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Localized magnetic moments with crystal-field doublet or pseudospin- 1
2 may arise in correlated insulators with

even number of electrons and strong spin-orbit coupling. Such a non-Kramers pseudospin- 1
2 is the consequence of

crystalline symmetries as opposed to the Kramers doublet arising from time-reversal invariance, and is necessarily
a composite of spin and orbital degrees of freedom. We investigate possible spin-orbital liquids with fermionic
spinons for such non-Kramers pseudospin- 1

2 systems on the kagome lattice. Using the projective symmetry group
analysis, we find 10 phases that are not allowed in the corresponding Kramers systems. These phases are allowed
due to unusual action of the time-reversal operation on non-Kramers pseudospins. We compute the spin-spin
dynamic structure factor that shows characteristic features of these non-Kramers spin-orbital liquids arising from
their unusual coupling to neutrons, which is therefore relevant for neutron scattering experiments. We also point
out possible anomalous broadening of Raman scattering intensity that may serve as a signature experimental
feature for gapless non-Kramers spin-orbital liquids.
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I. INTRODUCTION

The low-energy magnetic degrees of freedom of a Mott
insulator, in the presence of strong spin-orbit coupling, are
described by states with entangled spin and orbital wave
functions.1,2 In certain crystalline materials, for ions with
even numbers of electrons, a low-energy spin-orbit entangled
“pseudospin”- 1

2 may emerge, which is not protected by
time-reversal symmetry (Kramers degeneracy)3 but rather
by the crystal symmetries.4,5 Various phases of such non-
Kramers pseudospin systems on geometrically frustrated
lattices, particularly various quantum paramagnetic phases,
are of much recent theoretical and experimental interest in the
context of a number of rare-earth materials including frustrated
pyrochlores6–10 and heavy-fermion systems.11,12

In this paper, we explore spin-orbital liquids that may
emerge in these systems due to the unusual transformation of
the non-Kramers pseudospins under the time-reversal transfor-
mation. Contrary to Kramers spin- 1

2 , where the spins transform
as S → −S under time reversal,3 here only one component of
the pseudospin operators changes sign under time reversal:
{σ 1,σ 2,σ 3} → {σ 1,σ 2, − σ 3}.4,5 This is because, due to the
nature of the wave-function content, the σ3 component of
the pseudospin carries a dipolar magnetic moment while the
other two components carry quadrupolar moments of the
underlying electrons. Hence, the time-reversal operator for
the non-Kramers pseudospins is given by T = σ 1K (where
K is the complex conjugation operator), which allows for
different spin-orbital liquid phases. Since the magnetic degrees
of freedom are composed out of wave functions with entangled
spin and orbital components, we prefer to refer to the above
quantum paramagnetic states as spin-orbital liquids, rather
than spin liquids.

Since the degeneracy of the non-Kramers doublet is
protected by crystal symmetries, the transformation properties
of the pseudospin under various lattice symmetries intimately
depend on the content of the wave functions that make up the
doublet. To this end, we focus our attention on the example

of praseodymium ions (Pr3+) in a local D3d environment,
which is a well-known non-Kramers ion that occurs in a
number of materials with interesting properties.6–8 Such an
environment typically occurs in praseodymium pyrochlores
given by the generic formulas Pr2T M2O7, where T M (= Zr,
Sn, Hf, or Ir) is a transition metal. In these compounds, the
Pr3+ ions host a pair of 4f electrons which form a J = 4
ground-state manifold with S = 1 and L = 5, as expected due
to Hund’s rules. In terms of this local environment, we have a
ninefold degeneracy of the electronic states.5 This degeneracy
is broken by the crystalline electric field. The oxygen and
T M ions form a D3d local symmetry environment around
the Pr3+ ions, splitting the ninefold degeneracy. A standard
analysis of the symmetries of this system (see Appendix A)
shows that the J = 4 manifold splits into three doublets and
three singlets (�j=4 = 3Eg + 2A1g + A2g) out of which one
of the doublets is found to have the lowest energy, usually
well separated from the other crystal-field states.5 This doublet
(details in Appendix A), formed out of a linear combination
of the Jz = ±4 with Jz = ±1 and ±2 states, is given by

|±〉 = α|m = ±4〉 ± β|m = ±1〉 − γ |m = ∓2〉. (1)

The non-Kramers nature of this doublet is evident from the
nature of the “spin”-raising and -lowering operators within the
doublet manifold; the projection of the angular-momentum-
raising and -lowering operators to the space of doublets
is zero (PJ±P|σ 〉 = 0 where P projects into the doublet
manifold). However, the projection of the J z operator to this
manifold is nonzero, and describes the z component of the
pseudospin (σ 3). In addition, there is a nontrivial projection
of the quadrupole operators {J±,J z} in this manifold. These
have off-diagonal matrix elements, and are identified with the
pseudospin-raising and -lowering operators (σ± = σ 1 ± iσ 2).

In a pyrochlore lattice, the local D3d axes point to the center
of the tetrahedra.5 On looking at the pyrochlore lattice along
the [111] direction, it is found to be made out of alternate
layers of kagome and triangular lattices. For each kagome
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FIG. 1. (Color online) A kagome layer, in the pyrochlore lattice
environment. We consider sites labeled z and z′ replaced by
nonmagnetic ions, decoupling the kagome layers. The local axis at
the u, v, and w sites point towards the center of the tetrahedron on
which these lie.

layer (shown in Fig. 1), the local D3d axes make an angle of
cos−1(

√
2/3) with the plane of the kagome layer. We imagine

replacing the Pr3+ ions from the triangular lattice layer with
nonmagnetic ions so as to obtain decoupled kagome layers
with Pr3+ ions on the sites. The resulting structure is obtained
in the same spirit as the now well-known kagome compound
Herbertsmithite was envisioned. As long as the local crystal
field has D3d symmetry, the doublet remains well defined.
A suitable candidate nonmagnetic ion may be isovalent but
nonmagnetic La3+. Notice that the most extended orbitals in
both cases are the fifth-shell orbitals, and the crystal field
at each Pr3+ site is mainly determined by the surrounding
oxygens and the transition-metal element. Hence, we expect
that the splitting of the non-Kramers doublet due to the above
substitution would be very small and the doublet will remain
well defined. In this work, we shall consider such a kagome
lattice layer and analyze possible Z2 spin-orbital liquids, with
gapped or gapless fermionic spinons.

The rest of the paper is organized as follows. In Sec. II, we
begin with a discussion of the symmetries of the non-Kramers
system on a kagome lattice and write the most general
pseudospin model with pseudospin exchange interactions
up to second nearest neighbors. In Sec. III, we formulate
the projective symmetry group (PSG) analysis for singlet
and triplet decouplings. Using this, we demonstrate that the
non-Kramers transformation of our pseudospin degrees of
freedom under time reversal leads to a set of 10 spin-orbital
liquids which can not be realized in the Kramers case. In
Sec. IV, we derive the dynamic spin-spin structure factor for
two representative spin liquids for the case of both Kramers
and non-Kramers doublets, demonstrating that experimentally
measurable properties of these two types of spin-orbital liquids
differ qualitatively. Finally, in Sec. V, we discuss our results,
and propose an experimental test which can detect a non-
Kramers spin-orbital liquid. The details of various calculations
are discussed in different appendixes.

