that both models do not share the same universality class.
The left set of points (reddish/light tones, circles) are for the RFIM. The right set of points (greenish/dark tones, squares) are for the DAFF.
The large circles for the RFIM (large squares for the DAFF) represent our estimates of g(ξL/L) at T = Tc. The inset zooms into the important
region (large box), where the Cardy mapping should apply. Clearly, both data sets are different, suggesting that the RFIM and the DAFF do not
share the same universality class.

models, large system sizes are needed; sizes that are currently
not accessible via simulations. We conclude by cautioning
researchers when using the equivalence of both models.
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