II. SYMMETRIES AND THE PSEUDOSPIN HAMILTONIAN

Since the local D3d axes of the three sites in the kagome
unit cell differ from each other, a general pseudospin Hamil-
tonian is not symmetric under continuous global pseudospin
rotations. However, it is symmetric under various symmetry
transformations of the kagome lattice as well as time-reversal

(a) (b)

FIG. 2. (Color online) (a) The symmetries of the kagome lattice.
Also shown are the labels for the sublattices and the orientation of
the local z axis. (b) Nearest- and next-nearest-neighbor bonds. Colors
refer to the phases φr,r ′ and φ′

r,r ′ , with these being 0 on blue bonds, 1
on green bonds, and 2 on red bonds.

symmetry. Such symmetry transformations play a major role
in the remainder of our analysis. We start by describing the
effect of various lattice symmetry transformations on the
non-Kramers doublet.

We consider the symmetry operations that generate the
space group of the above kagome lattice. These are [as shown
in Fig. 2(a)] as follows:

(i) T1, T2: generate the two lattice translations.
(ii) σ = C ′

2I : (not to be confused with the pseudospin
operators which come with a superscript) where I is the
three-dimensional inversion operator about a plaquette center
and C ′

2 refers to a twofold rotation about a line joining two
opposite sites on the plaquette.

(iii) S6 = C2
3I : where C3 is the threefold rotation operator

about the center of a hexagonal plaquette of the kagome lattice.
(iv) T = σ1K: time reversal.
Here, we consider a three-dimensional inversion operator

since the local D3d axes point out of the kagome plane. The
above symmetries act nontrivially on the pseudospin degrees of
freedom, as well as the lattice degrees of freedom. The action
of the symmetry transformations on the pseudospin operators
is given by

S6 : {σ 3,σ+,σ−} → {σ 3,ω̄σ+,ωσ−},
T : {σ 3,σ+,σ−} → {−σ 3,σ−,σ+},

C ′
2 : {σ 3,σ+,σ−} → {−σ 3,σ−,σ+}, (2)

T1 : {σ 3,σ+,σ−} → {σ 3,σ+,σ−},
T2 : {σ 3,σ+,σ−} → {σ 3,σ+,σ−}

(ω = ω̄−1 = ei 2π
3 ). Operationally, their action on the doublet

(|+〉|−〉) can be written in form of 2 × 2 matrices. The
translations T1, T2 act trivially on the pseudospin degrees of
freedom, and the remaining operators act as

T = σ1K, σ = σ1, S6 =
[

ω̄ 0
0 ω

]
, (3)

where K refers to complex conjugation. The above expressions
can be derived by examining the effect of these operators on
the wave function describing the doublet [Eq. (1)].

We can now write the most generic pseudospin Hamiltonian
allowed by the above lattice symmetries that is bilinear in
pseudospin operators. The form of the time-reversal sym-
metry restricts our attention to those products which are
formed by a pair of σ 3 operators or those which mix the
pseudospin-raising and -lowering operators. Any term which
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mixes σ 3 and σ± changes sign under the symmetry, and
can thus be excluded. Under the C3 transformation about a
site, the terms C3 : σ 3

r σ 3
r ′ → σ 3

C3(r)σ
3
C3(r ′) and C3 : σ+

r σ−
r ′ →

σ+
C3(r)σ

−
C3(r ′). However, the term σ+

r σ+
r ′ (and its Hermitian

conjugate) gain additional phase factors when transformed;
under the C3 symmetry transformation, this term becomes C3 :
σ+

r σ+
r ′ → ω̄σ+

C3(r)σ
+
C3(r ′). In addition, under the σ symmetry,

this term transforms as σ : σ+
r σ+

r ′ → σ−
σ (r)σ

−
σ (r ′). Thus, the

Hamiltonian with spin-spin exchange interactions up to next-
nearest neighbor is given by

Heff = Jnn

∑
〈r,r ′〉

[
σ 3

r σ 3
r ′ + 2(δσ+

r σ−
r ′ + H.c.)

+ 2q
(
e

2πiφ
r,r′

3 σ+
r σ+

r ′ + H.c.
)]

+ Jnnn

∑
〈〈r,r ′〉〉

[
σ 3

r σ 3
r ′ + 2(δ′σ+

r σ−
r ′ + H.c.)

+ 2q ′
(
e

2πiφ′
r,r′

3 σ+
r σ+

r ′ + H.c.
)]

, (4)

where φ and φ′ take values 0, 1, and 2 depending on the bonds
on which they are defined [Fig. 2(b)]. The above Hamiltonian
is similar in form to that derived in Ref. 5 with one difference:
the coupling δ, in the present case, is allowed to be complex
due to the lowered symmetry.

III. SPINON REPRESENTATION OF THE PSEUDOSPINS
AND PSG ANALYSIS

Having written the pseudospin Hamiltonian, we now
discuss the possible spin-orbital liquid phases. We do this in
two stages in the following sections.

A. Slave-fermion representation and spinon decoupling

In order to understand these phases, we will use the
fermionic slave-particle decomposition of the pseudospin
operators. At this point, we note that the pseudospins satisfy
S = 1

2 representations of an “SU(2)” algebra among their
generators (not to be confused with the regular spin rotation
symmetry). We represent the pseudospin degrees of freedom
in terms of a fermion bilinear. This is very similar to usual
slave-fermion construction for spin liquids.13,14 We take

σ
μ

j = 1
2f

†
jα[ρμ]αβfjβ, (5)

where α,β = ↑,↓ is defined along the local z axis and f

(f †) is an S = 1
2 fermionic annihilation (creation) operator.

Following standard nomenclature, we refer to the f (f †) as
the spinon annihilation (creation) operator, and note that these
satisfy standard fermionic anticommutation relations. The
above spinon representation, along with the single-occupancy
constraint

f
†
i↑fi↑ + f

†
i↓fi↓ = 1, (6)

form a faithful representation of the pseudospin- 1
2 Hilbert

space. The above representation of the pseudospins, when
used in Eq. (4), leads to a quartic spinon Hamiltonian.
Following standard procedure,13,14 this is then decomposed
using auxiliary fields into a quadratic spinon Hamiltonian

(after writing the corresponding Euclidian action). The mean-
field description of the phases is then characterized by the
possible saddle-point values of the auxiliary fields. There are
eight such auxiliary fields per bond, corresponding to

χij = 〈f †
iαfjα〉∗; ηij = 〈fiα[iτ 2]αβfjβ〉∗; (7a)

Ea
ij = 〈f †

iα[τ a]αβfjβ〉∗; Da
ij = 〈fiα[iτ 2τ a]αβfiβ〉∗, (7b)

where τ a (a = 1,2,3) are the Pauli matrices. While Eq. (7a)
represents the usual singlet spinon hopping (particle-hole)
and pairing (particle-particle) channels, Eq. (7b) represents
the corresponding triplet decoupling channels. Since the
Hamiltonian [Eq. (4)] does not have pseudospin rotation
symmetry, both the singlet and the triplet decouplings are
necessary.15,16

From this decoupling, we obtain a mean-field Hamiltonian
which is quadratic in the spinon operators. We write this
compactly in the following form16 [subject to the constraint
Eq. (6)]:

H0 =
∑
ij

Jij
�fi
†Uij

�fj , (8)

�fi
† = [ f

†
i↑ fi↓ f

†
i↓ −fi↑ ], (9)

Uij = ξ
αβ

ij �α�β, (10)

�α = ρα ⊗ I, �β = I ⊗ τβ, (11)

where ρα are the identity (for α = 0) and Pauli matrices
(α = 1,2,3) acting on pseudospin degrees of freedom, and
τα represents the same in the gauge space. We immediately
note that

[�α,�β] = 0 ∀ α,β. (12)

The requirement that H0 be Hermitian restricts the coefficients
ξij to satisfy

ξ 00
ij ,ξ ab

ij ∈ Im; ξa0
ij ,ξ 0b

ij ∈ Re (13)

for a,b ∈ {1,2,3}. The relations between ξij ’s and
{χij ,ηij ,Eij ,Dij } are given in Appendix C.16 As a straight-
forward extension of the SU(2) gauge theory formulation for
spin liquids,13,17 we find that H0 is invariant under the gauge
transformation

�fj → Wj
�fj , (14)

Uij → WiUijW
†
j , (15)

where the Wi matrices are SU(2) matrices of the form Wi =
ei ��· �ai [�� ≡ (�1,�2,�3)]. Noting that the physical pseudospin
operators are given by

�σi = 1
4

�fi
† �� �fi, (16)

Eq. (12) shows that the spin operators, as expected, are gauge
invariant. It is useful to define the “� components” of the Uij

matrices as follows:

Uij = Vα
ij�

α, (17)

where

Vα
ij = ξ

αβ

ij �β =
[J α

ij 0
0 J α

ij

]
(18)
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and

J α
ij =

[
ξα0
ij + ξα3

ij ξα1
ij − iξα2

ij

ξα1
ij + iξα2

ij ξα0
ij − ξα3

ij

]
. (19)

Under global spin rotations, the fermions transform as

�fi → V �fi, (20)

where V is an SU(2) matrix of the form V = ei ��·�b ( �� ≡
{�1,�2,�3}). So, while V0

ij (the singlet hopping and pairing)
is invariant under spin rotation, {V1

ij ,V2
ij ,V3

ij } transforms as a
vector as expected since they represent triplet hopping and
pairing amplitudes.

B. PSG classification

We now classify the non-Kramers spin-orbital liquids
based on projective representation similar to that of the
conventional quantum spin liquids.13 Each spin-orbital liquid
ground state of the quadratic Hamiltonian [Eq. (11)] is char-
acterized by the mean-field parameters (eight on each bond,
χ,η,E1,E2,E3,D1,D2,D3 or, equivalently, Uij ). However,
due to the gauge redundancy of the spinon parametrization
[as shown in Eq. (15)], a general mean-field Ansatz need
not be invariant under the symmetry transformations on their
own but may be transformed to a gauge-equivalent form
without breaking the symmetry. Therefore, we must consider
its transformation properties under a projective representation
of the symmetry group.13 For this, we need to know the various
projective representations of the lattice symmetries of the
Hamiltonian [Eq. (4)] in order to classify different spin-orbital
liquid states.

Operationally, we need to find different possible sets of
gauge transformations {GG} which act in combination with
the symmetry transformations {SG} such that the mean-field
Ansatz Uij is invariant under such a combined transformation.
In the case of spin rotation invariant spin liquids (where only
the singlet channels χ and η are present), the above statement
is equivalent to demanding the following invariance:

Uij = [GSS] Uij [GSS]† = GS(i)US(i)S(j )G
†
S(j ), (21)

where S ∈ SG is a symmetry transformation and GS ∈ GG

is the corresponding gauge transformation. The different
possible {GS |∀S ∈ SG} give the possible algebraic PSGs
that can characterize the different spin-orbital liquid phases.
To obtain the different PSGs, we start with various lattice
symmetries of the Hamiltonian. The action of various lattice
transformations18 is given by

T1 : (x,y,s) → (x + 1,y,s);

T2 : (x,y,s) → (x,y + 1,s);

σ : (x,y,u) → (y,x,u),

(x,y,v) → (y,x,w),
(22)

(x,y,w) → (y,x,v);

S6 : (x,y,u) → (−y − 1,x + y + 1,v),

(x,y,v) → (−y,x + y,w),

(x,y,w) → (−y − 1,x + y,u),

where (x,y) denotes the lattice coordinates and s ∈ {u,v,w}
denotes the sublattice index (see Fig. 2).

In terms of the symmetries of the kagome lattice, these
operators obey the following conditions:

T 2 = σ 2 = (S6)6 = e,

g−1T −1gT = e ∀ g ∈ SG,

T −1
2 T −1

1 T2T1 = e,

σ−1T −1
1 σT2 = e,

(23)
σ−1T −1

2 σT1 = e,

S−1
6 T −1

2 S6T1 = e,

S−1
6 T −1

2 T1S6T2 = e,

σ−1S6σS6 = e.

In addition, these commutation relations are valid in terms of
the operations on the pseudospin degrees of freedom, as can
be verified from Eq. (3).

In addition to the conditions in Eq. (23), the Hamiltonian
is trivially invariant under the identity transformation. The
invariant gauge group (IGG) of an Ansatz is defined as the set of
all pure gauge transformations GI such that GI : Uij → Uij .
The nature of such pure gauge transformations immediately
dictates the nature of the low-energy fluctuations about the
mean-field state. If these fluctuations do not destabilize the
mean-field state, we get stable spin-liquid phases whose low-
energy properties are controlled by the IGG. Accordingly, spin
liquids obtained within projective classification are primarily
labeled by their IGGs and we have Z2,U(1), and SU(2)
spin liquids corresponding to IGGs of Z2,U(1), and SU(2),
respectively. In this work, we concentrate on the set of Z2

“spin liquids” (spin-orbital liquids with a Z2 IGG).
We now focus on the PSG classification. As shown in

Eq. (2), in the present case, the pseudospins transform
nontrivially under different lattice-symmetry transformations.
Due to the presence of the triplet decoupling channels, the
non-Kramers doublet transforms nontrivially under lattice
symmetries [Eq. (3)]. Thus, the invariance condition on the
Uij ’s is not given by Eq. (21), but by a more general condition

Uij = [GSS]Uij [GSS]† = GS(i)φS[US(i)S(j )]G
†
S(j ). (24)

Here,

φS[US(i)S(j )] = DSUS(i)S(j )D†
S, (25)

and DS generates the pseudospin rotation associated with the
symmetry transformation (S) on the doublet. The matrices DS

have the form

DS6 = −1

2
�0 − i

√
3

2
�3, (26)

Dσ = DT = i ∗ �1, DT1 = DT2 = �0. (27)

Under these constraints, we must determine the relations
between the gauge transformation matrices GS(i) for our set
of Ansätze. The additional spin transformation [Eq. (25)] does
not affect the structure of the gauge transformations, as the
gauge and spin portions of our Ansätze are naturally separate
[Eq. (12)]. In particular, we can choose to define our gauge
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transformations such that

GS : Uij = GS : ξ
αβ

ij �α�β → ξ
αβ

ij �αG
†
S(i)�βGS(j ), (28)

S : Uij = S : ξ
αβ

ij �α�β → ξ
αβ

S(i)S(j )DS�
αD†

S�
β, (29)

where we have used the notation GS : Uij ≡ G
†
S(i)UijGS(j )

and so forth. As a result, we can build on the general
construction of Lu et al.18 to derive the form of the gauge
transformation matrices. The details are given in Appendix B.

A major difference arises when examining the set of
algebraic PSGs for Z2 spin liquids found on the kagome
lattice due to the difference between the structure of the time-
reversal-symmetry operation on the Kramers and non-Kramers
pseudospin- 1

2 . In the present case, we find there are 30 invariant
PSGs leading to 30 possible spin-orbital liquids. This is in
contrast with the Kramers case analyzed by Lu et al.,18 where
10 of the algebraic PSGs can not be realized as invariant
PSGs, as all bonds in these Ansätze are predicted to vanish
identically due to the form of the time-reversal operator, and
hence there are only 20 possible spin liquids. However, with
the inclusion of spin-triplet terms and the non-Kramers form of
our time-reversal operator, these Ansätze are now realizable as
invariant PSGs as well. The time-reversal operator, as defined
in Appendix B, acts as

T : ξ
αβ

ij �α�β → ξ̃
αβ

ij �α�β, (30)

where ξ̃ αβ = ξαβ if α ∈ {1,2} and ξ̃ αβ = −ξαβ if α ∈ {0,3}.
The projective implementation of the time-reversal symmetry
condition [Eq. (23)] takes the form (see Appendix B)

[GT (i)]2 = ηT I∀ i, (31)

where GT (i) is the gauge transformation associated with time-
reversal operation and ηT = ±1 for a Z2 IGG.

Therefore, the terms allowed by the time-reversal symmetry
to be nonzero are, for ηT = 1,

ξ 10, ξ 11, ξ 12, ξ 13, ξ 20, ξ 21, ξ 22, ξ 23, (32)

and for ηT = −1, with the choice GT (i) = i�1 (see
Appendix B),

ξ 02, ξ 03, ξ 10, ξ 11, ξ 20, ξ 21, ξ 32, ξ 33. (33)

This contrasts with the case of Kramers doublets, in which no
terms are allowed for ηT = +1, and for ηT = −1 the allowed
terms are

ξ 02, ξ 03, ξ 12, ξ 13, ξ 22, ξ 23, ξ 32, ξ 33. (34)

Further restrictions on the allowed terms on each link arise
from the form of the gauge transformations defined for the
symmetry transformations. All nearest-neighbor bonds can
then be generated from Uij defined on a single bond, by
performing appropriate symmetry operations.

Using the methods outlined in earlier works (Refs. 13
and 18), we find the minimum set of parameters required to
stabilize Z2 spin-orbital liquids. We take into consideration
up to second-neighbor hopping and pairing amplitudes (both
singlet and triplet channels). The results are listed in Table I.

The spin-orbital liquids listed from 21–30 are not allowed
in the case of Kramers doublets and, as pointed out before,
their existence is solely due to the unusual action of the time-
reversal-symmetry operator on the non-Kramers spins. Hence,
these 10 spin-orbital liquids are qualitatively different phases
that may appear in these systems. Of these 10 phases, only two
(labeled as 21 and 22 in Table I) require next-nearest-neighbor
amplitudes to obtain a Z2 spin-orbital liquid. For the other 8,
nearest-neighbor amplitudes are already sufficient to stabilize
a Z2 spin-orbital liquid.

TABLE I. Symmetry-allowed terms: We list the terms allowed to be nonzero by symmetry, for the 30
PSGs determined by Lu et al. (Ref. 18). The PSGs listed together are those with η12 = ±1 and all other factors
equal. Included are terms allowed on nearest- and next-nearest-neighbor (NN and NNN, respectively) bonds,
as well as chemical potential terms � which can be nonzero on all sites for certain spin-orbital liquids. Also
included is the distance of bond up to which we must include in order to gap out the gauge fluctuations to Z2

via the Anderson-Higgs mechanism (Ref. 13). Only PSGs 9 and 10 can not host Z2 spin-orbital liquids with
up to second-nearest-neighbor bonds.

No. �s NN NNN Z2

1–2 �2,�3 ξ 10,ξ 21,ξ 02,ξ 03,ξ 32,ξ 33 ξ 10,ξ 21,ξ 02,ξ 03,ξ 32,ξ 33 NN
3–4 0 ξ 10,ξ 21,ξ 02,ξ 03,ξ 32,ξ 33 ξ 10,ξ 21 NN
5–6 �3 ξ 10,ξ 21,ξ 02,ξ 03,ξ 32,ξ 33 ξ 10,ξ 21,ξ 03,ξ 33 NN
7–8 0 ξ 11,ξ 20 ξ 11,ξ 20,ξ 02,ξ 03,ξ 32,ξ 33 NNN
9–10 0 ξ 11,ξ 20 ξ 11,ξ 20

11–12 0 ξ 11,ξ 20 ξ 10,ξ 11,ξ 02,ξ 32 NNN
13–14 �3 ξ 10,ξ 11,ξ 03,ξ 33 ξ 10,ξ 21,ξ 02,ξ 03,ξ 32,ξ 33 NN
15–16 �3 ξ 10,ξ 11,ξ 03,ξ 33 ξ 10,ξ 21,ξ 03,ξ 33 NN
17–18 0 ξ 10,ξ 11,ξ 03,ξ 33 ξ 10,ξ 11,ξ 02,ξ 32 NN
19–20 0 ξ 10,ξ 11,ξ 03,ξ 33 ξ 10,ξ 21 NN
21–22 0 ξ 10,ξ 21,ξ 22,ξ 23 ξ 10,ξ 21,ξ 22,ξ 23 NNN
23–24 0 ξ 10,ξ 21,ξ 22,ξ 23 ξ 10,ξ 11,ξ 12,ξ 23 NN
25–26 0 ξ 11,ξ 12,ξ 13,ξ 20 ξ 13,ξ 20,ξ 21,ξ 22 NN
27–28 0 ξ 11,ξ 12,ξ 13,ξ 20 ξ 10,ξ 11,ξ 13,ξ 22 NN
29–30 0 ξ 11,ξ 12,ξ 13,ξ 20 ξ 11,ξ 12,ξ 13,ξ 20 NN
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It is interesting to note (see following) that bond-
pseudospin-nematic order [Eqs. (35) and (36)] can signal spon-
taneous time-reversal-symmetry breaking. Generally, since
the triplet decouplings are present, the bond-nematic order
parameter for the pseudospins19,20

Qαβ

ij = 〈(
Sα

i S
β

j + S
β

i Sα
j

)/
2 − δαβ(�Si · �Sj )/3

〉
, (35)

as well as vector chirality order

�Jij = 〈�Si × �Sj 〉, (36)

are nonzero. Since the underlying Hamiltonian (4) generally
does not have pseudospin rotation symmetry, the above
nonzero expectation values do not spontaneously break any
pseudospin rotation symmetry. However, because of the
unusual transformation property of the non-Kramers pseu-
dospins under time reversal, the operators corresponding to
Q13

ij ,Q23
ij ,J 1

ij ,J 2
ij are odd under time reversal, a symmetry

of the pseudospin Hamiltonian. Hence, if any of the above
operators gain a nonzero expectation value in the ground state,
then the corresponding spin-orbital liquid breaks time-reversal
symmetry. While this can occur in principle, we have checked
explicitly (see Appendix C) that in all the spin-orbital liquids
discussed above, the expectation values of these operators are
identically zero. This provides a nontrivial consistency check
on our PSG calculations.

Having identified the possible Z2 spin-orbital liquids, we
can now study typical dynamic spin structure factors for these
spin-orbital liquids. In the next section, we examine the typical
spinon band structure for different spin-orbital liquids obtained
above and find their dynamic spin structure factor.

IV. DYNAMIC SPIN STRUCTURE FACTOR

The dynamic spin structure factor is given by

S(q,ω) =
∫

dt

2π
eiωt

∑
ij

eiq·(ri −r j )
∑

a=1,2,3

〈
σa

i (t)σa
j (0)

〉
. (37)

Here, we show it for two of the candidates and restrict ourselves
pointing out the qualitative differences between the Kramers
and non-Kramers spin-orbital liquids. More quantitative differ-
ences require careful analysis of the corresponding spin-liquid
ground state within self-consistent mean-field theory or other
sophisticated numerical techniques, which is beyond the scope
of this work. We choose spin liquids nos. 5 and 17 to
demonstrate these qualitative differences. Both of these can
be realized for the case of Kramers and non-Kramers spins
and hence we can use them to contrast the general features
for the two types. While the choice of the two spin liquids is
arbitrary, the features discussed here are generally applicable
to the other cases.

In Eq. (37), the pseudospin variables are defined in a
global basis (with the z axis perpendicular to the kagome
plane). In computing the structure factor for the non-Kramers
example, we include only the σ 3 components of the pseudospin
operator in the local basis since only the z components carry
magnetic dipole moment (see discussion before). Hence, only
this component couples linearly to neutrons in a neutron
scattering experiment (see also the comments at end of this
section). Equation (37) fails to be periodic in the first Brillouin

zone of the kagome lattice,15 as the term ri − rj in Eq. (37)
is a half-integer multiple of the primitive lattice vectors when
the sublattices of sites i and j are not equal. As such, we
examine the structure factor in the extended Brillouin zone,
which consists of those momenta of length up to double that
of those in the first Brillouin zone. We plot the structure factor
along the cut � → M ′ → K ′ → �, where M ′ = 2M and
K ′ = 2K .

We find that the structure factor generally has greater
intensity in the case of a Kramers spin liquid in comparison
to their non-Kramers counterparts. This is expected due to
the fact that the moment of the scattering particle (viz.
neutron) couples with all components in the case of the spins,
rather than simply the z component for the pseudospins. We
also note that the presence of different sets of mean-field
parameters allowed by the respective PSGs of the Kramers and
non-Kramers spin-orbital liquids may change the qualitative as
well as quantitative features of the spinon dispersion including
the presence or absence of a spinon gap. Some of these
qualitative differences are immediately visible in the structure
factor. For example, in the case of spin liquid no. 5, the
Kramers spectrum is gapped while the non-Kramers spectrum
is gapless in the same parameter regime. This is clearly visible
in the corresponding structure factors [Figs. 3(c) and 3(d)].
Qualitative and quantitative differences such as these, which
can be observed in these structure factors between Kramers
and non-Kramers spin-orbital liquids, provide one possible
distinguishing experimental signature of these states.

Before ending, we would like to point out a curious feature
of the effect of the fluctuations about the mean-field states in
the case of non-Kramers spin liquids only. In the absence of
pairing channels (both singlet and triplet) the IGG is U(1). In
this case, the fluctuations of the gauge field about the mean
field are related to the scalar pseudospin chirality �S1 · �S2 × �S3,
where the three sites form a triangle.21 Such fluctuations are
gapless in a U(1) spin liquid. It is interesting to note that the
scalar spin chirality is odd under time-reversal symmetry and
it has been proposed that such fluctuations can be detected in
neutron scattering experiments in the presence of spin rotation
symmetry breaking.22 In the present case, however, due to
the presence of spinon pairing, the IGG is broken down to
Z2 and the above gauge fluctuations are rendered gapped
through the Anderson-Higgs mechanism.13 In addition to the
above gauge fluctuations, because of the triplet decouplings
which break pseudospin rotational symmetry, there are bond
quadrupolar fluctuations of the pseudospins Qαβ

ij [Eq. (35)], as

well as vector chirality fluctuations �Jij [Eq. (36)] (Refs. 19
and 20) on the bonds. These nematic and vector chirality
fluctuations are gapped because the underlying pseudospin
Hamiltonian [Eq. (4)] breaks pseudospin rotation symmetry.
However, we note that because of the unusual transformation
of the non-Kramers pseudospins under time reversal (only the
z component of pseudospins being odd under time reversal),
certain quadrupolar operators [see Eqs. (35) and (36)], namely,
Q13

ij ,Q23
ij ,J 1

ij , and J 2
ij , are odd under time reversal. Hence,

while their mean-field expectation values are zero (see above),
the fluctuations of these quantities can in principle linearly
couple to the neutrons in addition to the z component of
the pseudospins. In a typical neutron scattering experiment,
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FIG. 3. (Color online) The spin structure factor for an Ansatz in spin liquid nos. 17 [(a) and (b)] and 5 [(c) and (d)]. (a) and (c) are the
Kramers spin liquids whereas (b) and (d) are the corresponding non-Kramers spin liquids (see text for detailed discussion).

these contributions should also be present along with the
contribution from the spin structure factor. We have, however,
not shown them in this work in Fig. 3.

V. DISCUSSION AND POSSIBLE EXPERIMENTAL
SIGNATURE OF NON-KRAMERS

SPIN-ORBITAL LIQUIDS

In this work, we have outlined the possible Z2 spin-orbital
liquids, with gapped or gapless fermionic spinons, that can
be obtained in a system of non-Kramers pseudospin- 1

2 ’s on
a kagome lattice of Pr+3 ions. We find a total of 30, 10
more than in the case of corresponding Kramers system,
allowed within PSG analysis in the presence of time-reversal
symmetry. The larger number of spin-orbital liquids is a
result of the difference in the action of the time-reversal
operator, when realized projectively. We note that the spin-spin
dynamic structure factor can bear important signatures of
a non-Kramers spin-orbital liquid when compared to their
Kramers counterparts. Our analysis of the number of invariant
PSGs leading to possibly different spin-orbital liquids that may
be realizable in other lattice geometries will form interesting
future directions.

We now briefly discuss an experiment that can play
an important role in determining non-Kramers spin-orbital
liquids. Since the non-Kramers doublets are protected by
crystalline symmetries, lattice strains can linearly couple to

the pseudospins. As we discussed, the transverse (x and y)
components of the pseudospins {σ 1,σ 2} carry quadrupolar
moments and hence are even under the time-reversal trans-
formation. Further, they transform under an Eg irreducible
representation of the local D3d crystal field. Hence, any lattice
strain which has this symmetry can linearly couple to the above
two transverse components. It turns out that in the crystal
type of which we are concerned, there is indeed such a mode
related to the distortion of the oxygen octahedra. Symmetry
considerations show that the linear coupling is of the form
Eg1σ

1 + Eg2σ
2 ({Eg1,Eg2} being the two components of the

distortion in the local basis). The above mode is Raman
active. For a spin liquid, we expect that as the temperature
is lowered, the spinons become more prominent as deconfined
quasiparticles. So, the Raman active phonon can efficiently
decay into the spinons due to the above coupling channel. If
the spin liquid is gapless, then this will lead to anomalous
broadening of the above Raman mode as the temperature is
lowered, which, if observed, can be an experimental signature
of the non-Kramers spin-orbital liquid. The above coupling is
forbidden in Kramers doublets by time-reversal symmetry and
hence no such anomalous broadening is expected.
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APPENDIX A: CRYSTAL-FIELD EFFECTS

In this appendix, we explore the breaking of the J = 4
spin degeneracy by the crystalline electric field. The oxygen
and T M ions form a D3d local symmetry environment
around the Pr3+ ions, splitting the ground-state degeneracy
of the electrons. This symmetry group contains six classes
of elements: E, 2C3, 3C ′

2, i, 2S6, and 3σd , where the C3 are
rotations by 2π/3 about the local z axis, the C ′

2 are rotations
by π about axis perpendicular to the local z axis, i is inversion,
S6 is a rotation by 4π/3 combined with inversion, and σd is
a reflection about the plane connecting one corner and the
opposing plane, running through the Pr molecule about which
this is measured (or, equivalently, a rotation about the x axis
combined with inversion). For our J = 4 manifold, these have
characters given by

χ (4)(E) = 2 ∗ 4 + 1 = 9 = χ (4)(i), (A1)

χ (4)(C3) = χ (4)

(
2π

3

)
= sin(3π )

sin(π/3)
= 0 = χ (4)(S6), (A2)

χ (4)(σd ) = χ (4)(π ) = sin(9π/2)

sin(π/2)
= 1 = χ (4)(C ′

2), (A3)

where the latter equalities are given by the fact that our J = 4
manifold is inversion symmetric. Thus, decomposing this in
terms of D3d irreps, our J = 4 manifold splits into a sum of
doublet and singlet manifolds as

�J=4 = 3Eg + 2A1g + A2g. (A4)

To examine this further, we need to consider the matrix
elements of the crystal-field potential between the states of
different angular momenta. We know that this potential must
be invariant under all group operations of D3d , so we can
examine the transformation properties of individual matrix
elements 〈m|V |m′〉. Under the C3 operation, these states of
fixed m transform as

C3|m〉 = e
2πim

3 |m〉 = ωm|m〉 (ω = e
2πi

3 ) (A5)

and thus the matrix elements transform as

C3 : 〈m|V |m′〉 → 〈m|(C3)−1V C3|m′〉 = ωm′−m〈m|V |m′〉.
(A6)

By requiring that this matrix be invariant under this transfor-
mation, we can see that this potential only contains matrix
elements for mixing of states which have the z component of
angular momentum which differ by 3. Thus, our eigenstates are
mixtures of the |m = 4〉, |m = 1〉, and |m = −2〉 states, of the
|m = 3〉, |m = 0〉, and |m = −3〉 states, and of the |m = −4〉,
|m = −1〉, and |m = 2〉 states.

In addition to this, we have the transformation properties

T |m〉 = (−1)m| − m〉 (A7)

and

σ |m〉 = (−1)m| − m〉. (A8)

Inversion acts trivially on these states, as we have even
total angular momentum. Thus, our time-reversal and

lattice-reflection (about one axis) symmetries give us doublet
states of eigenstates α|m = 4〉 + β|m = 1〉 − γ |m = −2〉 and
α|m = −4〉 − β|m = −1〉 − γ |m = 2〉 (with α, β, γ ∈ Re in
order to respect the time-reversal symmetry) for the three
eigenstates of V in these sectors. The eigenstates of the
|m = 3〉, |m = 0〉, and |m = −3〉 portion of V must therefore
split into three singlet states, by our representation theory
argument (A4). Due to the expected strong Ising term in our
potential, we expect the eigenstate with maximal J to be the
ground state, meaning that to analyze the properties of this
ground state we are interested in a single doublet state, one
with large α (close to one). We will restrict ourselves to this
manifold from this point forward, and define the two states in
this doublet as

|+〉 = α|m = 4〉 + β|m = 1〉 − γ |m = −2〉, (A9)

|−〉 = α|m = −4〉 − β|m = −1〉 − γ |m = 2〉. (A10)

APPENDIX B: GAUGE TRANSFORMATIONS

We begin by describing the action of time reversal
on our Ansatz. The operation is antiunitary, and comes
with a spin transformation σ 1 in the case of non-
Kramers doublets. As a result, the operation acts as T :
ξ

αβ

ij �α�β → ξ
αβ∗
ij �1�α∗�1�β∗. However, we can simplify

this considerably by performing a gauge transformation
in addition to the above transformation, which yields the
same transformation on any physical variables. The gauge
transformation we perform is i�2, which changes the
form of the time-reversal operation to T : ξ

αβ

ij �α�β →
ξ

αβ∗
ij �1�α∗�1�2�β∗�2 = ξ̃

αβ

ij �α�β , where ξ̃ αβ = ξαβ if α ∈
{1,2} and ξ̃ αβ = −ξαβ if α ∈ {0,3}.

On the kagome lattice, the allowed form of the gauge
transformations has been determined by Lu et al.18 For
completeness, we will reproduce that calculation, valid also
for our spin-triplet Ansatz, here. The relations between the
gauge transformation matrices

[GT (i)]2 = ηT I, (B1)

Gσ [σ (i)]Gσ (i) = ησ I, (B2)

G
†
T1

(i)G†
T (i)GT1 (i)GT

[
T −1

1 (i)
] = ηT1T I, (B3)

G
†
T2

(i)G†
T (i)GT2 (i)GT

[
T −1

2 (i)
] = ηT2T I, (B4)

G†
σ (i)G†

T (i)Gσ (i)GT [σ−1(i)] = ησT I, (B5)

G
†
S6

(i)G†
T (i)GS6 (i)GT

[
S−1

6 (i)
] = ηS6T I, (B6)

G
†
T2

[
T −1

1 (i)
]
G

†
T1

(i)GT2 (i)GT1

[
T −1

2 (i)
] = η12I, (B7)

GS6

[
S−1

6 (i)
]
GS6

[
S−2

6 (i)
]
GS6

[
S3

6 (i)
]

×GS6

[
S2

6 (i)
]
GS6 [S6(i)]GS6 (i) = ηS6I, (B8)

G†
σ

[
T −1

2 (i)
]
G

†
T2

(i)Gσ (i)GT1 [σ (i)] = ησT1I, (B9)

G†
σ

[
T −1

1 (i)
]
G

†
T1

(i)Gσ (i)GT2 [σ (i)] = ησT2I, (B10)
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G†
σ [S6(i)]GS6 [S6(i)]Gσ (i)GS6 [σ (i)] = ησS6I, (B11)

G
†
S6

[
T −1

2 (i)
]
G

†
T2

(i)GS6 (i)GT1

[
S−1

6 (i)
] = ηS6T1I, (B12)

G
†
S6

[
T −1

2 T1(i)
]
G

†
T2

[T1(i)]GT1 [T1(i)]

×GS6 (i)GT2

[
S−1

6 (i)
] = ηS6T2I (B13)

are valid for our case as well, due to the decoupling of spin
and gauge portions of our Ansätze. In the above, the relations
are valid for all lattice sites i = (x,y,s), I is the 4 × 4 identity
matrix, and the GS matrices are gauge transformation matrices
generated by exponentiation of the � matrices. The η’s are ±1,
the choice of which characterize different spin-liquid states.

We turn next to the calculation of the gauge transformations.
We look first at the gauge transformations associated with
the translations. We can perform a site-dependent gauge
transformation W (i), under which the gauge transformations
associated with the translational symmetries transform as

GT1 (i) → W (i)GT1 (i)W †(i − x̂), (B14)

GT2 (i) → W (i)GT2 (i)W †(i − ŷ). (B15)

As such, we can choose a gauge transformation W (i) to
simplify the form of GT1 and GT2 . Using such a transformation,
along with condition (B7), we can restrict the form of these
gauge transformations to be

GT1 (i) = η
iy
12I, GT2 (i) = I. (B16)

To preserve this choice, we can now only perform gauge
transformations which are equivalent on all lattice positions
[W (x,y,s) = W (s)] or transformations which change the
shown matrices by an IGG transformation.

Next, we look at adding the reflection symmetry σ . Given
our formulas for GT1 and GT2 , along with the relations between
the gauge transformations, we have that

G†
σ

[
T −1

2 (i)
]
Gσ (i)ηx

12 = ησT1I, (B17)

G†
σ

[
T −1

1 (i)
]
Gσ (i)ηy

12 = ησT2I. (B18)

Defining Gσ (0,0,s) = gσ (s), we have, by repeated application
of the above,

Gσ (0,y,s) = η
y

σT1
gσ (s), (B19)

Gσ (x,y,s) = η
y

σT1
η

xy

12ηx
σT2

gσ (s). (B20)

Next, using

Gσ [σ (i)]Gσ (i) = ησ I, (B21)

we find that

ησ I = Gσ [y,x,σ (s)]Gσ (x,y,s) (B22)

= (ησT1ησT2 )x+ygσ [σ (s)]gσ (s). (B23)

Since this is true for all x and y, ησT1ησT2 = 1 and thus ησT1 =
ησT2 and gσ [σ (s)]gσ (s) = ησ I [where σ (u) = u,σ (v) = w

and σ (w) = v]. Our final form for the gauge transformation is

Gσ (x,y,s) = η
x+y

σT1
η

xy

12gσ (s). (B24)

Next, we look at adding the S6 symmetry to our calculation.
We can do an IGG transformation, taking GT1 [T1(i)] to

ηS6T2GT1 [T1(i)], with the net effect being that ηS6T2 becomes
one (previous calculations are unaffected). We now have that

G
†
S6

[
T −1

2 T1(i)
]
GS6 (i)ηy

12 = I, (B25)

G
†
S6

[
T −1

2 (i)
]
GS6 (i)η−x−1

12 = ηS6T1I (s = u,v), (B26)

G
†
S6

[
T −1

2 (i)
]
GS6 (i)η−x

12 = ηS6T1I (s = w). (B27)

Defining GS6 (0,0,s) = gS6 (s), we find that

GS6 (n, − n,s) = η
n(n−1)/2
12 gS6 (s), (B28)

GS6 (x,y,s) = η
x(x−1)/2+y+xy

12 η
x+y

S6T1
gS6 (s) (s = u,v), (B29)

GS6 (x,y,s) = η
x(x−1)/2+xy

12 η
x+y

S6T1
gS6 (s) (s = w). (B30)

Using the commutation relation between the σ and S6 gauge
transformations, we find that

ησS6I = η
y

σT1
η

y

12η
y

S6T1
g†

σ (v)gS6 (v)gσ (u)gS6 (u) (B31)

= η
y

σT1
η

y

12η
y

S6T1
ησgσ (w)gS6 (v)gσ (u)gS6 (u), (B32)

giving us that ησT1η12ηS6T1 = 1 and gσ (u)gS6 (u)gσ (w)gS6 (v) =
ησS6ησ I . A similar calculation on a different sublattice gives
us

ησS6I = η
y

σT1
η

y

12η
y

S6T1
g†

σ (w)gS6 (w)gσ (v)gS6 (w) (B33)

= η
y

σT1
η

y

12η
y

S6T1
ησgσ (v)gS6 (w)gσ (v)gS6 (w), (B34)

giving us [gσ (v)gS6 (w)]2 = ησS6ησ I . A Z2 (IGG) gauge
transformation of the form W (x,y,s) = η

y

σT1
changes ησT1 to 1.

Using the cyclic relation of the gauge transformations related
to the S6 operators, we find

ηS6I = η12[gS6 (w)gS6 (v)gS6 (u)]2, (B35)

giving us that

[gS6 (w)gS6 (v)gS6 (u)]2 = ηS6η12I. (B36)

Next, we turn to the time-reversal symmetry. Similar
methods to the above give us that

[GT (i)]2 = ηT I, (B37)

G
†
T (i)GT (i + x̂) = ηT1T I, (B38)

G
†
T (i)GT (i + ŷ) = ηT2T I. (B39)

The first of these relations tells us that GT (i) is either the
identity (for ηT = 1) or i�a · �� (for ηT = −1, where |�a| = 1).
Defining GT (0,0,s) = gT (s),

GT (x,y,s) = ηx
T1T

η
y

T2T
gT (s) (B40)

and further, using the commutation relations between the
σ and T gauge transformations and the S6 and T gauge
transformations,

g†
σ (s)g†

T (s)gσ (s)gT [σ (s)]ηx+y

T1T
η

x+y

T2T
= ησT I, (B41)

g
†
S6

(s)g†
T (s)gS6 (s)gT

[
S−1

6 (s)
]
η

f1(i)
T1T

η
f2(i)
T2T

= ηS6T I. (B42)

Because this is true for all x and y, and f1(i) is not equal
to f2(i), ηT1T = ηT2T = 1. If GT (i) = i�a · ��, we perform a
gauge transformation W on GT (i) such that W †GT (i)W = i�1

(as this is the same on all sites, it does not affect our gauge
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TABLE II. We list the solutions of Eqs. (B43)–(B54), along with a set of gauge transformations which realize these solutions.

No. ηT ησT ηS6T ησ ησS6 ηS6 η12 gσ (u) gσ (v) gσ (w) gS6 (u) gS6 (v) gS6 (w)

1,2 −1 1 1 1 1 ±1 ±1 �0 �0 �0 �0 �0 �0

3,4 −1 1 1 1 −1 ∓1 ±1 �0 �0 �0 �0 −�0 i�1

5,6 −1 1 −1 1 −1 ∓1 ±1 �0 �0 �0 i�3 i�3 i�3

7,8 −1 1 1 −1 −1 ∓1 ±1 i�1 �0 −�0 �0 i�1 �0

9,10 −1 1 1 −1 1 ±1 ±1 i�1 �0 −�0 �0 −i�1 i�1

11,12 −1 1 −1 −1 1 ∓1 ±1 i�1 �0 −�0 i�3 −i�2 i�3

13,14 −1 −1 −1 −1 −1 ∓1 ±1 i�3 i�3 i�3 i�3 i�3 i�3

15,16 −1 −1 1 −1 1 ±1 ±1 i�3 i�3 i�3 �0 �0 �0

17,18 −1 −1 1 −1 1 ∓1 ±1 i�3 i�3 i�3 �0 �0 i�1

19,20 −1 −1 −1 −1 1 ∓1 ±1 i�3 i�3 i�3 i�3 −i�3 i�3

21,22 1 1 1 1 1 ±1 ±1 �0 �0 �0 �0 �0 �0

23,24 1 1 1 1 −1 ∓1 ±1 �0 �0 �0 �0 −�0 i�3

25,26 1 1 1 −1 −1 ∓1 ±1 i�3 �0 −�0 �0 i�3 �0

27,28 1 1 1 −1 1 ∓1 ±1 i�3 �0 −�0 �0 −i�3 i�1

29,30 1 1 1 −1 1 ±1 ±1 i�3 �0 −�0 �0 −i�3 i�3

fixing for the translation gauge transformations). Collecting
the necessary results for further use,

GT1 (x,y,s) = η
y

12I, (B43)

GT2 (x,y,s) = I, (B44)

Gσ (x,y,s) = η
xy

12gσ (s), (B45)

GS6 (x,y,s) = η
xy+(x+1)x/2
12 gS6 (s), s = u,v (B46)

GS6 (x,y,s) = η
xy+x+y+(x+1)x/2
12 gS6 (s), s = w (B47)

GT (s) = I = gT (s), ηT = 1, (B48)

GT (s) = i�1 = gT (s), ηT = −1, (B49)

gσ [σ (s)]gσ (s) = ησ I, (B50)

gσ (u)gS6 (u)gσ (w)gS6 (v) = [gσ (v)gS6 (w)]2 = ησS6ησ I,

(B51)

[gS6 (w)gS6 (v)gS6 (u)]2 = ηS6η12I, (B52)

gσ (s)gT [σ (s)] = ησT gT (s)gσ (s), (B53)

gS6 (s)gT [S−1
6 (s)] = ηS6T gT (s)gS6 (s). (B54)

We also have the gauge freedom left to perform a gauge
rotation arbitrarily at all positions for ηT = 1 or an arbitrary
gauge rotation about the x axis for ηT = −1.

The solution to the above equations is derived in detail
by Lu et al.18 and as such we simply list the results in
Table II. The basic method of obtaining these solutions is
as follows: for each choice of Z2 parameter set, we determine
whether there is a choice of gauge matrices {gS} which satisfy
Eqs. (B43)–(B54). In order to do so, we determine the allowed
forms of the gS matrices from the equations, then use the gauge
freedom on each site to fix the form of these. Of particular note
is the fact that in the consistency equations for the g matrices,
the terms η12 and ηS6 only appear multiplied together, meaning

that for any choice of the gauge matrices gS we can choose
η12 = ±1, which fixes the form of ηS6 .

APPENDIX C: RELATION AMONG THE
MEAN-FIELD PARAMETERS

The relation among the different singlet and triplet param-
eters in terms of ξij is given by

χij = ξ 00
ij + ξ 03

ij ; ηij = −ξ 01
ij + iξ 02

ij ;

E1
ij = ξ 10

ij + ξ 13
ij ; E2

ij = ξ 20
ij + ξ 23

ij ; E3
ij = ξ 30

ij + ξ 33
ij ;

D1
ij = −ξ 11

ij + iξ 12
ij ; D2

ij = −ξ 21
ij + iξ 22

ij ;

D3
ij = −ξ 31

ij + iξ 32
ij . (C1)

Using these, we can derive the form of the bond-nematic order
parameter and vector chirality order parameters, which are
given in terms of the mean-field parameters19 as

Qμ,ν

ij = −1

2

(
E

μ

ijE
∗ν
ij − 1

3
δμ,ν | �Eij |2

)
+ H.c.

− 1

2

(
D

μ

ijD
∗ν
ij − 1

3
δμ,ν | �Dij |2

)
+ H.c.,

J λ
ij = i

2

(
χijE

∗λ
ij − χ∗

ijE
λ
ij

) + i

2

(
ηijD

∗λ
ij − η∗

ijD
λ
ij

)
, (C2)

where our definition of ηij differs by a factor of (−1) from that
of the cited work. We rewrite this in terms of our variables,
finding

Qμν

ij = −ξ
μ0
ij ξ ν0

ij +
∑

a

ξ
μa

ij ξ νa
ij

+ δμν

3

∑
b

((
ξb0
ij

)2 −
∑

a

(
ξba
ij

)2

)
,

J λ
ij = i

(
ξ 00
ij ξ λ0

ij −
∑

a

ξ 0a
ij ξλa

ij

)
. (C3)

In particular, we find that J 1, J 2, Q13, and Q23 must be
zero for all non-Kramers spin liquids, as the terms allowed by
symmetry in Eqs. (32) and (33) do not allow nonzero values
for these order parameters.
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